1
|
Dahodwala H, Sharfstein ST. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity. Methods Mol Biol 2025; 2853:119-137. [PMID: 39460918 DOI: 10.1007/978-1-0716-4104-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Chinese hamster ovary (CHO) cell physiology understanding has advanced very rapidly in the past few years with incredible improvements in long-read sequencing, improved resolution, and increased computational power. Multiple parental lines have been sequenced and the resultant pan-genome can be leveraged to increase our understanding of the diverse pathways CHO cells can take to get high-productivity phenotypes. The same improvements in workflows have complemented transcriptomic studies. Microfluidics and label-free innovations have further increased the sensitivity and accuracy of proteomic methods, while also making proteomics more accessible. In this 'omics era, high-throughput screening methods, sophisticated informatic tools, and models continually drive major innovations in cell line development and process engineering. This review describes the various recent achievements in 'omics techniques and their application to improve recombinant protein expression from CHO cell lines.
Collapse
Affiliation(s)
- Hussain Dahodwala
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Susan T Sharfstein
- Department of Nanoscale Science and Engineering and The RNA Institute, University at Albany, Albany, NY, USA.
| |
Collapse
|
2
|
Insights into the Impact of Rosmarinic Acid on CHO Cell Culture Improvement through Transcriptomics Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The use of antioxidants in Chinese hamster ovary (CHO) cell cultures to improve monoclonal antibody production has been a topic of great interest. Nevertheless, the antioxidants do not have consistent benefits of production improvement, which might be cell line specific and/or process specific. In this work, we investigated how treatment with the antioxidant rosmarinic acid (RA) improved cell growth and titer in CHO cell cultures using transcriptomics. In particular, transcriptomics analysis indicated that RA treatment modified gene expression and strongly affected the MAPK and PI3K/Akt signaling pathways, which regulate cell survival and cell death. Moreover, it was observed that these signaling pathways, which had been identified to be up-regulated on day 2 and day 6 by RA, were also up-regulated over time (from initial growth phase day 2 to slow growth or protein production phase day 6) in both conditions. In summary, this transcriptomics analysis provides insights into the role of the antioxidant RA in industrial cell culture processes. The current study also represents an example in the industry of how omics can be applied to gain an in-depth understanding of CHO cell biology and to identify critical pathways that can contribute to cell culture process improvement and cell line engineering.
Collapse
|
3
|
Zhang Y, Zhang D, Xu Y, Qin Y, Gu M, Cai W, Bai Z, Zhang X, Chen R, Sun Y, Wu Y, Wang Z. Selection of Cashmere Fineness Functional Genes by Translatomics. Front Genet 2022; 12:775499. [PMID: 35096002 PMCID: PMC8790676 DOI: 10.3389/fgene.2021.775499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Cashmere fineness is an important index to evaluate cashmere quality. Liaoning Cashmere Goat (LCG) has a large cashmere production and long cashmere fiber, but its fineness is not ideal. Therefore, it is important to find genes involved in cashmere fineness that can be used in future endeavors aiming to improve this phenotype. With the continuous advancement of research, the regulation of cashmere fineness has made new developments through high-throughput sequencing and genome-wide association analysis. It has been found that translatomics can identify genes associated with phenotypic traits. Through translatomic analysis, the skin tissue of LCG sample groups differing in cashmere fineness was sequenced by Ribo-seq. With these data, we identified 529 differentially expressed genes between the sample groups among the 27197 expressed genes. From these, 343 genes were upregulated in the fine LCG group in relation to the coarse LCG group, and 186 were downregulated in the same relationship. Through GO enrichment analysis and KEGG enrichment analysis of differential genes, the biological functions and pathways of differential genes can be found. In the GO enrichment analysis, 491 genes were significantly enriched, and the functional region was mainly in the extracellular region. In the KEGG enrichment analysis, the enrichment of the human papillomavirus infection pathway was seen the most. We found that the COL6A5 gene may affect cashmere fineness.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dongyun Zhang
- International Business School and International Economics and Trade, Shenyang Normal University, Shenyang, China
| | - Yanan Xu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuting Qin
