1
|
Ölçücü G, Jaeger K, Krauss U. Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization. Eng Life Sci 2025; 25:e70000. [PMID: 40083857 PMCID: PMC11904115 DOI: 10.1002/elsc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 03/16/2025] Open
Abstract
Industrial biocatalysis, a multibillion dollar industry, relies on the selectivity and efficacy of enzymes for efficient chemical transformations. However, enzymes, evolutionary adapted to mild biological conditions, often struggle in industrial processes that require harsh reaction conditions, resulting in reduced stability and activity. Enzyme immobilization, which addresses challenges such as enzyme reuse and stability, has therefore become a vital strategy for improving enzyme use in industrial applications. Traditional immobilization techniques rely on the confinement or display of enzymes within/on organic or inorganic supports, while recent advances in synthetic biology have led to the development of solely biological in vivo immobilization methods that streamline enzyme production and immobilization. These methods offer added benefits in terms of sustainability and cost efficiency. In addition, the development and use of multifunctional materials, such as magnetic (nano)materials for enzyme immobilization, has enabled improved separation and purification processes. The combination of both "worlds," opens up new avenues in both (industrial) biocatalysis, fundamental science, and biomedicine. Therefore, in this review, we provide an overview of established and recently emerging methods for the generation of magnetic protein immobilizates, placing a special focus on in vivo immobilization solutions.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Ulrich Krauss
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
2
|
Watanabe T, Hayashi M, Arai M, Matsushita S, Handa H, Kawano M. Interferon-γ production in response to the cytotoxic T lymphocyte epitope within an antigen incorporated in simian virus 40 virus-like particles. Heliyon 2025; 11:e41729. [PMID: 39897799 PMCID: PMC11786666 DOI: 10.1016/j.heliyon.2025.e41729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
In a previous study, we showed that administration of antigen-incorporated virus-like particles (VLPs) derived from simian virus 40 (SV40) induces production of cytotoxic T lymphocytes (CTL), as well as antibodies against the incorporated antigen(s), without the need for an adjuvant; however, it remains unclear how immune cells recognize and respond to the SV40 capsid because SV40 VLPs did not upregulate expression of maturation markers on dendritic cells. In this study, administration of chicken ovalbumin (OVA) incorporated within SV40 VLPs induced interferon (IFN)-γ production in response to the OVA CTL epitope. IFN-γ production in response to the OVA CTL epitope was not inhibited in B cell-depleted mice, but it was inhibited in cluster of differentiation (CD)4+ T cell-depleted mice. Administration of SV40 VLPs upregulated expression of CD63/CD68/CD83/CD86/CD196, and induced secretion of C-C chemokine ligand (CCL)3 and CCL4, by B cells, as well as secretion of CCL4 by T cells and tumor necrosis factor-α by bone marrow-derived dendritic cells.
Collapse
Affiliation(s)
- Takeharu Watanabe
- Vaccine Sohyaku Group Modality Laboratories Sohyaku. Innovation Research Division Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama, 227-0033, Japan
| | - Masayuki Hayashi
- Vaccine Sohyaku Group Modality Laboratories Sohyaku. Innovation Research Division Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama, 227-0033, Japan
| | - Masaaki Arai
- Vaccine Sohyaku Group Modality Laboratories Sohyaku. Innovation Research Division Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama, 227-0033, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Hiroshi Handa
- Department of Molecular Pharmacology, Tokyo Medical University, Shinjuku, Tokyo, 160-8402, Japan
- Center for Future Medical Research, Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, 160-8402, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Division of Analytical Science, Biomedical Research Center, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| |
Collapse
|
3
|
Le DT, Müller KM. In Vitro Assembly of Virus-Like Particles and Their Applications. Life (Basel) 2021; 11:334. [PMID: 33920215 PMCID: PMC8069851 DOI: 10.3390/life11040334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are increasingly used for vaccine development and drug delivery. Assembly of VLPs from purified monomers in a chemically defined reaction is advantageous compared to in vivo assembly, because it avoids encapsidation of host-derived components and enables loading with added cargoes. This review provides an overview of ex cella VLP production methods focusing on capsid protein production, factors that impact the in vitro assembly, and approaches to characterize in vitro VLPs. The uses of in vitro produced VLPs as vaccines and for therapeutic delivery are also reported.
