1
|
Meersseman Arango H, Bachus N, Nguyen XDL, Bredun B, Luis P, Leyssens T, Roura Padrosa D, Paradisi F, Debecker DP. Crystallization-Assisted Asymmetric Synthesis of Enantiopure Amines Using Membrane-Immobilized Transaminase. CHEM & BIO ENGINEERING 2025; 2:272-282. [PMID: 40302874 PMCID: PMC12035565 DOI: 10.1021/cbe.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025]
Abstract
The production of active pharmaceutical ingredients (APIs) requires enantiopure chiral amines, for which greener synthesis processes are needed. Transaminases (TAs) are enzymes that catalyze the enantioselective production of chiral amines from prochiral ketones through transamination under mild conditions. Yet, industrial applications of biocatalytic transamination remain currently hindered by the limited stability of soluble enzymes and by the unfavorable thermodynamic equilibrium of targeted asymmetric reactions. Enzyme immobilization can be applied to address stability, recoverability, and reusability issues. In the perspective of process intensification, we chose to immobilize TAs on polymeric (polypropylene) membranes. In the asymmetric synthesis of (R)-2-fluoro-α-methylbenzylamine ((R)-FMBA), such membrane-immobilized TAs exhibited superior specific activity and stability compared with soluble TAs; they also outperformed TAs immobilized on resins. The reaction yield remained, however, limited by thermodynamics. To further enhance the synthesis yield, the reaction was coupled with the in situ crystallization of (R)-FMBA with 3,3-diphenylpropionic acid (DPPA). By doing so, the theoretical equilibrium conversion was pushed from ∼44% to ∼83%. In fact, a 72% overall recovery yield of crystallized (R)-FMBA was demonstrated. The enantioselectivity of the reaction mixture was preserved. Importantly, purification was greatly facilitated since the target enantiopure amine was readily recovered as high-purity (R)-FMBA:DPPA crystals. The biocatalytic membranes were found to be fully reusable, performing successive high-yield asymmetric syntheses with only minor deactivation. Overall, the crystallization-assisted strategy proposed herein offers a greener path for the biocatalytic production of valuable chiral targets.
Collapse
Affiliation(s)
- Hippolyte Meersseman Arango
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Neal Bachus
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Xuan Dieu Linh Nguyen
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Basile Bredun
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Patricia Luis
- Materials
& Process Engineering (iMMC-IMAP), Université
Catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Tom Leyssens
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - David Roura Padrosa
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Francesca Paradisi
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Damien P. Debecker
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
2
|
Facilitated solvent screening for membrane-based extraction of chiral amines via a priori simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
4
|
Yang J, Buekenhoudt A, Dael MV, Luis P, Satyawali Y, Malina R, Lizin S. A Techno-economic Assessment of a Biocatalytic Chiral Amine Production Process Integrated with In Situ Membrane Extraction. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Yang
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Separation and Conversion Technology, VITO, Boeretang 200, 2400 Mol, Belgium
| | - Anita Buekenhoudt
- Separation and Conversion Technology, VITO, Boeretang 200, 2400 Mol, Belgium
| | - Miet Van Dael
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Separation and Conversion Technology, VITO, Boeretang 200, 2400 Mol, Belgium
| | - Patricia Luis
- Materials & Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research & Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe, 2 bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Yamini Satyawali
- Separation and Conversion Technology, VITO, Boeretang 200, 2400 Mol, Belgium
| | - Robert Malina
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sebastien Lizin
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
5
|
Jin LQ, Shentu JK, Liu HL, Shao TC, Liu ZQ, Xue YP, Zheng YG. Enhanced catalytic activity of recombinant transaminase by molecular modification to improve L-phosphinothricin production. J Biotechnol 2021; 343:7-14. [PMID: 34763007 DOI: 10.1016/j.jbiotec.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022]
Abstract
Transaminases catalyze the transfer of an amino group from a donor to a keto group of an acceptor substrate and are applicable to the asymmetric synthesis of herbicide L-phosphinothricin (L-PPT). Here, the important residue sites (C390, I22, V52, R141, Y138 and D239) of transaminase from Salmonella enterica (SeTA) were modified at the adjacency of the substrate-binding pocket to improve the enzyme activity. Among the constructed mutant library, the SeTA-Y138F mutant displayed higher activity than the wild-type enzyme. Compared to the wild-type, SeTA-Y138F showed improved catalytic efficiency with a 4.36-fold increase. The Km and kcat of SeTA -Y138F toward 4-(hydroxy(methyl) phosphoryl)-2-oxobutanoic acid (PPO) were 26.39 mM and 34.28 s-1, respectively. Subsequently, the three-enzyme co-expression system of E. coli BL21 (DE3)/pACYCDuet-SeTA-Y138F/pETDuet-AlaDH-BsGDH was developed by combining a alanine dehydrogenase (AlaDH) to recycle the byproduct of amino donor, a glucose dehydrogenase (BsGDH) for cofactor recycling. Under the optimized conditions, an excellent L-PPT yield of 90.8% was achieved by the whole-cell biotransformation with 500 mM PPO. It exhibited the tri-enzymatic coupling system was potential for effective production of target L-PPT.