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingang Sun
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Huang Z, Xu J, Yongky A, Morris CS, Polanco AL, Reily M, Borys MC, Li ZJ, Yoon S. CHO cell productivity improvement by genome-scale modeling and pathway analysis: Application to feed supplements. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Identifying metabolic features and engineering targets for productivity improvement in CHO cells by integrated transcriptomics and genome-scale metabolic model. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Yoshida GM, Lhorente JP, Correa K, Soto J, Salas D, Yáñez JM. Genome-Wide Association Study and Cost-Efficient Genomic Predictions for Growth and Fillet Yield in Nile Tilapia ( Oreochromis niloticus). G3 (BETHESDA, MD.) 2019; 9:2597-2607. [PMID: 31171566 PMCID: PMC6686944 DOI: 10.1534/g3.119.400116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Fillet yield (FY) and harvest weight (HW) are economically important traits in Nile tilapia production. Genetic improvement of these traits, especially for FY, are lacking, due to the absence of efficient methods to measure the traits without sacrificing fish and the use of information from relatives to selection. However, genomic information could be used by genomic selection to improve traits that are difficult to measure directly in selection candidates, as in the case of FY. The objectives of this study were: (i) to perform genome-wide association studies (GWAS) to dissect the genetic architecture of FY and HW, (ii) to evaluate the accuracy of genotype imputation and (iii) to assess the accuracy of genomic selection using true and imputed low-density (LD) single nucleotide polymorphism (SNP) panels to determine a cost-effective strategy for practical implementation of genomic information in tilapia breeding programs. The data set consisted of 5,866 phenotyped animals and 1,238 genotyped animals (108 parents and 1,130 offspring) using a 50K SNP panel. The GWAS were performed using all genotyped and phenotyped animals. The genotyped imputation was performed from LD panels (LD0.5K, LD1K and LD3K) to high-density panel (HD), using information from parents and 20% of offspring in the reference set and the remaining 80% in the validation set. In addition, we tested the accuracy of genomic selection using true and imputed genotypes comparing the accuracy obtained from pedigree-based best linear unbiased prediction (PBLUP) and genomic predictions. The results from GWAS supports evidence of the polygenic nature of FY and HW. The accuracy of imputation ranged from 0.90 to 0.98 for LD0.5K and LD3K, respectively. The accuracy of genomic prediction outperformed the estimated breeding value from PBLUP. The use of imputation for genomic selection resulted in an increased relative accuracy independent of the trait and LD panel analyzed. The present results suggest that genotype imputation could be a cost-effective strategy for genomic selection in Nile tilapia breeding programs.
Collapse
Affiliation(s)
- Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820808 Chile
- Benchmark Genetics Chile, Puerto Montt, Chile, and
| | | | | | - Jose Soto
- Grupo Acuacorporacion Internacional (GACI), Cañas, Costa Rica
| | - Diego Salas
- Grupo Acuacorporacion Internacional (GACI), Cañas, Costa Rica
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820808 Chile,
| |
Collapse
|
7
|
Gutiérrez-González M, Latorre Y, Zúñiga R, Aguillón JC, Molina MC, Altamirano C. Transcription factor engineering in CHO cells for recombinant protein production. Crit Rev Biotechnol 2019; 39:665-679. [PMID: 31030575 DOI: 10.1080/07388551.2019.1605496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The continuous increase of approved biopharmaceutical products drives the development of more efficient recombinant protein expression systems. Chinese hamster ovary (CHO) cells are the mainstay for this purpose but have some drawbacks, such as low levels of expression. Several strategies have been applied to increase the productivity of CHO cells with different outcomes. Transcription factor (TF) engineering has emerged as an interesting and successful approach, as these proteins can act as master regulators; the expression and function of a TF can be controlled by small molecules, and it is possible to design tailored TFs and promoters with desired features. To date, the majority of studies have focused on the use of TFs with growth, metabolic, cell cycle or endoplasmic reticulum functions, although there is a trend to develop new, synthetic TFs. Moreover, new synthetic biological approaches are showing promising advances for the development of specific TFs, even with tailored ligand sensitivity. In this article, we summarize the strategies to increase recombinant protein expression by modulating and designing TFs and with advancements in synthetic biology. We also illustrate how this class of proteins can be used to develop more robust expression systems.