Collapse
Affiliation(s)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| |
Collapse
|
4
|
Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The Role of Virus-Like Particles in Medical Biotechnology. Mol Pharm 2020; 17:4407-4420. [PMID: 33147978 DOI: 10.1021/acs.molpharmaceut.0c00828] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Virus-like particles (VLPs) are protein-based, nanoscale, self-assembling, cage architectures, which have relevant applications in biomedicine. They can be used for the development of vaccines, imaging approaches, drug and gene therapy delivery systems, and in vitro diagnostic methods. Today, three relevant viruses are targeted using VLP-based recombinant vaccines. VLP-based drug delivery, nanoreactors for therapy, and imaging systems are approaches under development with promising outcomes. Several VLP-based vaccines are under clinical evaluation. Herein, an updated view on the VLP-based biomedical applications is provided; advanced methods for the production, functionalization, and drug loading of VLPs are described, and perspectives for the field are identified.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Department of Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78295, México.,Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Mayra Colunga-Saucedo
- Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Sergio Rosales-Mendoza
- Departament of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,Biotechnology Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| |
Collapse
|
5
|
Saika K, Kato M, Sanada H, Matsushita S, Matsui M, Handa H, Kawano M. Induction of adaptive immune responses against antigens incorporated within the capsid of simian virus 40. J Gen Virol 2020; 101:853-862. [PMID: 32501197 DOI: 10.1099/jgv.0.001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simian virus 40 (SV40) is a monkey polyomavirus. The capsid structure is icosahedral and comprises VP1 units that measure 45 nm in diameter. Five SV40 VP1 molecules form one pentamer subunit, and a single icosahedral subunit comprises 72 pentamers; a single SV40 VP1 capsid comprises 360 SV40 VP1 molecules. In a previous study, we showed that an influenza A virus matrix protein 1 (M1) CTL epitope inserted within SV40 virus-like particles (VLPs) induced cytotoxic T lymphocytes (CTLs) without the need for an adjuvant. Here, to address whether SV40 VLPs induce adaptive immune responses against VLP-incorporated antigens, we prepared SV40 VLPs containing M1 or chicken ovalbumin (OVA). This was done by fusing M1 or OVA with the carboxyl terminus of SV40 VP2 and co-expressing them with SV40 VP1 in insect cells using a baculovirus vector. Intraperitoneal (i.p.) or intranasal administration of SV40 VLPs incorporating M1 induced the production of CTLs specific for the M1 epitope without the requirement for adjuvant. The production of antibodies against SV40 VLPs was also induced by i.p. administration of SV40 VLPs in the absence of adjuvant. Finally, the administration of SV40 VLPs incorporating OVA induced anti-OVA antibodies in the absence of adjuvant; in addition, the level of antibody production was comparable with that after i.p. administration of OVA plus alum adjuvant. These results suggest that the SV40 capsid incorporating foreign antigens can be used as a vaccine platform to induce adaptive immune responses without the need for adjuvant.