Collapse
Affiliation(s)
- Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun-Kang Shentu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Han-Lin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tian-Chen Shao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Ping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
6
|
Wang C, Tang K, Dai Y, Jia H, Li Y, Gao Z, Wu B. Identification, Characterization, and Site-Specific Mutagenesis of a Thermostable ω-Transaminase from Chloroflexi bacterium. ACS OMEGA 2021; 6:17058-17070. [PMID: 34250363 PMCID: PMC8264935 DOI: 10.1021/acsomega.1c02164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we have identified an ω-transaminase (ω-TA) from Chloroflexi bacterium from the genome database by using two ω-TA sequences (ATA117 Arrmut11 from Arthrobacter sp. KNK168 and amine transaminase from Aspergillus terreus NIH2624) as templates in a BLASTP search and motif sequence alignment. The protein sequence of the ω-TA from C. bacterium (CbTA) shows 38% sequence identity to that of ATA117 Arrmut11. The gene sequence of CbTA was inserted into pRSF-Duet1 and functionally expressed in Escherichia coli BL21(DE3). The results showed that the recombinant CbTA has a specific activity of 1.19 U/mg for (R)-α-methylbenzylamine [(R)-MBA] at pH 8.5 and 45 °C. The substrate acceptability test showed that CbTA has significant reactivity to aromatic amino donors and amino receptors. More importantly, CbTA also exhibited good affinity toward some cyclic substrates. The homology model of CbTA was built by Discovery Studio, and docking was performed to describe the relative activity toward some substrates. CbTA evolved by site-specific mutagenesis and found that the Q192G mutant increased the activity to (R)-MBA by around 9.8-fold. The Q192G mutant was then used to convert two cyclic ketones, N-Boc-3-pyrrolidinone and N-Boc-3-piperidone, and both the conversions were obviously improved compared to that of the parental CbTA.
Collapse
|
7
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
8
|
ω-Transaminase-Mediated Asymmetric Synthesis of (S)-1-(4-Trifluoromethylphenyl)Ethylamine. Catalysts 2021. [DOI: 10.3390/catal11030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pivotal role played by ω-transaminases (ω-TAs) in the synthesis of chiral amines used as building blocks for drugs and pharmaceuticals is widely recognized. However, chiral bulky amines are challenging to produce. Herein, a ω-TA (TR8) from a marine bacterium was used to synthesize a fluorine chiral amine from a bulky ketone. An analysis of the reaction conditions for process development showed that isopropylamine concentrations above 75 mM had an inhibitory effect on the enzyme. Five different organic solvents were investigated as co-solvents for the ketone (the amine acceptor), among which 25–30% (v/v) dimethyl sulfoxide (DMSO) produced the highest enzyme activity. The reaction reached equilibrium after 18 h at 30% of conversion. An in situ product removal (ISPR) approach using an aqueous organic two-phase system was tested to mitigate product inhibition. However, the enzyme activity initially decreased because the ketone substrate preferentially partitioned into the organic phase, n-hexadecane. Consequently, DMSO was added to the system to increase substrate mass transfer without affecting the ability of the organic phase to prevent inhibition of the enzyme activity by the product. Thus, the enzyme reaction was maintained, and the product amount was increased for a 62 h reaction time. The investigated ω-TA can be used in the bioconversion of bulky ketones to chiral amines for future bioprocess applications.
