1
|
Barbosa RN, Felipe MTC, Silva LF, Silva EA, Silva SA, Herculano PN, Prazeres JFSA, Lima JMS, Bezerra JDP, Moreira KA, Magalhães OMC, Souza-Motta CM. A Review of the Biotechnological Potential of Cave Fungi: A Toolbox for the Future. J Fungi (Basel) 2025; 11:145. [PMID: 39997439 PMCID: PMC11856267 DOI: 10.3390/jof11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
The study of the intersection between biodiversity and biotechnology has revealed a rich source of innovations. Fungi, with their vast range of morphologies and lifestyles, thrive in various habitats, including caves. With impressive metabolic characteristics, they play a key role in producing essential biotechnological compounds for various economic sectors. This paper aims to consolidate evidence on the biotechnological potential of fungi isolated from caves, highlighting the urgency of conserving and exploring these ecosystems. For this purpose, we conducted a comprehensive literature search using scientific databases (SciELO, Medline Complete, Medline/PubMed, Web of Science, Scopus (Elsevier), and Google Scholar). We adopted an interdisciplinary approach by collecting information from 22 papers published between 2013 and 2024. Based on these data, our survey revealed broad potential, including antimicrobial compounds, antioxidants, antitumor agents, enzymes, and organic acids. We emphasize that accurately identifying and depositing fungal isolates in reference collections are crucial for reliable research and effective industrial applications, driving metabolic bioactivity and the production of substances with the potential to inhibit pathogens. Conserving and protecting the cave environment is imperative, considering its continuous potential for discovery and contribution to scientific advancement.
Collapse
Affiliation(s)
- Renan N. Barbosa
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Maria Tamara C. Felipe
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Leticia F. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Edna A. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Sabrina A. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Polyanna N. Herculano
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - José F. S. A. Prazeres
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Joenny M. S. Lima
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Jadson D. P. Bezerra
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, Goiás, Brazil
| | - Keila A. Moreira
- Departamento de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns 55292-270, Pernambuco, Brazil
| | - Oliane M. C. Magalhães
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
2
|
Fan X, Fu S, Jiang J, Liu D, Li X, Li W, Zhang H. Application of PHA surface binding proteins of alkali-tolerant Bacillus as surfactants. Braz J Microbiol 2024; 55:169-177. [PMID: 38019411 PMCID: PMC10920527 DOI: 10.1007/s42770-023-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Amphiphilic protein has lipophilic and hydrophilic domains, displaying the potential for development as a biosurfactant. The polyhydroxyalkanoate (PHA) surface binding protein derived from Bacillus is a type of protein that has not been studied for its emulsifying properties. In this study, PHA granule-associated protein (PhaP), PHA regulatory protein (PhaQ), and PHA synthase subunit (PhaR) derived from an alkali-tolerant PHA-producing Bacillus cereus HBL-AI were found and heterologously expressed in E. coli and purified to investigate their application as biosurfactants. It showed that the emulsification ability and stability of three amphiphilic proteins were higher than those of widely used chemical surfactants in diesel oil, vegetable oil, and lubricating oil. In particular, the PhaQ protein studied for the first time can form a stable emulsion layer in vegetable oil at a lower concentration (50 µg/mL), which greatly reduced the amount of protein used in emulsification. This clearly demonstrated that the PHA-binding protein of HBL-AI can be well applied as an environmentally friendly biosurfactants.
