1
|
Zhou C, Kong Y, Zhang N, Zhang X, Qin W, Zhang L, Zhang H, Yang G, Lu F. Transcriptomic analysis of Bacillus licheniformis 2709 reveals the molecular mechanism of alkaline protease biosynthesis regulated by the DegS/DegU two-component system. Int J Biol Macromol 2025; 306:140868. [PMID: 39986498 DOI: 10.1016/j.ijbiomac.2025.140868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
The DegS/DegU two-component signal transduction system (TCS), plays significant roles in a broad range of bacterial responses to the complicated environment in Bacillus subtilis. However, few efforts have been made to explore the physiological functions of DegS/DegU in alkaline protease (AprE) biosynthesis in the industrial strain Bacillus licheniformis 2709. In this study, it was found that the biosynthesis of AprE is severely hampered in degS and degU deficient mutants compared with the original strain. To investigate the underlying mechanisms responsible for changing the AprE productivity, transcriptome profile analysis was conducted to compare the differentially expressed genes (DEGs) among the deficient mutants and the control. At the peak of AprE production in degS mutant, a total of 810 DEGs including 125 up-regulated and 685 down-regulated were identified compared to the control, which were mainly annotated in 15 pathways, including oxidative phosphorylation, amino acid metabolism and ABC transporters. Besides, the transcriptomic analysis of degU mutant revealed that 307 genes were significantly up-regulated and 604 genes were down-regulated, among which, rho was identified and further functionally verified. Systematic comparison of DEGs under different conditions elucidated self-repression mechanism of DegU on aprE expression in B. licheniformis 2709, which was confirmed by the inducible expression of degU::gfp in this study. The study will yield valuable insight into how the DegS/DegU TCS regulates aprE expression in industrial strain with respect to protease production, and facilitates genetic strain improvement aiming at biological containment and effectiveness of biotechnological processes.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China.
| | - Ying Kong
- Taishan Vocational and Technical College, Tai'an 271018, PR China
| | - Na Zhang
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Ximei Zhang
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Weishuai Qin
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Lei Zhang
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science & Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science & Technology, Tianjin 300450, PR China.
| |
Collapse
|
2
|
Zhou C, Kong Y, Zhang N, Qin W, Li Y, Zhang H, Yang G, Lu F. Regulator DegU can remarkably influence alkaline protease AprE biosynthesis in Bacillus licheniformis 2709. Int J Biol Macromol 2024; 266:130818. [PMID: 38479659 DOI: 10.1016/j.ijbiomac.2024.130818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Alkaline protease AprE, produced by Bacillus licheniformis 2709 is an important edible hydrolase, which has potential applications in nutrient acquisition and medicine. The expression of AprE is finely regulated by a complex transcriptional regulation system. However, there is little study on transcriptional regulation mechanism of AprE biosynthesis in Bacillus licheniformis, which limits system engineering and further enhancement of AprE. Here, the severely depressed expression of aprE in degU and degS deletion mutants illustrated that the regulator DegU and its phosphorylation played a crucial part in AprE biosynthesis. Further electrophoretic mobility shift assay (EMSA) in vitro indicated that phosphorylated DegU can directly bind to the regulatory region though the DNase I foot-printing experiments failed to observe protected region. The plasmid-mediated overexpression of degU32 (Hy) obviously improved the yield of AprE by 41.6 % compared with the control strain, which demonstrated the importance of phosphorylation state of DegU on the transcription of aprE in vivo. In this study, the putative binding sequence of aprE (5'-TAAAT……AAAAT…….AACAT…TAAAA-3') located upstream -91 to -87 bp, -101 to -97 bp, -195 to -191 bp, -215 to -211 bp of the transcription start site (TSS) in B. licheniformis was computationally identified based on the DNA-binding sites of DegU in Bacillus subtilis. Overall, we systematically investigated the influence of the interplay between phosphorylated DegU and its cognate DNA sequence on expression of aprE, which not only contributes to the further AprE high-production in a genetically modified host in the future, but also significantly increases our understanding of the aprE transcription mechanism.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Ying Kong