Collapse
Affiliation(s)
| | - Yesenia Latorre
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Roberto Zúñiga
- a Centro de InmunoBiotecnología, Universidad de Chile , Santiago , Chile
| | | | | | - Claudia Altamirano
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| |
Collapse
|
8
|
Vito D, Smales CM. Engineering of the cellular translational machinery and non-coding RNAs to enhance CHO cell growth, recombinant product yields and quality. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Tamošaitis L, Smales CM. Meta-Analysis of Publicly Available Chinese Hamster Ovary (CHO) Cell Transcriptomic Datasets for Identifying Engineering Targets to Enhance Recombinant Protein Yields. Biotechnol J 2018; 13:e1800066. [DOI: 10.1002/biot.201800066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Linas Tamošaitis
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| |
Collapse
|
10
|
Vito D, Smales CM. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions. Biotechnol J 2018; 13:e1800122. [PMID: 29781203 DOI: 10.1002/biot.201800122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The role of non-coding RNAs in determining growth, productivity, and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). The authors have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. The authors report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. The authors demonstrate that the mouse microarray is suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. The authors then further analyzed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. The authors discuss the implications for the publication of this rich dataset and how this may be used by the community.
Collapse
Affiliation(s)
- Davide Vito
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| |
Collapse
|
11
|
Collins JH, Young EM. Genetic engineering of host organisms for pharmaceutical synthesis. Curr Opin Biotechnol 2018; 53:191-200. [PMID: 29471209 DOI: 10.1016/j.copbio.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Pharmaceutical production hosts may be derived from almost any organism, from Chinese Hamster Ovary (CHO) cell lines to isolated actinomycetes. Each host can be improved, historically only through adaptive evolution. Recently, the maturation of organism engineering has expanded the available models, methods, and tools for altering host phenotypes. New tools like CRISPR-associated endonucleases promise to enable precise cellular reprogramming and to access previously intractable hosts. In this review, we discuss the most recent advances in engineering several types of pharmaceutical production hosts. These include model organisms, potential platform hosts with advantageous metabolism or physiology, specialized producers capable of unique biosynthesis, and CHO, the most widely used recombinant protein production host. To realize improved engineered hosts, an increasing number of approaches involving DNA sequencing and synthesis, host rewriting technologies, computational methods, and organism engineering strategies must be used. Integrative workflows that enable application of the right combination of methods to the right production host could enable economical production solutions for emerging human health treatments.
Collapse
Affiliation(s)
- Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States.
| |
Collapse
|
12
|
Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/07/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
|
13
|
Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion. Sci Rep 2017; 7:40388. [PMID: 28091612 PMCID: PMC5238448 DOI: 10.1038/srep40388] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated as efficiently as host genes. Furthermore, it is unclear how the high expression impacts global translation. Here, we present the first genome-wide view of protein translation in an IgG-producing CHO cell line, measured with ribosome profiling. Through this we found that our recombinant mRNAs were translated as efficiently as the host cell transcriptome, and sequestered up to 15% of the total ribosome occupancy. During cell culture, changes in recombinant mRNA translation were consistent with changes in transcription, demonstrating that transcript levels influence specific productivity. Using this information, we identified the unnecessary resistance marker NeoR to be a highly transcribed and translated gene. Through siRNA knock-down of NeoR, we improved the production- and growth capacity of the host cell. Thus, ribosomal profiling provides valuable insights into translation in CHO cells and can guide efforts to enhance protein production.
Collapse
|
14
|
Dahodwala H, Sharfstein ST. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity. Methods Mol Biol 2017; 1603:153-168. [PMID: 28493129 DOI: 10.1007/978-1-4939-6972-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increased understanding of Chinese hamster ovary (CHO) cell physiology has been ushered in upon availability of the parental CHO-K1 cell line genome. Free and openly accessible sequence information has complemented transcriptomic and proteomic studies. The previous decade has also seen an increase in sensitivity and accuracy of proteomic methods due to technology development. In this genomic era, high-throughput screening methods, sophisticated informatic tools, and models continually drive major innovations in cell line development and process engineering. This review describes the various achievements in 'omics techniques and their application to improve recombinant protein expression from CHO cell lines.