Collapse
Affiliation(s)
- Kikue Saika
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masahiko Kato
- R&I Business Development, Business Strategy Development, Sysmex Corporation, 1-1-2 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hideaki Sanada
- R&I Business Development, Business Strategy Development, Sysmex Corporation, 1-1-2 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Sho Matsushita
- Allergy Center, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.,Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|
6
|
Waltmann C, Asor R, Raviv U, Olvera de la Cruz M. Assembly and Stability of Simian Virus 40 Polymorphs. ACS NANO 2020; 14:4430-4443. [PMID: 32208635 PMCID: PMC7232851 DOI: 10.1021/acsnano.9b10004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding viral assembly pathways is of critical importance to biology, medicine, and nanotechology. Here, we study the assembly path of a system with various structures, the simian vacuolating virus 40 (SV40) polymorphs. We simulate the templated assembly process of VP1 pentamers, which are the constituents of SV40, into icosahedal shells made of N = 12 pentamers (T = 1). The simulations include connections formed between pentamers by C-terminal flexible lateral units, termed here "C-terminal ligands", which are shown to control assembly behavior and shell dynamics. The model also incorporates electrostatic attractions between the N-terminal peptide strands (ligands) and the negatively charged cargo, allowing for agreement with experiments of RNA templated assembly at various pH and ionic conditions. During viral assembly, pentamers bound to any template increase its effective size due to the length and flexibility of the C-terminal ligands, which can connect to other VP1 pentamers and recruit them to a partially completed capsid. All closed shells formed other than the T = 1 feature the ability to dynamically rearrange and are thus termed "pseudo-closed". The N = 13 shell can even spontaneously "self-correct" by losing a pentamer and become a T = 1 capsid when the template size fluctuates. Bound pentamers recruiting additional pentamers to dynamically rearranging capsids allow closed shells to continue growing via the pseudo-closed growth mechanism, for which experimental evidence already exists. Overall, we show that the C-terminal ligands control the dynamic assembly paths of SV40 polymorphs.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Li F, Wang D, Zhou J, Men D, Zhan XE. Design and biosynthesis of functional protein nanostructures. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1142-1158. [PMID: 32253589 DOI: 10.1007/s11427-019-1641-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Proteins are one of the major classes of biomolecules that execute biological functions for maintenance of life. Various kinds of nanostructures self-assembled from proteins have been created in nature over millions of years of evolution, including protein nanowires, layers and nanocages. These protein nanostructures can be reconstructed and equipped with desired new functions. Learning from and manipulating the self-assembly of protein nanostructures not only help to deepen our understanding of the nature of life but also offer new routes to fabricate novel nanomaterials for diverse applications. This review summarizes the recent research progress in this field, focusing on the characteristics, functionalization strategies, and applications of protein nanostructures.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian-En Zhan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
van Rosmalen MGM, Kamsma D, Biebricher AS, Li C, Zlotnick A, Roos WH, Wuite GJ. Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles. SCIENCE ADVANCES 2020; 6:eaaz1639. [PMID: 32494611 PMCID: PMC7159915 DOI: 10.1126/sciadv.aaz1639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 05/20/2023]
Abstract
Many viruses use their genome as template for self-assembly into an infectious particle. However, this reaction remains elusive because of the transient nature of intermediate structures. To elucidate this process, optical tweezers and acoustic force spectroscopy are used to follow viral assembly in real time. Using Simian virus 40 (SV40) virus-like particles as model system, we reveal a multistep assembly mechanism. Initially, binding of VP1 pentamers to DNA leads to a significantly decreased persistence length. Moreover, the pentamers seem able to stabilize DNA loops. Next, formation of interpentamer interactions results in intermediate structures with reduced contour length. These structures stabilize into objects that permanently decrease the contour length to a degree consistent with DNA compaction in wild-type SV40. These data indicate that a multistep mechanism leads to fully assembled cross-linked SV40 particles. SV40 is studied as drug delivery system. Our insights can help optimize packaging of therapeutic agents in these particles.
Collapse
Affiliation(s)
- Mariska G. M. van Rosmalen
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Douwe Kamsma
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Andreas S. Biebricher
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Chenglei Li
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S Hawthorne Dr., Bloomington, IN 47405, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S Hawthorne Dr., Bloomington, IN 47405, USA
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Corresponding author. (G.J.L.W.); (W.H.R.)
| | - Gijs J.L. Wuite
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Boelelaan 1081, 1081 HV Amsterdam, Netherlands
- Corresponding author. (G.J.L.W.); (W.H.R.)