Collapse
|
9
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
10
|
Tang K, Yi Y, Gao Z, Jia H, Li Y, Cao F, Zhou H, Jiang M, Wei P. Identification, Heterologous Expression and Characterization of a Transaminase from Rhizobium sp. Catal Letters 2020. [DOI: 10.1007/s10562-020-03121-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Mangas-Sanchez J, Sharma M, Cosgrove SC, Ramsden JI, Marshall JR, Thorpe TW, Palmer RB, Grogan G, Turner NJ. Asymmetric synthesis of primary amines catalyzed by thermotolerant fungal reductive aminases. Chem Sci 2020; 11:5052-5057. [PMID: 34122962 PMCID: PMC8159254 DOI: 10.1039/d0sc02253e] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chiral primary amines are important intermediates in the synthesis of pharmaceutical compounds. Fungal reductive aminases (RedAms) are NADPH-dependent dehydrogenases that catalyse reductive amination of a range of ketones with short-chain primary amines supplied in an equimolar ratio to give corresponding secondary amines. Herein we describe structural and biochemical characterisation as well as synthetic applications of two RedAms from Neosartorya spp. (NfRedAm and NfisRedAm) that display a distinctive activity amongst fungal RedAms, namely a superior ability to use ammonia as the amine partner. Using these enzymes, we demonstrate the synthesis of a broad range of primary amines, with conversions up to >97% and excellent enantiomeric excess. Temperature dependent studies showed that these homologues also possess greater thermal stability compared to other enzymes within this family. Their synthetic applicability is further demonstrated by the production of several primary and secondary amines with turnover numbers (TN) up to 14 000 as well as continous flow reactions, obtaining chiral amines such as (R)-2-aminohexane in space time yields up to 8.1 g L−1 h−1. The remarkable features of NfRedAm and NfisRedAm highlight their potential for wider synthetic application as well as expanding the biocatalytic toolbox available for chiral amine synthesis. Fungal reductive aminases as effective biocatalysts for the preparation of chiral primary amines.![]()
Collapse
Affiliation(s)
- Juan Mangas-Sanchez
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York YO10 5DD York UK
| | - Sebastian C Cosgrove
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Jeremy I Ramsden
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - James R Marshall
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Thomas W Thorpe
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Ryan B Palmer
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York YO10 5DD York UK
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
12
|
Concept Study for an Integrated Reactor-Crystallizer Process for the Continuous Biocatalytic Synthesis of (S)-1-(3-Methoxyphenyl)ethylamine. CRYSTALS 2020. [DOI: 10.3390/cryst10050345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An integrated biocatalysis-crystallization concept was developed for the continuous amine transaminase-catalyzed synthesis of (S)-1-(3-methoxyphenyl)ethylamine, which is a valuable intermediate for the synthesis of rivastigmine, a highly potent drug for the treatment of early stage Alzheimer’s disease. The three-part vessel system developed for this purpose consists of a membrane reactor for the continuous synthesis of the product amine, a saturator vessel for the continuous supply of the amine donor isopropylammonium and the precipitating reagent 3,3-diphenylpropionate and a crystallizer in which the product amine can continuously precipitate as (S)-1-(3-methoxyphenyl)ethylammonium-3,3-diphenylpropionate.