Collapse
Affiliation(s)
- Hussain Dahodwala
- Vaccine production program (VPP), VRC/NIAID/NIH, Gaithersburg, MD, 20878, USA
- SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY, 12203, USA
| | - Susan T Sharfstein
- Vaccine production program (VPP), VRC/NIAID/NIH, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
15
|
Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv 2017; 35:64-76. [DOI: 10.1016/j.biotechadv.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/12/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
|
16
|
Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D, Martinez VS, Kyriakopoulos S, Jiménez NE, Zielinski DC, Quek LE, Wulff T, Arnsdorf J, Li S, Lee JS, Paglia G, Loira N, Spahn PN, Pedersen LE, Gutierrez JM, King ZA, Lund AM, Nagarajan H, Thomas A, Abdel-Haleem AM, Zanghellini J, Kildegaard HF, Voldborg BG, Gerdtzen ZP, Betenbaugh MJ, Palsson BO, Andersen MR, Nielsen LK, Borth N, Lee DY, Lewis NE. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Syst 2016; 3:434-443.e8. [PMID: 27883890 PMCID: PMC5132346 DOI: 10.1016/j.cels.2016.10.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/16/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.
Collapse
Affiliation(s)
- Hooman Hefzi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kok Siong Ang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, 06-01, Centros, Singapore 138668, Singapore
| | - Michael Hanscho
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria
| | - Aarash Bordbar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Ruckerbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, 06-01, Centros, Singapore 138668, Singapore
| | - Camila A Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD 4072, Australia
| | - Deniz Baycin-Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingxiang Huang
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla 92093, CA, USA
| | - Daniel Ley
- Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Veronica S Martinez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD 4072, Australia
| | - Sarantos Kyriakopoulos
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, 06-01, Centros, Singapore 138668, Singapore
| | - Natalia E Jiménez
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago 8370456, Chile; MATHomics, Center for Mathematical Modeling; Center for Genome Regulation (Fondap 15090007), University of Chile, Santiago 8370456, Chile
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lake-Ee Quek
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD 4072, Australia
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Johnny Arnsdorf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jae Seong Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Giuseppe Paglia
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland
| | - Nicolas Loira
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago 8370456, Chile; MATHomics, Center for Mathematical Modeling; Center for Genome Regulation (Fondap 15090007), University of Chile, Santiago 8370456, Chile
| | - Philipp N Spahn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lasse E Pedersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jahir M Gutierrez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zachary A King
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anne Mathilde Lund
- Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Harish Nagarajan
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla 92093, CA, USA
| | - Alex Thomas
- Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla 92093, CA, USA
| | - Alyaa M Abdel-Haleem
- Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Computational Bioscience Research Centre, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Juergen Zanghellini
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria
| | - Helene F Kildegaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Bjørn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ziomara P Gerdtzen
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago 8370456, Chile; MATHomics, Center for Mathematical Modeling; Center for Genome Regulation (Fondap 15090007), University of Chile, Santiago 8370456, Chile
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD 4072, Australia
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria.
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, 06-01, Centros, Singapore 138668, Singapore.
| | - Nathan E Lewis
- Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines. J Biotechnol 2016; 235:150-61. [PMID: 26993211 DOI: 10.1016/j.jbiotec.2016.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
Abstract
As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics.
Collapse
|
18
|
Ang KS, Kyriakopoulos S, Li W, Lee DY. Multi-omics data driven analysis establishes reference codon biases for synthetic gene design in microbial and mammalian cells. Methods 2016; 102:26-35. [PMID: 26850284 DOI: 10.1016/j.ymeth.2016.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022] Open
Abstract
In this study, we analyzed multi-omics data and subsets thereof to establish reference codon usage biases for codon optimization in synthetic gene design. Specifically, publicly available genomic, transcriptomic, proteomic and translatomic data for microbial and mammalian expression hosts, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Chinese hamster ovary (CHO) cells, were compiled to derive their individual codon and codon pair frequencies. Then, host dependent and -omics specific codon biases were generated and compared by principal component analysis and hierarchical clustering. Interestingly, our results indicated the similar codon bias patterns of the highly expressed transcripts, highly abundant proteins, and efficiently translated mRNA in microbial cells, despite the general lack of correlation between mRNA and protein expression levels. However, for CHO cells, the codon bias patterns among various -omics subsets are not distinguishable, forming one cluster. Thus, we further investigated the effect of different input codon biases on codon optimized sequences using the codon context (CC) and individual codon usage (ICU) design parameters, via in silico case study on the expression of human IFNγ sequence in CHO cells. The results supported that CC is more robust design parameter than ICU for improved heterologous gene design.
