1
|
Carmona M, Poblete-Castro I, Rai M, Turner RJ. Opportunities and obstacles in microbial synthesis of metal nanoparticles. Microb Biotechnol 2023; 16:871-876. [PMID: 36965145 PMCID: PMC10128127 DOI: 10.1111/1751-7915.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Metallic nanoparticles (MeNPs) are widely used in many areas such as biomedicine, packaging, cosmetics, colourants, agriculture, antimicrobial agents, cleaning products, as components of electronic devices and nutritional supplements. In addition, some MeNPs exhibit quantum properties, making them suitable materials in the photonics, electronic and energy industries. Through the lens of technology, microbes can be considered nanofactories capable of producing enzymes, metabolites and capping materials involved in the synthesis, assembly and stabilization of MeNPs. This bioprocess is considered more ecofriendly and less energy intensive than the current chemical synthesis routes. However, microbial synthesis of MeNPs as an alternative method to the chemical synthesis of nanomaterials still faces some challenges that need to be solved. Some of these challenges are described in this Editorial.
Collapse
Affiliation(s)
- Manuel Carmona
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | | | - Mahendra Rai
- Sant Gadge Baba Amravati University, Amravati, Maharashtra, India
| | | |
Collapse
|
2
|
Quashie D, Benhal P, Chen Z, Wang Z, Mu X, Song X, Jiang T, Zhong Y, Cheang UK, Ali J. Magnetic bio-hybrid micro actuators. NANOSCALE 2022; 14:4364-4379. [PMID: 35262134 DOI: 10.1039/d2nr00152g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past two decades, there has been a growing body of work on wireless devices that can operate on the length scales of biological cells and even smaller. A class of these devices receiving increasing attention are referred to as bio-hybrid actuators: tools that integrate biological cells or subcellular parts with synthetic or inorganic components. These devices are commonly controlled through magnetic manipulation as magnetic fields and gradients can be generated with a high level of control. Recent work has demonstrated that magnetic bio-hybrid actuators can address common challenges in small scale fabrication, control, and localization. Additionally, it is becoming apparent that these magnetically driven bio-hybrid devices can display high efficiency and, in many cases, have the potential for self-repair and even self-replication. Combining these properties with magnetically driven forces and torques, which can be transmitted over significant distances, can be highly controlled, and are biologically safe, gives magnetic bio-hybrid actuators significant advantages over other classes of small scale actuators. In this review, we describe the theory and mechanisms required for magnetic actuation, classify bio-hybrid actuators by their diverse organic components, and discuss their current limitations. Insights into the future of coupling cells and cell-derived components with magnetic materials to fabricate multi-functional actuators are also provided.
Collapse
Affiliation(s)
- David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Zhi Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Zihan Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xueliang Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Teng Jiang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| |
Collapse
|
3
|
Buss MT, Ramesh P, English MA, Lee-Gosselin A, Shapiro MG. Spatial Control of Probiotic Bacteria in the Gastrointestinal Tract Assisted by Magnetic Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007473. [PMID: 33709508 DOI: 10.1002/adma.202007473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Engineered probiotics have the potential to diagnose and treat a variety of gastrointestinal (GI) diseases. However, these exogenous bacterial agents have limited ability to effectively colonize specific regions of the GI tract due to a lack of external control over their localization and persistence. Magnetic fields are well suited to providing such control, since they freely penetrate biological tissues. However, they are difficult to apply with sufficient strength to directly manipulate magnetically labeled cells in deep tissue such as the GI tract. Here, it is demonstrated that a composite biomagnetic material consisting of microscale magnetic particles and probiotic bacteria, when orally administered and combined with an externally applied magnetic field, enables the trapping and retention of probiotic bacteria within the GI tract of mice. This technology improves the ability of these probiotic agents to accumulate at specific locations and stably colonize without antibiotic treatment. By enhancing the ability of GI-targeted probiotics to be at the right place at the right time, cellular localization assisted by magnetic particles (CLAMP) adds external physical control to an important emerging class of microbial theranostics.