Collapse
|
13
|
Matassa C, Ormerod D, Bornscheuer UT, Höhne M, Satyawali Y. Three‐liquid‐phase Spinning Reactor for the Transaminase‐catalyzed Synthesis and Recovery of a Chiral Amine. ChemCatChem 2020. [DOI: 10.1002/cctc.201902056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Claudia Matassa
- Separation and Conversion TechnologyVITO Flemish Institute for Technological Research Boeretang 262 Mol 2400 Belgium
- Institute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Dominic Ormerod
- Separation and Conversion TechnologyVITO Flemish Institute for Technological Research Boeretang 262 Mol 2400 Belgium
| | - Uwe T. Bornscheuer
- Institute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Matthias Höhne
- Institute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Yamini Satyawali
- Separation and Conversion TechnologyVITO Flemish Institute for Technological Research Boeretang 262 Mol 2400 Belgium
| |
Collapse
|
14
|
Chen FF, Cosgrove SC, Birmingham WR, Mangas-Sanchez J, Citoler J, Thompson MP, Zheng GW, Xu JH, Turner NJ. Enantioselective Synthesis of Chiral Vicinal Amino Alcohols Using Amine Dehydrogenases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03889] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Sebastian C. Cosgrove
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - William R. Birmingham
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Juan Mangas-Sanchez
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Joan Citoler
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Matthew P. Thompson
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
15
|
Hülsewede D, Dohm J, von Langermann J. Donor Amine Salt‐Based Continuous
in
situ‐
Product Crystallization in Amine Transaminase‐Catalyzed Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dennis Hülsewede
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| | - Jan‐Niklas Dohm
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| | - Jan von Langermann
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| |
Collapse
|
16
|
Matassa C, Ormerod D, Bornscheuer UT, Höhne M, Satyawali Y. Application of novel High Molecular Weight amine donors in chiral amine synthesis facilitates integrated downstream processing and provides in situ product recovery opportunities. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Kelefiotis-Stratidakis P, Tyrikos-Ergas T, Pavlidis IV. The challenge of using isopropylamine as an amine donor in transaminase catalysed reactions. Org Biomol Chem 2019; 17:1634-1642. [PMID: 30394478 DOI: 10.1039/c8ob02342e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amine transaminases (ATAs) propose an appealing alternative to transition metal catalysts as they can provide chiral amines of high purity from pro-chiral compounds by asymmetric synthesis. Industrial interest on ATAs arises from the fact that chiral amines are present in a wide spectrum of pharmaceutical and other high value-added chiral compounds and building blocks. Despite their potential as useful synthetic tools, several drawbacks such as challenges associated with the thermodynamic equilibrium can still impede their utilization. Several methods have been developed to displace the equilibrium, such as the use of alanine as an amine donor and the subsequent removal of pyruvate with a two-enzyme system, or the use of o-xylylene diamine. To date, the preferred amine donor remains isopropylamine (IPA), as the produced acetone can be removed easily under low pressure or slight heating, without complicating the process with other enzymes. Despite its small size, IPA is not widely accepted from wild-type ATAs, and this fact compromises its wide applicability. Herein, we index the reported biocatalytic aminations with IPA, comparing the sequences, while we discuss significant parameters of the process, such as the effect of temperature and pH, as well as the protein engineering and process development advances in the field. This information is expected to provide an insight for potential designs of tailor-made ATAs and IPA processes.