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Na Zhang
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Weishuai Qin
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Yanyan Li
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
3
|
Zhou C, Yang G, Meng P, Qin W, Li Y, Lin Z, Hui W, Zhang H, Lu F. Identification and engineering of the aprE regulatory region and relevant regulatory proteins in Bacillus licheniformis 2709. Enzyme Microb Technol 2024; 172:110310. [PMID: 37925770 DOI: 10.1016/j.enzmictec.2023.110310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 11/07/2023]
Abstract
Bacillus licheniformis 2709 is the main industrial producer of alkaline protease (AprE), but its biosynthesis is strictly controlled by a highly sophisticated transcriptional network. In this study, the UP elements of aprE located 74-98, 98-119 and 140-340 bp upstream of the transcriptional start site (TSS) were identified, which presented obvious effects on the transcription of aprE. To further analyze the transcriptional mechanism, the specific proteins binding to the approximately 500-bp DNA sequences were subsequently captured by reverse-chromatin immunoprecipitation (reverse-ChIP) and DNA pull-down (DPD) assays, which captured the transcriptional factors CggR, FruR, and YhcZ. The study demonstrated that CggR, FruR and YhcZ had no significant effect on cell growth and aprE expression. Then, aprE expression was significantly enhanced by deleting a potential negative regulatory factor binding site in the genome. The AprE enzyme activity in shake flasks of the genomic mutant BL ∆1 was 47% higher than in the original strain, while the aprE transcription level increased 3.16 times. The protocol established in this study provides a valuable reference for the high-level production of proteins in other Bacillus species. At the same time, it will help reveal the molecular mechanism of the transcriptional regulatory network of aprE and provide important theoretical guidance for further enhancing the yield of AprE.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China; Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China.
| | - Panpan Meng
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Weishuai Qin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Yanyan Li
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Zhenxian Lin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Wei Hui
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
4
|
Xie CY, Li WJ, Feng H. Tuning transcription factor DegU for developing extracellular protease overproducer in Bacillus pumilus. Microb Cell Fact 2023; 22:163. [PMID: 37635205 PMCID: PMC10464342 DOI: 10.1186/s12934-023-02177-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Global transcription machinery engineering (gTME) is an effective approach employed in strain engineering to rewire gene expression and reshape cellular metabolic fluxes at the transcriptional level. RESULTS In this study, we utilized gTME to engineer the positive transcription factor, DegU, in the regulation network of major alkaline protease, AprE, in Bacillus pumilus. To validate its functionality when incorporated into the chromosome, we performed several experiments. First, three negative transcription factors, SinR, Hpr, and AbrB, were deleted to promote AprE synthesis. Second, several hyper-active DegU mutants, designated as DegU(hy), were selected using the fluorescence colorimetric method with the host of the Bacillus subtilis ΔdegSU mutant. Third, we integrated a screened degU(L113F) sequence into the chromosome of the Δhpr mutant of B. pumilus SCU11 to replace the original degU gene using a CRISPR/Cas9 system. Finally, based on transcriptomic and molecular dynamic analysis, we interpreted the possible mechanism of high-yielding and found that the strain produced alkaline proteases 2.7 times higher than that of the control strain (B. pumilus SCU11) in LB medium. CONCLUSION Our findings serve as a proof-of-concept that tuning the global regulator is feasible and crucial for improving the production performance of B. pumilus. Additionally, our study established a paradigm for gene function research in strains that are difficult to handle.