Collapse
Affiliation(s)
- Marjorie T Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pradeep Ramesh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Max Atticus English
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
4
|
Pekarsky A, Spadiut O. Intrinsically Magnetic Cells: A Review on Their Natural Occurrence and Synthetic Generation. Front Bioeng Biotechnol 2020; 8:573183. [PMID: 33195134 PMCID: PMC7604359 DOI: 10.3389/fbioe.2020.573183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
The magnetization of non-magnetic cells has great potential to aid various processes in medicine, but also in bioprocess engineering. Current approaches to magnetize cells with magnetic nanoparticles (MNPs) require cellular uptake or adsorption through in vitro manipulation of cells. A relatively new field of research is "magnetogenetics" which focuses on in vivo production and accumulation of magnetic material. Natural intrinsically magnetic cells (IMCs) produce intracellular, MNPs, and are called magnetotactic bacteria (MTB). In recent years, researchers have unraveled function and structure of numerous proteins from MTB. Furthermore, protein engineering studies on such MTB proteins and other potentially magnetic proteins, like ferritins, highlight that in vivo magnetization of non-magnetic hosts is a thriving field of research. This review summarizes current knowledge on recombinant IMC generation and highlights future steps that can be taken to succeed in transforming non-magnetic cells to IMCs.
Collapse
Affiliation(s)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
5
|
Brier MI, Mundell JW, Yu X, Su L, Holmann A, Squeri J, Zhang B, Stanley SA, Friedman JM, Dordick JS. Uncovering a possible role of reactive oxygen species in magnetogenetics. Sci Rep 2020; 10:13096. [PMID: 32753716 PMCID: PMC7403421 DOI: 10.1038/s41598-020-70067-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports have shown that intracellular, (super)paramagnetic ferritin nanoparticles can gate TRPV1, a non-selective cation channel, in a magnetic field. Here, we report the effects of differing field strength and frequency as well as chemical inhibitors on channel gating using a Ca2+-sensitive promoter to express a secreted embryonic alkaline phosphatase (SEAP) reporter. Exposure of TRPV1-ferritin-expressing HEK-293T cells at 30 °C to an alternating magnetic field of 501 kHz and 27.1 mT significantly increased SEAP secretion by ~ 82% relative to control cells, with lesser effects at other field strengths and frequencies. Between 30-32 °C, SEAP production was strongly potentiated 3.3-fold by the addition of the TRPV1 agonist capsaicin. This potentiation was eliminated by the competitive antagonist AMG-21629, the NADPH oxidase assembly inhibitor apocynin, and the reactive oxygen species (ROS) scavenger N-acetylcysteine, suggesting that ROS contributes to magnetogenetic TRPV1 activation. These results provide a rational basis to address the heretofore unknown mechanism of magnetogenetics.
Collapse
Affiliation(s)
- Matthew I Brier
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jordan W Mundell
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY, 10065, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lichao Su
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin, 541004, China
| | - Alexander Holmann
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jessica Squeri
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Baolin Zhang
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin, 541004, China
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
6
|
Stanley SA, Friedman JM. Electromagnetic Regulation of Cell Activity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034322. [PMID: 30249601 DOI: 10.1101/cshperspect.a034322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to observe the effects of rapidly and reversibly regulating cell activity in targeted cell populations has provided numerous physiologic insights. Over the last decade, a wide range of technologies have emerged for regulating cellular activity using optical, chemical, and, more recently, electromagnetic modalities. Electromagnetic fields can freely penetrate cells and tissue and their energy can be absorbed by metal particles. When released, the absorbed energy can in turn gate endogenous or engineered receptors and ion channels to regulate cell activity. In this manner, electromagnetic fields acting on external nanoparticles have been used to exert mechanical forces on cell membranes and organelles to generate heat and interact with thermally activated proteins or to induce receptor aggregation and intracellular signaling. More recently, technologies using genetically encoded nanoparticles composed of the iron storage protein, ferritin, have been used for targeted, temporal control of cell activity in vitro and in vivo. These tools provide a means for noninvasively modulating gene expression, intracellular organelles, such as endosomes, and whole-cell activity both in vitro and in freely moving animals. The use of magnetic fields interacting with external or genetically encoded nanoparticles thus provides a rapid noninvasive means for regulating cell activity.
Collapse
Affiliation(s)
- Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065.,Howard Hughes Medical Institute, New York, New York 10065
| |
Collapse
|
7
|
Ito A, Teranishi R, Kamei K, Yamaguchi M, Ono A, Masumoto S, Sonoda Y, Horie M, Kawabe Y, Kamihira M. Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles. J Biosci Bioeng 2019; 128:355-364. [PMID: 30962099 DOI: 10.1016/j.jbiosc.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
To develop a remote control system of transgene expression through localized cellular heating of magnetic nanoparticles, a heat-inducible transgene expression system was introduced into mammalian cells. Cells were labeled with magnetic nanoparticles and exposed to an alternating magnetic field. The magnetically labeled cells expressed the transgene in a monolayer and multilayered cell sheets in which cells were heated around the magnetic nanoparticles without an apparent temperature increase in the culture medium. Magnetic cells were also generated by genetically engineering with a ferritin gene, and transgene expression could be induced by exposure to an alternating magnetic field. This approach may be applicable to the development of novel gene therapies in cell-based medicine.