Collapse
|
18
|
Feng Y, Wang Z, Luo Z, Chen M, He F, Liu B, Goldmann S, Zhang L. Further Optimization of a Scalable Biocatalytic Route to (3 R)- N-Boc-3-aminoazepane with Immobilized ω-Transaminase. Org Process Res Dev 2019; 23:355-360. [DOI: 10.1021/acs.oprd.8b00411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yahui Feng
- School of Bioscience and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhongqing Wang
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
- Anti-infection Innovation Department, New Drug Research Institute, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Zhonghua Luo
- School of Bioscience and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Minghong Chen
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Fang He
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Bin Liu
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Siegfried Goldmann
- Anti-infection Innovation Department, New Drug Research Institute, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Lei Zhang
- School of Bioscience and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
19
|
Satyawali Y, Del Pozo DF, Vandezande P, Nopens I, Dejonghe W. Investigating Pervaporation for In Situ Acetone Removal as Process Intensification Tool in ω-Transaminase Catalyzed Chiral Amine Synthesis. Biotechnol Prog 2018; 35:e2731. [PMID: 30315731 DOI: 10.1002/btpr.2731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/10/2018] [Accepted: 10/09/2018] [Indexed: 11/10/2022]
Abstract
Hydrophobic pervaporation (PV), allowing for the separation of an organic component from an aqueous stream, was investigated for in situ acetone removal from a transamination reaction. A poly(dimethylsiloxane) membrane was applied in a coupled enzymatic process at 5 L scale. Among the four components, there was no loss of donor and product amines through PV which was highly desirable. However, in addition to removal of acetone, there was also an unwanted loss of acetophenone (substrate ketone) because of PV. The coupled enzyme-PV process resulted in 13% more product formation compared to the control process (where no PV was applied) after 9 h. Results from a qualitative simulation study (based on partial vapor pressures and a vapor-liquid equilibrium of the feed solution) indicated that PV might have an advantage over direct distillation strategy for selective removal of acetone from the reaction medium. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2731, 2019.
Collapse
Affiliation(s)
- Yamini Satyawali
- Separation and Conversion Technology, Flemish Inst. for Technological Research (VITO), Mol, Belgium
| | - David Fernandes Del Pozo
- BIOMATH, Dept. of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pieter Vandezande
- Separation and Conversion Technology, Flemish Inst. for Technological Research (VITO), Mol, Belgium
| | - Ingmar Nopens
- BIOMATH, Dept. of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Winnie Dejonghe
- Separation and Conversion Technology, Flemish Inst. for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
20
|
Hülsewede D, Tänzler M, Süss P, Mildner A, Menyes U, von Langermann J. Development of an in situ-Product Crystallization (ISPC)-Concept to Shift the Reaction Equilibria of Selected Amine Transaminase-Catalyzed Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800323] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dennis Hülsewede
- Institute of Chemistry; Biocatalysis Group; University of Rostock; Albert-Einstein-Straße 3A 18059 Rostock Germany
| | - Marco Tänzler
- Institute of Chemistry; Biocatalysis Group; University of Rostock; Albert-Einstein-Straße 3A 18059 Rostock Germany
| | - Philipp Süss
- Enzymicals AG; Walther-Rathenau-Straße 49a 17489 Greifswald Germany
| | - Andrea Mildner
- Institute of Chemistry; Biocatalysis Group; University of Rostock; Albert-Einstein-Straße 3A 18059 Rostock Germany
- Institute for Chemical and Thermal Process Engineering; Braunschweig University of Technology; Franz-Liszt-Straße 35a 38106 Braunschweig Germany
| | - Ulf Menyes
- Enzymicals AG; Walther-Rathenau-Straße 49a 17489 Greifswald Germany
| | - Jan von Langermann
- Institute of Chemistry; Biocatalysis Group; University of Rostock; Albert-Einstein-Straße 3A 18059 Rostock Germany
| |
Collapse
|
21
|
Ferrandi EE, Monti D. Amine transaminases in chiral amines synthesis: recent advances and challenges. World J Microbiol Biotechnol 2017; 34:13. [PMID: 29255954 DOI: 10.1007/s11274-017-2395-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
Transaminases, which catalyze the stereoselective transfer of an amino group between an amino donor and a prochiral ketone substrate, are interesting biocatalytic tools for the generation of optically pure chiral amines. In particular, amine transaminases (ATAs) are of industrial interest because they are capable of performing reductive amination reactions using a broad range of amine donors and acceptors. The most remarkable example of ATAs industrial application is in the production process of the anti-hyperglycaemic drug sitagliptin (Januvia®/Janumet®), which generated around 6 billion U.S. dollars of revenue to Merck in 2016. In this review, an update about the availability of microbial ATAs, discovered by both screening and database-mining approaches, or obtained by protein engineering of wild-type enzymes, will be provided. Current challenges in ATAs application and possible solutions will be also discussed. In particular, innovative biocatalytic process strategies aimed at the improvement of ATAs performances in chiral amines synthesis, e.g., using in situ product removal process strategies or flow reactors, will be presented. The progress in the industrial exploitation of these enzymes will be highlighted by selected examples of large-scale ATA-catalyzed processes.