| |
Collapse
|
9
|
Sasaki E, Dragoman RM, Mantri S, Dirin DN, Kovalenko MV, Hilvert D. Self‐Assembly of Proteinaceous Shells around Positively Charged Gold Nanomaterials Enhances Colloidal Stability in High‐Ionic‐Strength Buffers. Chembiochem 2019; 21:74-79. [DOI: 10.1002/cbic.201900469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Eita Sasaki
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
- Present address: Graduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113–8657 Japan
| | - Ryan M. Dragoman
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Überland Strasse 129 8600 Dübendorf Switzerland
| | - Shiksha Mantri
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
| | - Dmitry N. Dirin
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Überland Strasse 129 8600 Dübendorf Switzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Überland Strasse 129 8600 Dübendorf Switzerland
| | - Donald Hilvert
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
| |
Collapse
|
10
|
van Rosmalen MGM, Li C, Zlotnick A, Wuite GJL, Roos WH. Effect of dsDNA on the Assembly Pathway and Mechanical Strength of SV40 VP1 Virus-like Particles. Biophys J 2018; 115:1656-1665. [PMID: 30301514 DOI: 10.1016/j.bpj.2018.07.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Simian virus 40 (SV40) is a possible vehicle for targeted drug delivery systems because of its low immunogenicity, high infectivity, and high transfection efficiency. To use SV40 for biotechnology applications, more information is needed on its assembly process to efficiently incorporate foreign materials and to tune the mechanical properties of the structure. We use atomic force microscopy to determine the effect of double-stranded DNA packaging, buffer conditions, and incubation time on the morphology and strength of virus-like particles (VLPs) composed of SV40 VP1 pentamers. DNA-induced assembly results in a homogeneous population of native-like, ∼45 nm VLPs. In contrast, under high-ionic-strength conditions, the VP1 pentamers do not seem to interact consistently, resulting in a heterogeneous population of empty VLPs. The stiffness of both in-vitro-assembled empty and DNA-filled VLPs is comparable. Yet, the DNA increases the VLPs' resistance to large deformation forces by acting as a scaffold, holding the VP1 pentamers together. Both disulfide bridges and Ca2+, important in-vitro-assembly factors, affect the mechanical stability of the VLPs: the reducing agent DTT makes the VLPs less resistant to mechanical stress and prone to damage, whereas Ca2+-chelating EDTA induces a marked softening of the VLP. These results show that negatively charged polymers such as DNA can be used to generate homogeneous particles, thereby optimizing VLPs as vessels for drug delivery. Moreover, the storage buffer should be chosen such that VP1 interpentamer interactions are preserved.
Collapse
Affiliation(s)
| | - Chenglei Li
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana
| | - Gijs J L Wuite
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Tasker A, Sainsbury F, Puttick S. Particle-Stabilized Fluid-Fluid Interfaces: The Impact of Core Composition on Interfacial Structure. Front Chem 2018; 6:383. [PMID: 30214900 PMCID: PMC6125302 DOI: 10.3389/fchem.2018.00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
The encapsulation of small molecule drugs in nanomaterials has become an increasingly popular approach to the delivery of therapeutics. The use of emulsions as templates for the synthesis of drug impregnated nanomaterials is an exciting area of research, and a great deal of progress has been made in understanding the interfacial chemistry that is critical to controlling the physicochemical properties of both the encapsulated material and the templated material. For example, control of the interfacial tension between an oil and aqueous phase is a fundamental concern when designing drug delivery vehicles that are stabilized by particulate surfactants at the fluid interface. Particles in general are capable of self-assembly at a fluid interface, with a preference for one or the other of the phases, and much work has focussed on modification of the particle properties to optimize formation and stability of the emulsion. An issue arises however when a model, single oil system is translated into more complex, real-world scenarios, which are often multi-component, with the incorporation of charged active ingredients and other excipients. The result is potentially a huge change in the properties of the dispersed phase which can lead to a failure in the capability of particles to continue to stabilize the interface. In this mini-review, we will focus on two encapsulation strategies based on the selective deposition of particles or proteins on a fluid-fluid interface: virus-like particles and polymer microcapsules formed from particle-stabilized emulsion templates. The similarity between these colloidal systems lies in the fact that particulate entities are used to stabilize fluid cores. We will focus on those studies that have described the effect of subtle changes in core composition on the self-assembly of particles at the fluid-fluid interface and how this influences the resulting capsule structure.