Collapse
Affiliation(s)
- Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoji Teranishi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kamei
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Yamaguchi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiko Ono
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinya Masumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Sonoda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanobu Horie
- Division of Biochemical Engineering, Radioisotope Research Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
8
|
Ramesh P, Hwang S, Davis HC, Lee‐Gosselin A, Bharadwaj V, English MA, Sheng J, Iyer V, Shapiro MG. Ultraparamagnetic Cells Formed through Intracellular Oxidation and Chelation of Paramagnetic Iron. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pradeep Ramesh
- Division of Biology and Biological Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Son‐Jong Hwang
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Hunter C. Davis
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Audrey Lee‐Gosselin
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Vivek Bharadwaj
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA 91125 USA
| | - Max A. English
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA 91125 USA
| | - Jenny Sheng
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA 91125 USA
| | - Vasant Iyer
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA 91125 USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
9
|
Ramesh P, Hwang SJ, Davis HC, Lee-Gosselin A, Bharadwaj V, English MA, Sheng J, Iyer V, Shapiro MG. Ultraparamagnetic Cells Formed through Intracellular Oxidation and Chelation of Paramagnetic Iron. Angew Chem Int Ed Engl 2018; 57:12385-12389. [PMID: 30089191 DOI: 10.1002/anie.201805042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Making cells magnetic is a long-standing goal of chemical biology, aiming to enable the separation of cells from complex biological samples and their visualization in vivo using magnetic resonance imaging (MRI). Previous efforts towards this goal, focused on engineering cells to biomineralize superparamagnetic or ferromagnetic iron oxides, have been largely unsuccessful due to the stringent required chemical conditions. Here, we introduce an alternative approach to making cells magnetic, focused on biochemically maximizing cellular paramagnetism. We show that a novel genetic construct combining the functions of ferroxidation and iron chelation enables engineered bacterial cells to accumulate iron in "ultraparamagnetic" macromolecular complexes, allowing these cells to be trapped with magnetic fields and imaged with MRI in vitro and in vivo. We characterize the properties of these cells and complexes using magnetometry, nuclear magnetic resonance, biochemical assays, and computational modeling to elucidate the unique mechanisms and capabilities of this paramagnetic concept.
Collapse
Affiliation(s)
- Pradeep Ramesh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Son-Jong Hwang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hunter C Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vivek Bharadwaj
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Max A English
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jenny Sheng
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vasant Iyer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
10
|
Monzel C, Vicario C, Piehler J, Coppey M, Dahan M. Magnetic control of cellular processes using biofunctional nanoparticles. Chem Sci 2017; 8:7330-7338. [PMID: 29163884 PMCID: PMC5672790 DOI: 10.1039/c7sc01462g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
Remote control of cellular functions is a key challenge in biomedical research. Only a few tools are currently capable of manipulating cellular events at distance, at spatial and temporal scales matching their naturally active range. A promising approach, often referred to as 'magnetogenetics', is based on the use of magnetic fields, in conjunction with targeted biofunctional magnetic nanoparticles. By triggering molecular stimuli via mechanical, thermal or biochemical perturbations, magnetic actuation constitutes a highly versatile tool with numerous applications in fundamental research as well as exciting prospects in nano- and regenerative medicine. Here, we highlight recent studies, comment on the advancement of magnetic manipulation, and discuss remaining challenges.
Collapse
Affiliation(s)
- Cornelia Monzel
- Institut Curie , PSL Research University , Laboratoire Physico Chimie , CNRS UMR168 , UPMC , F-75005 Paris , France .
| | - Chiara Vicario
- Institut Curie , PSL Research University , Laboratoire Physico Chimie , CNRS UMR168 , UPMC , F-75005 Paris , France .
| | - Jacob Piehler
- University of Osnabrück , Department of Biology/Chemistry , Division of Biophysics , 49076 Osnabrück , Germany
| | - Mathieu Coppey
- Institut Curie , PSL Research University , Laboratoire Physico Chimie , CNRS UMR168 , UPMC , F-75005 Paris , France .
| | - Maxime Dahan
- Institut Curie , PSL Research University , Laboratoire Physico Chimie , CNRS UMR168 , UPMC , F-75005 Paris , France .