Collapse
Affiliation(s)
- Xueyu Fan
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shuangqing Fu
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Junpo Jiang
- College of Life Science, Microbial Technology Innovation Center for Feed of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Dexu Liu
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xinyue Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Wei Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Honglei Zhang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Mohseni Sani N, Talaee M, Akbari A, Ashoori F, Zamani J, Kermani AA, Shahbani Zahiri H, Presley J, Vali H, Akbari Noghabi K. Unveiling the structure-emulsifying function relationship of truncated recombinant forms of the SA01-OmpA protein opens up a new vista in bioemulsifiers. Microbiol Spectr 2024; 12:e0346523. [PMID: 38206002 PMCID: PMC10846152 DOI: 10.1128/spectrum.03465-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
The emulsifying ability of SA01-OmpA (outer membrane protein A from Acinetobacter sp. SA01) was found to be constrained by challenges like low production efficiency and high costs associated with protein recovery from E. coli inclusion bodies, as described in our previous study. The present study sought to benefit from the advantages of the targeted truncating of SA01-OmpA protein, taking into account the reduced propensity of protein expression as inclusion bodies and cytotoxicity. Here, the structure and activity relationship of two truncated recombinant forms of SA01-OmpA protein was unraveled through a hybrid approach based on experimental data and computational methodologies, representing an innovative bioemulsifier with advantageous emulsifying activity. The recombinant truncated SA01-OmpA variants were cloned and heterologously expressed in E. coli host cells and subsequently purified. The results showed increased emulsifying activity of N-terminally truncated SA01-OmpA (NT-OmpA) compared to full-length SA01-OmpA. Molecular dynamics (MD) simulations analysis demonstrated a direct correlation between the C-terminally truncated SA01-OmpA (CT-OmpA) and its expression as inclusion bodies. Analysis of the structure-activity relationship of truncated variants of SA01-OmpA revealed that, compared to the full-length protein, deletion of the β-barrel portion from the N-terminal of SA01-OmpA increased the emulsifying activity of NT-OmpA while lowering its expression as inclusion bodies. Contrary to the full-length protein, the N-terminally truncated SA01-OmpA was not as cytotoxic, according to the MTT assay, FCM analysis, and AO/EB staining. The findings of this extensive study advance our knowledge of SA01-OmpA at the molecular level as well as the design and development of efficient bioemulsifiers.IMPORTANCEPrevious research (Shahryari et al. 2021, mSystems 6: e01175-20) introduced and characterized the SA01-OmpA protein as a multifaceted protein with a variety of functions, including maintaining cellular homeostasis under oxidative stress conditions, biofilm formation, outer membrane vesicles (OMV) biogenesis, and beneficial emulsifying capacity. By truncating the SA01-OmpA protein, the current study presents a unique method for developing protein-type bioemulsifiers. The findings indicate that the N-terminally truncated SA01-OmpA (NT-OmpA) has the potential to fully replace full-length SA01-OmpA as a novel bioemulsifier with significant emulsifying activity. This study opens up a new frontier in bioemulsifiers, shedding light on a possible relationship between the structure and activity of SA01-OmpA truncated forms.
Collapse
Affiliation(s)
- Naeema Mohseni Sani
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahbubeh Talaee
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Faranak Ashoori
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali A. Kermani
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - John Presley
- Department of Anatomy & Cell Biology, McGill University, Montreal, Québec, Canada
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, Montreal, Québec, Canada
| | - Kambiz Akbari Noghabi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
4
|
Halomonas spp., as chassis for low-cost production of chemicals. Appl Microbiol Biotechnol 2022; 106:6977-6992. [PMID: 36205763 DOI: 10.1007/s00253-022-12215-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
Halomonas spp. are the well-studied platform organisms or chassis for next-generation industrial biotechnology (NGIB) due to their contamination-resistant nature combined with their fast growth property. Several Halomonas spp. have been studied regarding their genomic information and molecular engineering approaches. Halomonas spp., especially Halomonas bluephagenesis, have been engineered to produce various biopolyesters such as polyhydroxyalkanoates (PHA), proteins including surfactants and enzymes, small molecular compounds including amino acids and derivates, as well as organic acids. This paper reviews all the progress reported in the last 10 years regarding this robust microbial cell factory. KEY POINTS: • Halomonas spp. are robust chassis for low-cost production of chemicals • Genomic information of some Halomonas spp. has been revealed • Molecular tools and approaches for Halomonas spp. have been developed • Halomonas spp. are becoming more and more important for biotechnology.