Collapse
Affiliation(s)
- Chao-Ying Xie
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Wen-Jin Li
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Hong Feng
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
5
|
Insights in the Complex DegU, DegS, and Spo0A Regulation System of Paenibacillus polymyxa by CRISPR-Cas9-Based Targeted Point Mutations. Appl Environ Microbiol 2022; 88:e0016422. [PMID: 35588272 PMCID: PMC9195935 DOI: 10.1128/aem.00164-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being unicellular organisms, bacteria undergo complex regulation mechanisms which coordinate different physiological traits. Among others, DegU, DegS, and Spo0A are the pleiotropic proteins which govern various cellular responses and behaviors. However, the functions and regulatory networks between these three proteins are rarely described in the highly interesting bacterium Paenibacillus polymyxa. In this study, we investigate the roles of DegU, DegS, and Spo0A by introduction of targeted point mutations facilitated by a CRISPR-Cas9-based system. In total, five different mutant strains were generated, the single mutants DegU Q218*, DegS L99F, and Spo0A A257V, the double mutant DegU Q218* DegS L99F, and the triple mutant DegU Q218* DegS L99F Spo0A A257V. Characterization of the wild-type and the engineered strains revealed differences in swarming behavior, conjugation efficiency, sporulation, and viscosity formation of the culture broth. In particular, the double mutant DegU Q218* DegS L99F showed a significant increase in conjugation efficiency as well as a stable exopolysaccharides formation. Furthermore, we highlight similarities and differences in the roles of DegU, DegS, and Spo0A between P. polymyxa and related species. Finally, this study provides novel insights into the complex regulatory system of P. polymyxa DSM 365. IMPORTANCE To date, only limited knowledge is available on how complex cellular behaviors are regulated in P. polymyxa. In this study, we investigate several regulatory proteins which play a role in governing different physiological traits. Precise targeted point mutations were introduced to their respective genes by employing a highly efficient CRISPR-Cas9-based system. Characterization of the strains revealed some similarities, but also differences, to the model bacterium Bacillus subtilis with regard to the regulation of cellular behaviors. Furthermore, we identified several strains which have superior performance over the wild-type. The applicability of the CRISPR-Cas9 system as a robust genome editing tool, in combination with the engineered strain with increased genetic accessibility, would boost further research in P. polymyxa and support its utilization for biotechnological applications. Overall, our study provides novel insights, which will be of importance in understanding how multiple cellular processes are regulated in Paenibacillus species.
Collapse
|
6
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Othoum G, Bougouffa S, Razali R, Bokhari A, Alamoudi S, Antunes A, Gao X, Hoehndorf R, Arold ST, Gojobori T, Hirt H, Mijakovic I, Bajic VB, Lafi FF, Essack M. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters. BMC Genomics 2018; 19:382. [PMID: 29788916 PMCID: PMC5964695 DOI: 10.1186/s12864-018-4796-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions. RESULTS We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species. CONCLUSIONS B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems.
Collapse
Affiliation(s)
- Ghofran Othoum
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Rozaimi Razali
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Ameerah Bokhari
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Soha Alamoudi
- Department of Biology, Science and Arts College, King Abdulaziz University, Rabigh, 21589 Kingdom of Saudi Arabia
| | - André Antunes
- Biology Department, Edge Hill University, L39 4QP, Ormskirk, Lancashire UK
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Heribert Hirt
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Vladimir B. Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Feras F. Lafi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, PO Box 2882, Madaba, Amman JO-11821 Jordan
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Muth C, Buchholz M, Schmidt C, Volland S, Meinhardt F. Genetic evidence for a novel competence inhibitor in the industrially important Bacillus licheniformis. AMB Express 2017; 7:149. [PMID: 28697584 PMCID: PMC5503854 DOI: 10.1186/s13568-017-0447-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022] Open
Abstract
Natural genetic competence renders bacteria able to take up and, in case there is sufficient homology to the recipient's chromosome, integrate exogenously supplied DNA. Well studied in Bacillus subtilis, genetic competence is-in several aspects-known to be differently regulated in Bacillus licheniformis. We now report on the identification of a novel, chromosomally encoded homolog of a competence inhibitor in B. licheniformis (ComI) that has hitherto only been described as a plasmid borne trait in the ancestral B. subtilis NCIB3610. Bioinformatical analysis that included 80 Bacillus strains covering 20 different species revealed a ComI encoding gene in all of the examined B. licheniformis representatives, and was identified in few among the other species investigated. The predicted ComI of B. licheniformis is a highly conserved peptide consisting of 28 amino acids. Since deletion of comI in B. licheniformis DSM13 resulted in twofold increased transformation efficiency by genetic competence and overexpression resulted in threefold decreased transformability, the function as a competence inhibitor became evident.