| |
Collapse
|
11
|
Microfluidic sorting of intrinsically magnetic cells under visual control. Sci Rep 2017; 7:6942. [PMID: 28761104 PMCID: PMC5537260 DOI: 10.1038/s41598-017-06946-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 12/04/2022] Open
Abstract
Magnetic cell sorting provides a valuable complementary mechanism to fluorescent techniques, especially if its parameters can be fine-tuned. In addition, there has recently been growing interest in studying naturally occurring magnetic cells and genetic engineering of cells to render them magnetic in order to control molecular processes via magnetic fields. For such approaches, contamination-free magnetic separation is an essential capability. We here present a robust and tunable microfluidic sorting system in which magnetic gradients of up to 1700 T/m can be applied to cells flowing through a sorting channel by reversible magnetization of ferrofluids. Visual control of the sorting process allowed us to optimize sorting efficiencies for a large range of sizes and magnetic moments of cells. Using automated quantification based on imaging of fluorescent markers, we showed that macrophages containing phagocytosed magnetic nanoparticles, with cellular magnetic dipole moments on the order of 10 fAm2, could be sorted with an efficiency of 90 ± 1%. Furthermore, we successfully sorted intrinsically magnetic magnetotactic bacteria with magnetic moments of 0.1 fAm2. In distinction to column-based magnetic sorting devices, microfluidic systems can prevent sample contact with superparamagnetic material. This ensures contamination-free separation of naturally occurring or bioengineered magnetic cells and is essential for downstream characterization of their properties.
Collapse
|
12
|
Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X, Nectow AR, Sauer J, Dyke JP, Dordick JS, Friedman JM. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 2016; 531:647-50. [PMID: 27007848 PMCID: PMC4894494 DOI: 10.1038/nature17183] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/28/2016] [Indexed: 12/16/2022]
Abstract
Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP-TRPV1). Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase-Cre mice, which express Cre in glucose-sensing neurons. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types.
Collapse
Affiliation(s)
- Sarah A Stanley
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
| | - Kaamashri N Latcha
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
| | - Sarah F Schmidt
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
| | - Alexander R Nectow
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
| | - Jeremy Sauer
- Department of Chemical &Biological Engineering, Center for Biotechnology &Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Jonathan S Dordick
- Department of Chemical &Biological Engineering, Center for Biotechnology &Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, New York, New York 10065, USA
| |
Collapse
|
13
|
Engineering intracellular biomineralization and biosensing by a magnetic protein. Nat Commun 2015; 6:8721. [PMID: 26522873 PMCID: PMC4667635 DOI: 10.1038/ncomms9721] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/24/2015] [Indexed: 11/08/2022] Open
Abstract
Remote measurement and manipulation of biological systems can be achieved using magnetic techniques, but a missing link is the availability of highly magnetic handles on cellular or molecular function. Here we address this need by using high-throughput genetic screening in yeast to select variants of the iron storage ferritin (Ft) that display enhanced iron accumulation under physiological conditions. Expression of Ft mutants selected from a library of 10(7) variants induces threefold greater cellular iron loading than mammalian heavy chain Ft, over fivefold higher contrast in magnetic resonance imaging, and robust retention on magnetic separation columns. Mechanistic studies of mutant Ft proteins indicate that improved magnetism arises in part from increased iron oxide nucleation efficiency. Molecular-level iron loading in engineered Ft enables detection of individual particles inside cells and facilitates creation of Ft-based intracellular magnetic devices. We demonstrate construction of a magnetic sensor actuated by gene expression in yeast.
Collapse
|
14
|
Encapsulation as a Strategy for the Design of Biological Compartmentalization. J Mol Biol 2015; 428:916-27. [PMID: 26403362 DOI: 10.1016/j.jmb.2015.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/16/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Compartmentalization is one of the defining features of life. Through intracellular spatial control, cells are able to organize and regulate their metabolism. One of the most broadly used organizational principles in nature is encapsulation. Cellular processes can be encapsulated within either membrane-bound organelles or proteinaceous compartments that create distinct microenvironments optimized for a given task. Further challenges addressed through intracellular compartmentalization are toxic or volatile pathway intermediates, slow turnover rates and competing side reactions. This review highlights a selection of naturally occurring membrane- and protein-based encapsulation systems in microbes and their recent applications and emerging opportunities in synthetic biology. We focus on examples that use engineered cellular organization to control metabolic pathway flux for the production of useful compounds and materials.