Collapse
Affiliation(s)
- Kok Siong Ang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sarantos Kyriakopoulos
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Wei Li
- Sangon Biotech (Shanghai) Co., Ltd., 698 Xiangmin Road, SongJiang District, Shanghai 201611, China
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
19
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
20
|
Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity. Biochem J 2015; 472:261-73. [DOI: 10.1042/bj20150928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022]
Abstract
We show for translation initiation factors involved in formation of the closed loop mRNA, their expression is associated with recombinant antibody productivity in Chinese hamster ovary cells and maintaining these is important in determining the cells capacity for antibody productivity.
Collapse
|
21
|
Lewis AM, Abu-Absi NR, Borys MC, Li ZJ. The use of 'Omics technology to rationally improve industrial mammalian cell line performance. Biotechnol Bioeng 2015; 113:26-38. [PMID: 26059229 DOI: 10.1002/bit.25673] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Biologics represent an increasingly important class of therapeutics, with 7 of the 10 top selling drugs from 2013 being in this class. Furthermore, health authority approval of biologics in the immuno-oncology space is expected to transform treatment of patients with debilitating and deadly diseases. The growing importance of biologics in the healthcare field has also resulted in the recent approvals of several biosimilars. These recent developments, combined with pressure to provide treatments at lower costs to payers, are resulting in increasing need for the industry to quickly and efficiently develop high yielding, robust processes for the manufacture of biologics with the ability to control quality attributes within narrow distributions. Achieving this level of manufacturing efficiency and the ability to design processes capable of regulating growth, death and other cellular pathways through manipulation of media, feeding strategies, and other process parameters will undoubtedly be facilitated through systems biology tools generated in academic and public research communities. Here we discuss the intersection of systems biology, 'Omics technologies, and mammalian bioprocess sciences. Specifically, we address how these methods in conjunction with traditional monitoring techniques represent a unique opportunity to better characterize and understand host cell culture state, shift from an empirical to rational approach to process development and optimization of bioreactor cultivation processes. We summarize the following six key areas: (i) research applied to parental, non-recombinant cell lines; (ii) systems level datasets generated with recombinant cell lines; (iii) datasets linking phenotypic traits to relevant biomarkers; (iv) data depositories and bioinformatics tools; (v) in silico model development, and (vi) examples where these approaches have been used to rationally improve cellular processes. We critically assess relevant and state of the art research being conducted in academic, government and industrial laboratories. Furthermore, we apply our expertise in bioprocess to define a potential model for integration of these systems biology approaches into biologics development.
Collapse
Affiliation(s)
- Amanda M Lewis
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts.
| | - Nicholas R Abu-Absi
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| | - Michael C Borys
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| |
Collapse
|
22
|
Statistical methods for mining Chinese hamster ovary cell ‘omics data: from differential expression to integrated multilevel analysis of the biological system. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Tahmasebi S, Alain T, Rajasekhar VK, Zhang JP, Prager-Khoutorsky M, Khoutorsky A, Dogan Y, Gkogkas CG, Petroulakis E, Sylvestre A, Ghorbani M, Assadian S, Yamanaka Y, Vinagolu-Baur JR, Teodoro JG, Kim K, Yang XJ, Sonenberg N. Multifaceted regulation of somatic cell reprogramming by mRNA translational control. Cell Stem Cell 2014; 14:606-16. [PMID: 24630793 DOI: 10.1016/j.stem.2014.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 12/29/2013] [Accepted: 02/14/2014] [Indexed: 01/29/2023]
Abstract
Translational control plays a pivotal role in the regulation of the pluripotency network in embryonic stem cells, but its effect on reprogramming somatic cells to pluripotency has not been explored. Here, we show that eukaryotic translation initiation factor 4E (eIF4E) binding proteins (4E-BPs), which are translational repressors, have a multifaceted effect on the reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs). Loss of 4E-BP expression attenuates the induction of iPSCs at least in part through increased translation of p21, a known inhibitor of somatic cell reprogramming. However, MEFs lacking both p53 and 4E-BPs show greatly enhanced reprogramming resulting from a combination of reduced p21 transcription and enhanced translation of endogenous mRNAs such as Sox2 and Myc and can be reprogrammed through the expression of only exogenous Oct4. Thus, 4E-BPs exert both positive and negative effects on reprogramming, highlighting the key role that translational control plays in regulating this process.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Vinagolu K Rajasekhar
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jiang-Ping Zhang
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montréal, QC H3A 1A3, Canada
| | - Masha Prager-Khoutorsky
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal General Hospital, Montréal, QC H3G 1A4, Canada
| | - Arkady Khoutorsky
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Yildirim Dogan
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christos G Gkogkas
- Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Emmanuel Petroulakis
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Annie Sylvestre
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Mohammad Ghorbani
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montréal, QC H3A 1A3, Canada
| | - Sarah Assadian
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Yojiro Yamanaka
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A 1A3, Canada
| | - Julia R Vinagolu-Baur
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jose G Teodoro
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Kitai Kim
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiang-Jiao Yang
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montréal, QC H3A 1A3, Canada.