Collapse
Affiliation(s)
- Erica E Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131, Milan, Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131, Milan, Italy.
| |
Collapse
|
22
|
Slabu I, Galman JL, Lloyd RC, Turner NJ. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02686] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Iustina Slabu
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - James L. Galman
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Richard C. Lloyd
- Dr.
Reddy’s Laboratories, Chirotech Technology Centre, CB4 0PE Cambridge, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| |
Collapse
|
23
|
Chiral Separation in Preparative Scale: A Brief Overview of Membranes as Tools for Enantiomeric Separation. Symmetry (Basel) 2017. [DOI: 10.3390/sym9100206] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
24
|
Červeňanský I, Mihaľ M, Markoš J. Potential application of perfusion and pertraction for in situ product removal in biocatalytic 2-phenylethanol production. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.03.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
|
26
|
Asymmetric synthesis of chiral amine in organic solvent and in-situ product recovery for process intensification: A case study. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
|
28
|
Heintz S, Börner T, Ringborg RH, Rehn G, Grey C, Nordblad M, Krühne U, Gernaey KV, Adlercreutz P, Woodley JM. Development of in situ product removal strategies in biocatalysis applying scaled-down unit operations. Biotechnol Bioeng 2016; 114:600-609. [PMID: 27668843 DOI: 10.1002/bit.26191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 01/25/2023]
Abstract
An experimental platform based on scaled-down unit operations combined in a plug-and-play manner enables easy and highly flexible testing of advanced biocatalytic process options such as in situ product removal (ISPR) process strategies. In such a platform, it is possible to compartmentalize different process steps while operating it as a combined system, giving the possibility to test and characterize the performance of novel process concepts and biocatalysts with minimal influence of inhibitory products. Here the capabilities of performing process development by applying scaled-down unit operations are highlighted through a case study investigating the asymmetric synthesis of 1-methyl-3-phenylpropylamine (MPPA) using ω-transaminase, an enzyme in the sub-family of amino transferases (ATAs). An on-line HPLC system was applied to avoid manual sample handling and to semi-automatically characterize ω-transaminases in a scaled-down packed-bed reactor (PBR) module, showing MPPA as a strong inhibitor. To overcome the inhibition, a two-step liquid-liquid extraction (LLE) ISPR concept was tested using scaled-down unit operations combined in a plug-and-play manner. Through the tested ISPR concept, it was possible to continuously feed the main substrate benzylacetone (BA) and extract the main product MPPA throughout the reaction, thereby overcoming the challenges of low substrate solubility and product inhibition. The tested ISPR concept achieved a product concentration of 26.5 gMPPA · L-1 , a purity up to 70% gMPPA · gtot-1 and a recovery in the range of 80% mol · mol-1 of MPPA in 20 h, with the possibility to increase the concentration, purity, and recovery further. Biotechnol. Bioeng. 2017;114: 600-609. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Søren Heintz
- Department of Chemical and Biochemical Engineering, CAPEC-PROCESS Research Center, The Technical University of Denmark (DTU), Building 229, Lyngby 2800 Kgs., Denmark
| | - Tim Börner
- Department of Biotechnology, Lund University, Lund, Sweden
| | - Rolf H Ringborg
- Department of Chemical and Biochemical Engineering, CAPEC-PROCESS Research Center, The Technical University of Denmark (DTU), Building 229, Lyngby 2800 Kgs., Denmark
| | - Gustav Rehn
- Department of Chemical and Biochemical Engineering, CAPEC-PROCESS Research Center, The Technical University of Denmark (DTU), Building 229, Lyngby 2800 Kgs., Denmark
| | - Carl Grey
- Department of Biotechnology, Lund University, Lund, Sweden
| | - Mathias Nordblad
- Department of Chemical and Biochemical Engineering, CAPEC-PROCESS Research Center, The Technical University of Denmark (DTU), Building 229, Lyngby 2800 Kgs., Denmark
| | - Ulrich Krühne