Collapse
|
10
|
The restriction modification system of Bacillus licheniformis MS1 and generation of a readily transformable deletion mutant. Appl Microbiol Biotechnol 2017; 101:7933-7944. [PMID: 28942561 DOI: 10.1007/s00253-017-8532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/19/2023]
Abstract
Restriction modification systems (R-M systems), consisting of a restriction endonuclease and a cognate methyltransferase, constitute an effective means of a cell to protect itself from foreign DNA. Identification, characterization, and deletion of the restriction modification system BliMSI, a putative isoschizomer of ClaI from Caryophanon latum, were performed in the wild isolate Bacillus licheniformis MS1. BliMSI was produced as recombinant protein in Escherichia coli, purified, and in vitro analysis demonstrated identical restriction endonuclease activity as for ClaI. A recombinant E. coli strain, expressing the heterologous bliMSIM gene, was constructed and used as the host for in vivo methylation of plasmids prior to their introduction into B. licheniformis to improve transformation efficiencies. The establishment of suicide plasmids in the latter was rendered possible. The subsequent deletion of the restriction endonuclease encoding gene, bliMSIR, caused doubled transformation efficiencies in the respective mutant B. licheniformis MS2 (∆bliMSIR). Along with above in vivo methylation, the establishment of further gene deletions (∆upp, ∆yqfD) was performed. The constructed triple mutant (∆bliMSIR, ∆upp, ∆yqfD) enables rapid genome manipulation, a requirement for genetic engineering of industrially important strains.
Collapse
|
11
|
Kang LJ, Meng ZT, Hu C, Zhang Y, Guo HL, Li Q, Li M. Screening, purification, and characterization of a novel organic solvent-tolerant esterase, Lip2, from Monascus purpureus strain M7. Extremophiles 2017; 21:345-355. [DOI: 10.1007/s00792-016-0907-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/19/2016] [Indexed: 12/01/2022]
|
12
|
Li M, Yang LR, Xu G, Wu JP. Cloning and characterization of a novel lipase from Stenotrophomonas maltophilia GS11: The first member of a new bacterial lipase family XVI. J Biotechnol 2016; 228:30-36. [PMID: 27117245 DOI: 10.1016/j.jbiotec.2016.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/24/2022]
Abstract
Bacterial lipases are an important group of enzymes that offer enormous potential in organic synthesis, and there is considerable interest in identifying and developing novel bacterial lipases. In previous studies, strains of the genus Stenotrophomonas were proved to be potential source of lipases, but there is little genetic information describing lipase from the genus Stenotrophomonas. We have cloned and characterized a novel lipase (LipSM54), the first lipase described from the genus Stenotrophomonas. Enzymatic study showed that LipSM54 was a cold-active, solvent-tolerant and alkaline lipase. Using bioinformatics tools, LipSM54 was found to be related only to several putative lipases from different bacterial origins, none of which could be assigned to any previously described bacterial lipase family. LipSM54 and these related putative lipases share four conserved motifs around the catalytic residues. These motifs clearly distinguish them from the known bacterial lipase families. Consequently, LipSM54 is the first characterized member of the novel bacterial lipase family.
Collapse
Affiliation(s)
- Mu Li
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, People's Republic of China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Li-Rong Yang
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Gang Xu
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jian-Ping Wu
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
13
|
Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. J Ind Microbiol Biotechnol 2014; 42:287-95. [PMID: 25475755 DOI: 10.1007/s10295-014-1559-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023]
Abstract
Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins.
Collapse
|
14
|
Wiegand S, Voigt B, Albrecht D, Bongaerts J, Evers S, Hecker M, Daniel R, Liesegang H. Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production. Microb Cell Fact 2013; 12:120. [PMID: 24313996 PMCID: PMC3878961 DOI: 10.1186/1475-2859-12-120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/01/2013] [Indexed: 11/10/2022] Open
Abstract
Background Industrial fermentations can generally be described as dynamic biotransformation processes in which microorganisms convert energy rich substrates into a desired product. The knowledge of active physiological pathways, reflected by corresponding gene activities, allows the identification of beneficial or disadvantageous performances of the microbial host. Whole transcriptome RNA-Seq is a powerful tool to accomplish in-depth quantification of these gene activities, since the low background noise and the absence of an upper limit of quantification allow the detection of transcripts with high dynamic ranges. Such data enable the identification of potential bottlenecks and futile energetic cycles, which in turn can lead to targets for rational approaches to productivity improvement. Here we present an overview of the dynamics of gene activity during an industrial-oriented fermentation process with Bacillus licheniformis, an important industrial enzyme producer. Thereby, valuable insights which help to understand the complex interactions during such processes are provided. Results Whole transcriptome RNA-Seq has been performed to study the gene expression at five selected growth stages of an industrial-oriented protease production process employing a germination deficient derivative of B. licheniformis DSM13. Since a significant amount of genes in Bacillus strains are regulated posttranscriptionally, the generated data have been confirmed by 2D gel-based proteomics. Regulatory events affecting the coordinated activity of hundreds of genes have been analyzed. The data enabled the identification of genes involved in the adaptations to changing environmental conditions during the fermentation process. A special focus of the analyses was on genes contributing to central carbon metabolism, amino acid transport and metabolism, starvation and stress responses and protein secretion. Genes contributing to lantibiotics production and Tat-dependent protein secretion have been pointed out as potential optimization targets. Conclusions The presented data give unprecedented insights into the complex adaptations of bacterial production strains to the changing physiological demands during an industrial-oriented fermentation. These are, to our knowledge, the first publicly available data that document quantifiable transcriptional responses of the commonly employed production strain B. licheniformis to changing conditions over the course of a typical fermentation process in such extensive depth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Heiko Liesegang
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Norddeutsches Zentrum für Mikrobielle Genomforschung, Georg-August-Universität Göttingen, Grisebachstr, 8, D-37077 Göttingen, Germany.