Collapse
|
5
|
Zada S, Sajjad W, Rafiq M, Ali S, Hu Z, Wang H, Cai R. Cave Microbes as a Potential Source of Drugs Development in the Modern Era. MICROBIAL ECOLOGY 2022; 84:676-687. [PMID: 34693460 PMCID: PMC8542507 DOI: 10.1007/s00248-021-01889-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The world is constantly facing threats, including the emergence of new pathogens and antibiotic resistance among extant pathogens, which is a matter of concern. Therefore, the need for natural and effective sources of drugs is inevitable. The ancient and pristine ecosystems of caves contain a unique microbial world and could provide a possible source of antimicrobial metabolites. The association between humans and caves is as old as human history itself. Historically, cave environments have been used to treat patients with respiratory tract infections, which is referred to as speleotherapy. Today, the pristine environment of caves that comprise a poorly explored microbial world is a potential source of antimicrobial and anticancer drugs. Oligotrophic conditions in caves enhance the competition among microbial communities, and unique antimicrobial agents may be used in this competition. This review suggests that the world needs a novel and effective source of drug discovery. Therefore, being the emerging spot of modern human civilization, caves could play a crucial role in the current medical crisis, and cave microorganisms may have the potential to produce novel antimicrobial and anticancer drugs.
Collapse
Affiliation(s)
- Sahib Zada
- Biology Department, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, QUETTA, Pakistan
| | - Sardar Ali
- Biology Department, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Zhong Hu
- Biology Department, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hui Wang
- Biology Department, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Runlin Cai
- Biology Department, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.
| |
Collapse
|
6
|
Zada S, Xie J, Yang M, Yang X, Sajjad W, Rafiq M, Hasan F, Hu Z, Wang H. Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves. Appl Microbiol Biotechnol 2021; 105:8921-8936. [PMID: 34738169 DOI: 10.1007/s00253-021-11658-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Microbial communities in cave ecosystems have specific survival strategies, which is far from being well explicated. Here, we reported the genetic and functional diversity of bacteria and archaea in typical limestone (Kashmir Cave) and silicate-containing (Tiser Cave) caves. X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FTIR) analyses revealed the different geochemical and mineral compositions of the two caves. Amplicon barcode sequencing revealed the dominancy of Actinobacteria and Proteobacteria in Kashmir and Tiser Caves. Bacteroidetes and Firmicutes were the dominant phyla in Tiser Cave, and the abundance is relatively small in Kashmir Cave. Archaea was also abundant prokaryotes in Kashmir Cave, but it only accounted for 0.723% of the total prokaryote sequences in Tiser Cave. Functional analysis based on metagenomic sequencing data revealed that a large number of functional potential genes involved in nutrient metabolism and biosynthesis of bioactive compounds in Tiser and Kashmir Cave samples could significantly influence the biogeochemical cycle and secondary metabolite production in cave habitats. In addition, the two caves were also found to be rich in biosynthetic genes, encoding bioactive compounds, such as monobactam and prodigiosin, indicating that these caves could be potential habitats for the isolation of antibiotics. This study provides a comprehensive insight into the diversity of bacteria and archaea in cave ecosystems and helps to better understand the special survival strategies of microorganisms in cave ecosystems.Key points• Geochemically distinct caves possess unique microbial community structure.• Cavernicoles could be important candidates for antibiotic production.• Cavernicoles are important for biogeochemical cycling.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jianmin Xie
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Min Yang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiaoyu Yang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zhong Hu
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hui Wang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.
| |
Collapse
|
7
|
Halomonas as a chassis. Essays Biochem 2021; 65:393-403. [PMID: 33885142 PMCID: PMC8314019 DOI: 10.1042/ebc20200159] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
With the rapid development of systems and synthetic biology, the non-model bacteria, Halomonas spp., have been developed recently to become a cost-competitive platform for producing a variety of products including polyesters, chemicals and proteins owing to their contamination resistance and ability of high cell density growth at alkaline pH and high salt concentration. These salt-loving microbes can partially solve the challenges of current industrial biotechnology (CIB) which requires high energy-consuming sterilization to prevent contamination as CIB is based on traditional chassis, typically, Escherichia coli, Bacillus subtilis, Pseudomonas putida and Corynebacterium glutamicum. The advantages and current status of Halomonas spp. including their molecular biology and metabolic engineering approaches as well as their applications are reviewed here. Moreover, a systematic strain engineering streamline, including product-based host development, genetic parts mining, static and dynamic optimization of modularized pathways and bioprocess-inspired cell engineering are summarized. All of these developments result in the term called next-generation industrial biotechnology (NGIB). Increasing efforts are made to develop their versatile cell factories powered by synthetic biology to demonstrate a new biomanufacturing strategy under open and continuous processes with significant cost-reduction on process complexity, energy, substrates and fresh water consumption.