Collapse
Affiliation(s)
- Alison Tasker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation, Probing Biosystems Future Science Platform, Brisbane, QLD, Australia
| | - Frank Sainsbury
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation, Probing Biosystems Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Zhang W, Zhang XE, Li F. Virus-Based Nanoparticles of Simian Virus 40 in the Field of Nanobiotechnology. Biotechnol J 2018; 13:e1700619. [DOI: 10.1002/biot.201700619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences; Wuhan 430071 China
- University of Chinese Academy of Sciences; Beijing 101407 China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences; Wuhan 430071 China
| |
Collapse
|
13
|
Choi B, Kim H, Choi H, Kang S. Protein Cage Nanoparticles as Delivery Nanoplatforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:27-43. [DOI: 10.1007/978-981-13-0445-3_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Zhang W, Xu C, Yin GQ, Zhang XE, Wang Q, Li F. Encapsulation of Inorganic Nanomaterials inside Virus-Based Nanoparticles for Bioimaging. Nanotheranostics 2017; 1:358-368. [PMID: 29071199 PMCID: PMC5646737 DOI: 10.7150/ntno.21384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
Abstract
Virus-based nanoparticles (VNPs) can serve as containers for inorganic nanomaterials with excellent physical and chemical properties. Incorporation of nanomaterials inside the inner cavity of VNPs has opened up lots of possibilities for imaging applications in the field of biology and medicine. Encapsulation of inorganic nanoparticles (NPs) in VNPs can achieve the labeling of VNPs with nanoprobes and maintain the original outer surface features of VNPs at the same time. In return, VNPs enhance the stability and biocompatibility of the inorganic cargoes. This review briefly summarizes the current typical strategies to encapsulate inorganic nanomaterials in VNPs, i.e. mineralization and self-assembly, as well as the applications of these hybrid nanostructures in the field of bioimaging, including in vitro and in vivo fluorescence imaging, magnetic resonance imaging, and theranostics. Nanophotonic studies based on the VNP platform are also discussed. We anticipate that this field will continue to flourish, with new exciting opportunities stemming from advancements in the rational design of VNPs, the development of excellent inorganic nanomaterials, the integration of multiple functionalities, and the regulation of nano-bio interfacial interactions.
Collapse
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengchen Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Gen-Quan Yin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interfaces, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
15
|
Zackova Suchanova J, Neburkova J, Spanielova H, Forstova J, Cigler P. Retargeting Polyomavirus-Like Particles to Cancer Cells by Chemical Modification of Capsid Surface. Bioconjug Chem 2017; 28:307-313. [DOI: 10.1021/acs.bioconjchem.6b00622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jirina Zackova Suchanova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
- First
Faculty of Medicine, Charles University, Katerinska 32, 121 08, Prague 2, Czech Republic
| | - Hana Spanielova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Jitka Forstova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
16
|
Shukla S, Steinmetz NF. Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:708-21. [PMID: 25683790 PMCID: PMC4620044 DOI: 10.1002/wnan.1335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/15/2014] [Indexed: 01/17/2023]
Abstract
Viruses have recently emerged as ideal protein scaffolds for a new class of contrast agents that can be used in medical imaging procedures such as positron emission tomography (PET) and magnetic resonance imaging (MRI). Whereas synthetic nanoparticles are difficult to produce as homogeneous formulations due to the inherently stochastic nature of the synthesis process, virus-based nanoparticles are genetically encoded and are therefore produced as homogeneous and monodisperse preparations with a high degree of quality control. Because the virus capsids have a defined chemical structure that has evolved to carry cargoes of nucleic acids, they can be modified to carry precisely defined cargoes of contrast agents and can be decorated with spatially defined contrast reagents on the internal or external surfaces. Viral nanoparticles can also be genetically programed or conjugated with targeting ligands to deliver contrast agents to specific cells, and the natural biocompatibility of viruses means that they are cleared rapidly from the body. Nanoparticles based on bacteriophages and plant viruses are safe for use in humans and can be produced inexpensively in large quantities as self-assembling recombinant proteins. Based on these considerations, a new generation of contrast agents has been developed using bacteriophages and plant viruses as scaffolds to carry positron-emitting radioisotopes such as [(18) F] fluorodeoxyglucose for PET imaging and iron oxide or Gd(3+) for MRI. Although challenges such as immunogenicity, loading efficiency, and regulatory compliance remain to be address, virus-based nanoparticles represent a promising new enabling technology for a new generation of highly biocompatible and biodegradable targeted imaging reagents.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Radiology, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Materials Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| |
Collapse
|
17
|
Kawano M, Doi K, Fukuda H, Kita Y, Imai K, Inoue T, Enomoto T, Matsui M, Hatakeyama M, Yamaguchi Y, Handa H. SV40 VP1 major capsid protein in its self-assembled form allows VP1 pentamers to coat various types of artificial beads in vitro regardless of their sizes and shapes. ACTA ACUST UNITED AC 2014; 5:105-111. [PMID: 28435806 PMCID: PMC5374266 DOI: 10.1016/j.btre.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/28/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023]
Abstract
Monomeric VP1 pentamers of simian virus 40 coat artificial beads larger than natural capsids. Polystyrene beads (100, 200, and 500 nm in diameter) can be covered by VP1 pentamers. Silica beads can also be covered by VP1 pentamers. VP1 pentamers can also coat angular-shaped magnetite-particle and rough-shaped liposomes. The self-reassembly property of VP1 may allow it to coat various artificial beads, regardless of their sizes or shapes.