- Department of Chemical and Biochemical Engineering, CAPEC-PROCESS Research Center, The Technical University of Denmark (DTU), Building 229, Lyngby 2800 Kgs., Denmark
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, CAPEC-PROCESS Research Center, The Technical University of Denmark (DTU), Building 229, Lyngby 2800 Kgs., Denmark
| | | | - John M Woodley
- Department of Chemical and Biochemical Engineering, CAPEC-PROCESS Research Center, The Technical University of Denmark (DTU), Building 229, Lyngby 2800 Kgs., Denmark
| |
Collapse
|
29
|
Dold SM, Cai L, Rudat J. One-step purification and immobilization of a β-amino acid aminotransferase using magnetic (M-PVA) beads. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sarah-Marie Dold
- Institute of Process Engineering in Life Sciences Section II: Technical Biology; , Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Liyin Cai
- Institute of Process Engineering in Life Sciences Section II: Technical Biology; , Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Jens Rudat
- Institute of Process Engineering in Life Sciences Section II: Technical Biology; , Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
30
|
An improved process for biocatalytic asymmetric amine synthesis by in situ product removal using a supported liquid membrane. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Kisukuri CM, Andrade LH. Production of chiral compounds using immobilized cells as a source of biocatalysts. Org Biomol Chem 2015; 13:10086-107. [PMID: 26366634 DOI: 10.1039/c5ob01677k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of chiral compounds in all fields of technology and life sciences is shown. Small chiral molecules are mainly used as building blocks in the synthesis of more complex and functionalized compounds. Nature creates and imposes stereoselectivity by means of enzymes, which are highly efficient biocatalysts. The use of whole cells as a biocatalyst source is a promising strategy for avoiding some drawbacks associated with the use of pure enzymes, especially their high cost. The use of free cells is also challenging, since cell lysis can also occur under the reaction conditions. However, cell immobilization has been employed to increase the catalytic potential of enzymes by extending their lifetimes in organic solvents and non-natural environments. Besides, immobilized cells maintain their biocatalytic performance for several reaction cycles. Considering the above-mentioned arguments, several authors have synthesized different classes of chiral compounds such as alcohols, amines, carboxylic acids, amides, sulfides and lactones by means of immobilized cells. Our aim was to discuss the main aspects of the production of chiral compounds using immobilized cells as a source of biocatalysts, except under fermentation conditions.
Collapse
Affiliation(s)
- Camila M Kisukuri
- Universidade de São Paulo, Instituto de Química, Av. Prof. Lineu Prestes 748, SP 05508-900, São Paulo, Brazil.
| | | |
Collapse
|
32
|
Abu R, Woodley JM. Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions. ChemCatChem 2015. [DOI: 10.1002/cctc.201500603] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Rohana Abu
- Department of Chemical and Biochemical Engineering; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
- Department of Chemical and Biochemical Engineering; Universiti Malaysia Pahang; Faculty of Chemical&Natural Resources Engineering, Lebuhraya Tun Razak; 26300 Gambang, Kuantan Malaysia
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| |
Collapse
|
33
|
Börner T, Rehn G, Grey C, Adlercreutz P. A Process Concept for High-Purity Production of Amines by Transaminase-Catalyzed Asymmetric Synthesis: Combining Enzyme Cascade and Membrane-Assisted ISPR. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tim Börner
- Department
of Biotechnology, Lund University, P.O. Box, 221 00 Lund, Sweden
| | - Gustav Rehn
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Carl Grey
- Department
of Biotechnology, Lund University, P.O. Box, 221 00 Lund, Sweden
| | | |
Collapse
|
34
|
Tufvesson P, Nordblad M, Krühne U, Schürmann M, Vogel A, Wohlgemuth R, Woodley JM. Economic Considerations for Selecting an Amine Donor in Biocatalytic Transamination. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pär Tufvesson
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Mathias Nordblad
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ulrich Krühne
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|