Collapse
|
8
|
Zia A, Pentzer E, Thickett S, Kempe K. Advances and Opportunities of Oil-in-Oil Emulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38845-38861. [PMID: 32805925 DOI: 10.1021/acsami.0c07993] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emulsions are mixtures of two immiscible liquids in which droplets of one are dispersed in a continuous phase of the other. The most common emulsions are oil-water systems, which have found widespread use across a number of industries, for example, in the cosmetic and food industries, and are also of advanced scientific interest. In addition, the past decade has seen a significant increase in both the design and application of nonaqueous emulsions. This has been primarily driven by developments in understanding the mechanism of effective stabilization of oil-in-oil (o/o) systems, either using block copolymers (BCPs) or solid (Pickering) particles with appropriate surface functionality. These systems, as highlighted in this review, have enabled emergent applications in areas such as pharmaceutical delivery, energy storage, and materials design (e.g., polymerization, monolith, and porous polymer synthesis). These o/o emulsions complement traditional emulsions that utilize an aqueous phase and allow the use of materials incompatible with water. We assess recent advances in the preparation and stabilization of o/o emulsions, focusing on the identity of the stabilizer (BCP or particle), the interplay between stabilizer and oils, and highlighting applications and opportunities associated with o/o emulsions.
Collapse
Affiliation(s)
- Aadarash Zia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Emily Pentzer
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77807, United States
| | - Stuart Thickett
- School of Natural Sciences (Chemistry), The University of Tasmania, Hobart, Tasmania 7001 Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Evolutionary relationships between the transcriptional repressors of the polyhydroxyalkanoate reserve storage system in prokaryotes: Conserved but phylogenetically heterogeneous. Gene 2020; 735:144397. [PMID: 31991161 DOI: 10.1016/j.gene.2020.144397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 11/23/2022]
Abstract
Bacteria and archaea accumulate cytoplasmic polyhydroxyalkanoate (PHA) granules under nutrient-limited conditions with excess carbon. The transcriptional regulatory (TR) proteins found on the surface of PHA granules act as repressors as well as activators for the expression of major surface proteins called phasins. Until now, detailed information on the evolutionary relationships between these transcription regulators has not been available. Here, we conducted homology searches and analyzed information available for the domains and protein families of the TR proteins through phylogenetic studies. A total of 282 TR proteins were identified and further classified into four distinct subfamilies based upon the presence of conserved motifs: PHB_acc, TetR-like, AbrB-like, and PadR-like. Depending upon the particular family, the DNA-binding domains were located at either the N- or C-terminus. Our results indicated that TR proteins containing the PHB_acc domain are highly conserved within the bacteria, while other TR proteins are present only within archaea (AbrB-like), gram positive bacteria (PadR-like), or the Pseudomonas genera (TetR-like). The repression domains are charged, hydrophobic, and rich in leucine or glutamine. In phylogenetic analyses, many groups of TR proteins were clustered together according to identical domain architectures showing the independent origins of the TR proteins in the PHA reserve storage system. Further analyses revealed that the TR proteins have experienced multiple gene duplications across prokaryotes. Thus, this study investigated the evolutionary framework of TR proteins and has provided a comprehensive catalog of TR proteins for ongoing studies to characterize the functions of these proteins within diverse organisms.