The icosahedral capsid structure of simian virus 40 (diameter, 45 nm) consists of 72 pentameric subunits, with each subunit formed by five VP1 molecules. Electron microscopy, immuno-gold labeling, and ζ-potential analysis showed that purified recombinant VP1 pentamers covered polystyrene beads measuring 100, 200, and 500 nm in diameter, as well as silica beads. In addition to covering spherical beads, VP1 pentamers covered cubic magnetite beads, as well as the distorted surface structures of liposomes. These findings indicate that VP1 pentamers could coat artificial beads of various shapes and sizes larger than the natural capsid. Technology based on VP1 pentamers may be useful in providing a capsid-like surface for enclosed materials, enhancing their stability and cellular uptake for drug delivery systems.
Collapse
Key Words
- Artificial beads
- CMNPs, citrate-coated magnetic nanoparticles
- DMSO, dimethyl sulfoxide
- DOPE, 1,2-dioleoyl-sn-glocero-3-phosphoethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl-N,N,N-trimethyl ammonium chloride
- DTT, dithiothreitol
- Drug delivery
- EGF, epidermal growth factor
- EGTA, ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid
- EM, electron microscopy
- NP-40, nonidet P-40
- PLGA, poly-lactic-co-glycolic-acid
- PVA, polyvinyl alcohol
- Polyomavirus
- RCNMV, red clover necrotic mosaic virus
- SV40, simian virus 40
- Simian virus 40
- TEM, transmission electron microscopy
- TEOS, tetraethyl orthosilicate
- VLPs, virus-like particles
- VP1
- VP1 coating
- W/O, water in oil
- W/O/W, water in oil in water
Collapse
Affiliation(s)
- Masaaki Kawano
- Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | - Koji Doi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hajime Fukuda
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshinori Kita
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kensuke Imai
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takamasa Inoue
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Teruya Enomoto
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | - Mamoru Hatakeyama
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yuki Yamaguchi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
18
|
Production and applications of engineered viral capsids. Appl Microbiol Biotechnol 2014; 98:5847-58. [PMID: 24816622 DOI: 10.1007/s00253-014-5787-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
As biological agents, viruses come in an astounding range of sizes, with varied shapes and surface morphologies. The structures of viral capsids are generally assemblies of hundreds of copies of one or a few proteins which can be harnessed for use in a wide variety of applications in biotechnology, nanotechnology, and medicine. Despite their complexity, many capsid types form as homogenous populations of precise geometrical assemblies. This is important in both medicine, where well-defined therapeutics are critical for drug performance and federal approval, and nanotechnology, where precise placement affects the properties of the desired material. Here we review the production of viruses and virus-like particles with methods for selecting and manipulating the size, surface chemistry, assembly state, and interior cargo of capsid. We then discuss many of the applications used in research today and the potential commercial and therapeutic products from engineered viral capsids.
Collapse
|
19
|
Teunissen EA, de Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Control Release 2013; 172:305-321. [PMID: 23999392 DOI: 10.1016/j.jconrel.2013.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Virus-like particles (VLPs), aggregates of capsid proteins devoid of viral genetic material, show great promise in the fields of vaccine development and gene therapy. These particles spontaneously self-assemble after heterologous expression of viral structural proteins. This review will focus on the use of virus-like particles derived from polyomavirus capsid proteins. Since their first recombinant production 27 years ago these particles have been investigated for a myriad of biomedical applications. These virus-like particles are safe, easy to produce, can be loaded with a broad range of diverse cargoes and can be tailored for specific delivery or epitope presentation. We will highlight the structural characteristics of polyomavirus-derived VLPs and give an overview of their applications in diagnostics, vaccine development and gene delivery.
Collapse
Affiliation(s)
- Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus de Raad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|