| |
Collapse
|
15
|
Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. PLoS One 2013; 8:e80956. [PMID: 24348917 PMCID: PMC3858371 DOI: 10.1371/journal.pone.0080956] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.
Collapse
|
16
|
Buchholz M, Nahrstedt H, Pillukat MH, Deppe V, Meinhardt F. yneA mRNA instability is involved in temporary inhibition of cell division during the SOS response of Bacillus megaterium. MICROBIOLOGY-SGM 2013; 159:1564-1574. [PMID: 23728628 DOI: 10.1099/mic.0.064766-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The SOS response, a mechanism enabling bacteria to cope with DNA damage, is strictly regulated by the two major players, RecA and LexA (Bacillus homologue DinR). Genetic stress provokes formation of ssDNA-RecA nucleoprotein filaments, the coprotease activity of which mediates the autocatalytic cleavage of the transcriptional repressor DinR and ensures the expression of a set of din (damage-inducible) genes, which encode proteins that enhance repair capacity, accelerate mutagenesis rate and cause inhibition of cell division (ICD). In Bacillus subtilis, the transcriptional activation of the yneAB-ynzC operon is part of the SOS response, with YneA being responsible for the ICD. Pointing to its cellular function in Bacillus megaterium, overexpression of homologous YneA led to filamentous growth, while ICD was temporary during the SOS response. Genetic knockouts of the individual open reading frames of the yneAB-ynzC operon increased the mutagenic sensitivity, proving - for the first time in a Bacillus species - that each of the three genes is in fact instrumental in coping with genetic stress. Northern- and quantitative real-time PCR analyses revealed - in contrast to other din genes (exemplified for dinR, uvrBA) - transient mRNA-presence of the yneAB-ynzC operon irrespective of persisting SOS-inducing conditions. Promoter test assays and Northern analyses suggest that the decline of the ICD is at least partly due to yneAB-ynzC mRNA instability.
Collapse
Affiliation(s)
- Meike Buchholz
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Hannes Nahrstedt
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Mike H Pillukat
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Veronika Deppe
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
17
|
Wemhoff S, Meinhardt F. Generation of biologically contained, readily transformable, and genetically manageable mutants of the biotechnologically important Bacillus pumilus. Appl Microbiol Biotechnol 2013; 97:7805-19. [PMID: 23644770 DOI: 10.1007/s00253-013-4935-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/25/2022]
Abstract
Bacillus pumilus mutants were generated by targeted deletion of a set of genes eventually facilitating genetic handling and assuring biological containment. The well-defined and stable mutants do not form functional endospores due to the deletion of yqfD, an essential sporulation gene; they are affected in DNA repair, as ΔuvrBA rendered them UV hypersensitive and, thus, biologically contained; they are deficient for the uracil phosphoribosyl-transferase (Δupp), allowing for 5-fluorouracil-based counterselection facilitating rapid allelic exchanges; and they are readily transformable due to the deletion of the restrictase encoding locus (ΔhsdR) of a type I restriction modification system. Vegetative growth as well as extracellular enzyme production and secretion are in no case affected. The combination of such gene deletions allows for development of B. pumilus strains suited for industrial use and further improvements.
Collapse
Affiliation(s)
- Stephanie Wemhoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149, Münster, Germany
| | | |
Collapse
|