Collapse
|
10
|
Tao W, Lin J, Wang W, Huang H, Li S. Designer bioemulsifiers based on combinations of different polysaccharides with the novel emulsifying esterase AXE from Bacillus subtilis CICC 20034. Microb Cell Fact 2019; 18:173. [PMID: 31601224 PMCID: PMC6786282 DOI: 10.1186/s12934-019-1221-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bioemulsifiers are surface-active compounds, which exhibit advantages including low toxicity, higher biodegradability and biocompatibility over synthetic chemical surfactants. Despite their potential benefits, some obstacles impede the practical applications of bioemulsifiers, including low yields and high purification costs. Here, we aimed to exploit a novel protein bioemulsifier with efficient emulsifying activity and low-production cost, as well as proposed a design-bioemulsifier system that meets different requirements of industrial emulsification in the most economical way. Results The esterase AXE was first reported for its efficient emulsifying activity and had been studied for possible application as a protein bioemulsifier. AXE showed an excellent emulsification effect with different hydrophobic substrates, especially short-chain aliphatic and benzene derivatives, as well as excellent stability under extreme conditions such as high temperature (85 °C) and acidic conditions. AXE also exhibited good stability over a range of NaCl, MgSO4, and CaCl2 concentrations from 0 to 1000 mM, and the emulsifying activity even showed a slight increase at salt concentrations over 500 mM. A design-bioemulsifier system was proposed that uses AXE in combination with a variety of polysaccharides to form efficient bioemulsifier, which enhanced the emulsifying activity and further lowered the concentration of AXE needed in the complex. Conclusions AXE showed a great application potential as a novel bioemulsifier with excellent emulsifying ability. The AXE-based-designer bioemulsifier could be obtained in the most economical way and open broad new fields for low-cost, environmentally friendly bioemulsifiers.![]()
Collapse
Affiliation(s)
- Weiyi Tao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
11
|
Mato A, Tarazona NA, Hidalgo A, Cruz A, Jiménez M, Pérez-Gil J, Prieto MA. Interfacial Activity of Phasin PhaF from Pseudomonas putida KT2440 at Hydrophobic-Hydrophilic Biointerfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:678-686. [PMID: 30580527 DOI: 10.1021/acs.langmuir.8b03036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phasins, the major proteins coating polyhydroxyalkanoate (PHA) granules, have been proposed as suitable biosurfactants for multiple applications because of their amphiphilic nature. In this work, we analyzed the interfacial activity of the amphiphilic α-helical phasin PhaF from Pseudomonas putida KT2440 at different hydrophobic-hydrophilic interfacial environments. The binding of PhaF to surfaces containing PHA or phospholipids, postulated as structural components of PHA granules, was confirmed in vitro using supported lipid bilayers and confocal microscopy, with polyhydroxyoctanoate- co-hexanoate P(HO- co-HHx) and Escherichia coli lipid extract as model systems. The surfactant-like capabilities of PhaF were determined by measuring changes in surface pressure in Langmuir devices. PhaF spontaneously adsorbed at the air-water interface, reducing the surface tension from 72 mN/m (water surface tension at 25 °C) to 50 mN/m. The differences in the adsorption of the protein in the presence of different phospholipid films showed a marked preference for phosphatidylglycerol species, such as 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphoglycerol. The PHA-binding domain of PhaF (BioF) conserved a similar surface activity to PhaF, suggesting that it is responsible for the surfactant properties of the whole protein. These new findings not only increase our knowledge about the role of phasins in the PHA machinery but also open new outlooks for the application of these proteins as biosurfactants.