| | - Nahum Sonenberg
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
24
|
28S rRNA is inducibly pseudouridylated by the mTOR pathway translational control in CHO cell cultures. J Biotechnol 2014; 174:16-21. [PMID: 24480570 DOI: 10.1016/j.jbiotec.2014.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 11/21/2022]
Abstract
The mTOR pathway is a conserved master regulator of translational activity that influences the fate of industrially relevant CHO cell cultures, yet its molecular mechanisms remain unclear. Interestingly, rapamycin specific inhibition of the mTOR pathway in CHO cells was found to down-regulate the small nucleolar RNA U19 (snoRNA U19) by 2-fold via translatome profiling. snoRNA U19 guides the two most conserved pseudouridylation modifications on 28S ribosomal RNA (rRNA) that are important for the biogenesis and proper function of ribosomes. In order to further understand the role of snoRNA U19 as a potential player in the mTOR pathway, we measured 28S rRNA pseudouridylation upon rapamycin treatments and/or snoRNA U19 overexpression conditions, thereby characterizing the subsequent effects on ribosome efficiency and global translation by polysome profiling. We showed that 28S rRNA pseudouridylation was increased by rapamycin treatment and/or overexpression of snoRNA U19, but only the latter condition improved ribosome efficiency toward higher global translation, thus implying that the mTOR pathway induces pseudouridylation at different sites along the 28S rRNA possibly with either positive or negative effects on the cellular phenotype. This discovery of snoRNA U19 as a new downstream effector of the mTOR pathway suggests that cell engineering of snoRNAs can be used to regulate translation and improve cellular growth in CHO cell cultures in the future.
Collapse
|
25
|
Courtes FC, Vardy L, Wong NSC, Bardor M, Yap MGS, Lee DY. Understanding translational control mechanisms of the mTOR pathway in CHO cells by polysome profiling. N Biotechnol 2013; 31:514-23. [PMID: 24157712 DOI: 10.1016/j.nbt.2013.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/21/2013] [Accepted: 10/12/2013] [Indexed: 11/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) pathway plays essential roles in the regulation of translational activity in many eukaryotes. Thus, from a bioprocessing point of view, understanding its molecular mechanisms may provide potential avenues for improving cell culture performance. Toward this end, the mTOR pathway of CHO cells in batch cultures was subjected to rapamycin treatment (inhibition) or nutrient supplementation (induction) and translational activities of CHO cells producing a monoclonal antibody (mAb) were evaluated with polysome profiling technology. Expectedly, rapamycin induced a shift of mRNAs from polysomes towards monosomes, thus reducing maximum cellular growth rate by 30%, while feeding additional nutrients extended mTOR pathway activity during the stationary growth phase in control batch culture, thereby contributing to an increase in global translation activity by up to 2-fold, and up to 5-fold higher specific translation of the heavy and light chains of the recombinant mAb. These increases in translation activity correlated with a 5-day extension in cellular growth and a 4-fold higher final product titer observed upon nutrient feeding. This first study of the relationship between the mTOR pathway and translational activity in CHO cultures provides key insights into the role of translational control in supporting greater productivity, which will lead to further enhancement of CHO cultures.
Collapse
Affiliation(s)
- Franck C Courtes
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Leah Vardy
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Niki S C Wong
- AbbVie Pte Ltd, 8 Biomedical Grove, #03-01 Neuros, Singapore 138665, Singapore
| | - Muriel Bardor
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Miranda G S Yap
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore.
| |
Collapse
|