Collapse
|
15
|
Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med 2015; 21:92-98. [PMID: 25501906 PMCID: PMC4894538 DOI: 10.1038/nm.3730] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
Abstract
Means for temporally regulating gene expression and cellular activity are invaluable for elucidating underlying physiological processes and would have therapeutic implications. Here we report the development of a genetically encoded system for remote regulation of gene expression by low-frequency radio waves (RFs) or a magnetic field. Iron oxide nanoparticles are synthesized intracellularly as a GFP-tagged ferritin heavy and light chain fusion. The ferritin nanoparticles associate with a camelid anti-GFP-transient receptor potential vanilloid 1 fusion protein, αGFP-TRPV1, and can transduce noninvasive RF or magnetic fields into channel activation, also showing that TRPV1 can transduce a mechanical stimulus. This, in turn, initiates calcium-dependent transgene expression. In mice with stem cell or viral expression of these genetically encoded components, remote stimulation of insulin transgene expression with RF or a magnet lowers blood glucose. This robust, repeatable method for remote regulation in vivo may ultimately have applications in basic science, technology and therapeutics.
Collapse
Affiliation(s)
- Sarah A Stanley
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York, USA
| | - Jeremy Sauer
- Department of Chemical and Biological Engineering, Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ravi S Kane
- Department of Chemical and Biological Engineering, Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| |
Collapse
|
16
|
Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Pósfai M, Tompa E, Plitzko JM, Brachmann A, Wanner G, Müller R, Zhang Y, Schüler D. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. NATURE NANOTECHNOLOGY 2014; 9:193-197. [PMID: 24561353 DOI: 10.1038/nnano.2014.13] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temperature is challenging. In nature, magnetosomes--membrane-bound magnetic nanocrystals with unprecedented magnetic properties--can be biomineralized by magnetotactic bacteria. However, these microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidious microorganisms within other organisms could therefore greatly expand their nanotechnological and biomedical applications. So far, this has been hindered by the structural and genetic complexity of the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Magnetospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored magnetic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous magnetization of various organisms by synthetic biology.
Collapse
Affiliation(s)
- Isabel Kolinko
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Anna Lohße
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Sarah Borg
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Oliver Raschdorf
- 1] Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany [2] Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Jogler
- 1] Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany [2]
| | - Qiang Tu
- 1] Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany [2] Shandong University - Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Life Science College, Shandong University, Jinan 250100, China
| | - Mihály Pósfai
- University of Pannonia, Department of Earth and Environmental Sciences, Veszprém, H-8200 Hungary
| | - Eva Tompa
- University of Pannonia, Department of Earth and Environmental Sciences, Veszprém, H-8200 Hungary
| | - Jürgen M Plitzko
- 1] Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany [2] Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Andreas Brachmann
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Gerhard Wanner
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | - Youming Zhang
- Shandong University - Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Life Science College, Shandong University, Jinan 250100, China
| | - Dirk Schüler
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| |
Collapse
|
17
|
Rice MK, Ruder WC. Creating biological nanomaterials using synthetic biology. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:014401. [PMID: 27877637 PMCID: PMC5090598 DOI: 10.1088/1468-6996/15/1/014401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/03/2013] [Accepted: 09/10/2013] [Indexed: 05/08/2023]
Abstract
Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.
Collapse
|
18
|
Lauwers M, Pichler P, Edelman N, Resch G, Ushakova L, Salzer M, Heyers D, Saunders M, Shaw J, Keays D. An Iron-Rich Organelle in the Cuticular Plate of Avian Hair Cells. Curr Biol 2013; 23:924-9. [DOI: 10.1016/j.cub.2013.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 11/30/2022]
|
19
|
Matsumoto Y, Jasanoff A. Metalloprotein-based MRI probes. FEBS Lett 2013; 587:1021-9. [PMID: 23376346 DOI: 10.1016/j.febslet.2013.01.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 02/02/2023]
Abstract
Metalloproteins have long been recognized as key determinants of endogenous contrast in magnetic resonance imaging (MRI) of biological subjects. More recently, both natural and engineered metalloproteins have been harnessed as biotechnological tools to probe gene expression, enzyme activity, and analyte concentrations by MRI. Metalloprotein MRI probes are paramagnetic and function by analogous mechanisms to conventional gadolinium or iron oxide-based MRI contrast agents. Compared with synthetic agents, metalloproteins typically offer worse sensitivity, but the possibilities of using protein engineering and targeted gene expression approaches in conjunction with metalloprotein contrast agents are powerful and sometimes definitive strengths. This review summarizes theoretical and practical aspects of metalloprotein-based contrast agents, and discusses progress in the exploitation of these proteins for molecular imaging applications.
Collapse
Affiliation(s)
- Yuri Matsumoto
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, USA
| | | |
Collapse
|