Collapse
Affiliation(s)
| | | | - Alberto Hidalgo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - Antonio Cruz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | | | - Jesús Pérez-Gil
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | | |
Collapse
|
12
|
Genome analysis provides insights into crude oil degradation and biosurfactant production by extremely halotolerant Halomonas desertis G11 isolated from Chott El-Djerid salt-lake in Tunisian desert. Genomics 2018; 111:1802-1814. [PMID: 30529640 DOI: 10.1016/j.ygeno.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 12/04/2018] [Indexed: 01/10/2023]
Abstract
Here, we report the genomic features and the bioremediation potential of Halomonas desertis G11, a new halophilic species which uses crude oil as a carbon and energy source and displays intrinsic resistance to salt stress conditions (optimum growth at 10% NaCl). G11 genome (3.96 Mb) had a mean GC content of 57.82%, 3622 coding sequences, 480 subsystems and 64 RNA genes. Annotation predicted 38 genes involved in osmotic stress including the biosynthesis of osmoprotectants glycine-betaine, ectoine and osmoregulated periplasmic glucans. Genome analysis revealed also the versatility of the strain for emulsifying crude oil and metabolizing hydrocarbons. The ability of G11 to degrade crude oil components and to secrete a glycolipid biosurfactant with satisfying properties was experimentally confirmed and validated. Our results help to explain the exceptional capacity of G11 to survive at extreme desertic conditions, and highlight the metabolic features of this organism that has biotechnological and ecological potentialities.
Collapse
|
13
|
Affiliation(s)
- Xu Zhang
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
| | - Yina Lin
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
| | - Guo-Qiang Chen
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
| |
Collapse
|
14
|
Wu M, Shi Z, Huang H, Qu J, Dai X, Tian X, Wei W, Li G, Ma T. Network structure and functional properties of transparent hydrogel sanxan produced by Sphingomonas sanxanigenens NX02. Carbohydr Polym 2017; 176:65-74. [DOI: 10.1016/j.carbpol.2017.08.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
|
15
|
Rubio Reyes P, Parlane NA, Wedlock DN, Rehm BHA. Immunogencity of antigens from Mycobacterium tuberculosis self-assembled as particulate vaccines. Int J Med Microbiol 2016; 306:624-632. [PMID: 27756533 DOI: 10.1016/j.ijmm.2016.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022] Open
Abstract
Traditional approaches to vaccine development have failed to identify better vaccines to replace or supplement BCG for the control of tuberculosis (TB). Subunit vaccines offer a safer and more reproducible alternative for the prevention of diseases. In this study, the immunogenicity of bacterially derived polyester beads displaying three different Rv antigens of Mycobacterium tuberculosis was evaluated. Polyester beads displaying the antigens Rv1626, Rv2032, Rv1789, respectively, were produced in an endotoxin-free Escherichia coli strain. Beads were formulated with the adjuvant DDA and subcutaneously administered to C57BL/6 mice. Cytokine responses were evaluated by CBA and antibody responses by ELISA. Specificity of the IgG response was assessed by immunoblotting cell lysates of the vaccine production strains using sera from the vaccinated mice. Mice vaccinated with beads displaying Rv1626 had significantly greater IgG1 responses compared to mice vaccinated with Rv1789 beads and greater IgG2 responses than the group vaccinated with Rv2032 beads (p<0.05). Immunoblotting of antisera from these mice indicated the antibody responses were Rv1626 antigen-specific and there was no detectable immune response to the polyester component of the vaccine. Overall, this study suggested that selected TB antigens derived from reverse vaccinology approaches can be displayed on polyester beads to produce antigen-specific immune responses potentially relevant to the prevention of TB.
Collapse
Affiliation(s)
- Patricia Rubio Reyes
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Natalie A Parlane
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - D Neil Wedlock
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
16
|
Sacco LP, Castellane TCL, Lopes EM, de Macedo Lemos EG, Alves LMC. Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose. Appl Biochem Biotechnol 2015; 178:990-1001. [PMID: 26578147 DOI: 10.1007/s12010-015-1923-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/08/2015] [Indexed: 11/25/2022]
Abstract
A Burkholderia and Pseudomonas species designated as AB4 and AS1, respectively, were isolated from soil containing decomposing straw or sugar cane bagasse collected from Brazil. This study sought to evaluate the capacities of culture media, cell-free medium, and crude lysate preparations (containing PHB inclusion bodies) from bacterial cell cultures to stabilize emulsions with several hydrophobic compounds. Four conditions showed good production of bioemulsifiers (E24 ≥ 50 %), headed by substantially cell-free media from bacterial cell cultures in which bacterial isolates from Burkholderia sp. strain AB4 and Pseudomonas sp. strain AS1 were grown. Our results revealed that the both isolates (AB4 and AS1 strains) exhibited high emulsification indices (indicating usefulness in bioremediation) and good stabilities.
Collapse
Affiliation(s)
- Laís Postai Sacco
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Tereza Cristina Luque Castellane
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil.
| | - Erica Mendes Lopes
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Lúcia Maria Carareto Alves
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil.
| |
Collapse
|
17
|
Characterization of air/water interface adsorption of a series of partially fluorinated/hydrogenated quaternary ammonium salts. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Yin J, Chen JC, Wu Q, Chen GQ. Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 2014; 33:1433-42. [PMID: 25447783 DOI: 10.1016/j.biotechadv.2014.10.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production.
Collapse
Affiliation(s)
- Jin Yin
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Tan D, Wu Q, Chen JC, Chen GQ. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 2014; 26:34-47. [PMID: 25217798 DOI: 10.1016/j.ymben.2014.09.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The halophile Halomonas TD01 and its derivatives have been successfully developed as a low-cost platform for the unsterile and continuous production of chemicals. Therefore, to increase the genetic engineering stability of this platform, the DNA restriction/methylation system of Halomonas TD01 was partially inhibited. In addition, a stable and conjugative plasmid pSEVA341 with a high-copy number was constructed to contain a LacI(q)-Ptrc system for the inducible expression of multiple pathway genes. The Halomonas TD01 platform, was further engineered with its 2-methylcitrate synthase and three PHA depolymerases deleted within the chromosome, resulting in the production of the Halomonas TD08 strain. The overexpression of the threonine synthesis pathway and threonine dehydrogenase made the recombinant Halomonas TD08 able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV consisting of 4-6 mol% 3-hydroxyvalerate or 3 HV, from various carbohydrates as the sole carbon source. The overexpression of the cell division inhibitor MinCD during the cell growth stationary phase in Halomonas TD08 elongated its shape to become at least 1.4-fold longer than its original size, resulting in enhanced PHB accumulation from 69 wt% to 82 wt% in the elongated cells, further promoting gravity-induced cell precipitations that simplify the downstream processing of the biomass. The resulted Halomonas strains contributed to further reducing the PHA production cost.
Collapse
Affiliation(s)
- Dan Tan
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 2014; 23:78-91. [PMID: 24566041 DOI: 10.1016/j.ymben.2014.02.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/20/2014] [Accepted: 02/08/2014] [Indexed: 11/22/2022]
Abstract
Genetic engineering of Halomonas spp. was seldom reported due to the difficulty of genetic manipulation and lack of molecular biology tools. Halomonas TD01 can grow in a continuous and unsterile process without other microbial contaminations. It can be therefore exploited for economic production of chemicals. Here, Halomonas TD01 was metabolically engineered using the gene knockout procedure based on markerless gene replacement stimulated by double-strand breaks in the chromosome. When gene encoding 2-methylcitrate synthase in Halomonas TD01 was deleted, the conversion efficiency of propionic acid to 3-hydroxyvalerate (3HV) monomer fraction in random PHBV copolymers of 3-hydroxybutyrate (3HB) and 3HV was increased from around 10% to almost 100%, as a result, cells were grown to accumulate 70% PHBV in dry weight (CDW) consisting of 12mol% 3HV from 0.5g/L propionic acid in glucose mineral medium. Furthermore, successful deletions on three PHA depolymerases eliminate the possible influence of PHA depolymerases on PHA degradation in the complicated industrial fermentation process even though significant enhanced PHA content was not observed. In two 500L pilot-scale fermentor studies lasting 70h, the above engineered Halomonas TD01 grew to 112g/L CDW containing 70wt% P3HB, and to 80g/L CDW with 70wt% P(3HB-co-8mol% 3HV) in the presence of propionic acid. The cells grown in shake flasks even accumulated close to 92% PHB in CDW with a significant increase of glucose to PHB conversion efficiency from around 30% to 42% after 48h cultivation when pyridine nucleotide transhydrogenase was overexpressed. Halomonas TD01 was also engineered for producing a PHA regulatory protein PhaR which is a robust biosurfactant.
Collapse
|