1
|
Sun J, Yu X, Tang G, Chen M, Zheng Y, Hu Y, Li Q, Li X, Li N, Li Z, Li Y, Lu N, Tan W, Yang Y, Lyu X, Zhao G, Wang H, Dai L, Zhao GP, Ai L, Zhao W. A CRISPR-SpCas9M-reporting system for efficient and rapid genome editing in Caulobacter crescentus. Nucleic Acids Res 2025; 53:gkaf353. [PMID: 40298107 PMCID: PMC12038397 DOI: 10.1093/nar/gkaf353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
As members of the α-proteobacteria group, Caulobacter crescentus and its relatives are wildly studied for their unique asymmetric life cycle and versatile applications in industry, agriculture, and biomedicine. However, genetic manipulation in these bacteria remains challenging, typically requiring time-consuming and labor-intensive procedures. Here, we report a practical CRISPR-SpCas9M-reporting system that overcomes the limitations of SpCas9 expression and CRISPR escape, enabling efficient, markerless, and rapid genome editing in C. crescentus. Two genes encoding for a pair of scaffold proteins were knocked out individually or iteratively, demonstrating their direct involvements in cellular signaling asymmetry. Key components, including the Cas protein, Cas inducer, sgRNA, homologous arms, and reporter, were systematically analyzed and optimized in the system, finally achieving the apparent editing efficiency up to 80% in C. crescentus. Furthermore, we applied the CRISPR-SpCas9M-reporting system to two C. crescentus relatives, Agrobacterium fabrum and Sinorhizobium meliloti, establishing it as an efficient and general editing strategy. We anticipate that this system could be applied to other CRISPR-Cas-recalcitrant organisms, accelerating both basic and applied research in α-proteobacteria.
Collapse
Affiliation(s)
- Jingxian Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xin Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guiyue Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengqing Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yixin Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucan Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmei Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyang Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ningning Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhongyue Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ning Lu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujiao Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoye Lyu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guohong Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Lab of Genetic Engineering and Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lianzhong Ai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Liu X, Dong H, Wang H, Ren X, Yang X, Li T, Fu G, Xia M, Fang H, Du G, Jin Z, Zhang D. Recent Advances in Genetic Engineering Strategies of Sinorhizobium meliloti. ACS Synth Biol 2024; 13:3497-3506. [PMID: 39481116 PMCID: PMC11574922 DOI: 10.1021/acssynbio.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Sinorhizobium meliloti is a free-living soil Gram-negative bacterium that participates in nitrogen-fixation symbiosis with several legumes. S. meliloti has the potential to be utilized for the production of high-value nutritional compounds, such as vitamin B12. Advances in gene editing tools play a vital role in the development of S. meliloti strains with enhanced characteristics for biotechnological applications. Several novel genetic engineering strategies have emerged in recent years to investigate genetic modifications in S. meliloti. This review provides a comprehensive overview of the mechanism and application of the extensively used Tn5-mediated genetic engineering strategies. Strategies based on homologous recombination and site-specific recombination were also discussed. Subsequently, the development and application of the genetic engineering strategies utilizing various CRISPR/Cas systems in S. meliloti are summarized. This review may stimulate research interest among scientists, foster studies in the application areas of S. meliloti, and serve as a reference for the utilization of genome editing tools for other Rhizobium species.
Collapse
Affiliation(s)
- Xuan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huiying Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinyi Ren
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tingting Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Miaomiao Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
3
|
Wagner M, Döhlemann J, Geisel D, Sobetzko P, Serrania J, Lenz P, Becker A. Engineering a Sinorhizobium meliloti Chassis with Monopartite, Single Replicon Genome Configuration. ACS Synth Biol 2024; 13:2515-2532. [PMID: 39109796 DOI: 10.1021/acssynbio.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.
Collapse
Affiliation(s)
- Marcel Wagner
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Johannes Döhlemann
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - David Geisel
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Patrick Sobetzko
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Peter Lenz
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
4
|
Yang J, Zhang Q, Zhang G, Shang G. Recombineering-Mediated Sinorhizobium meliloti Rm1021 Gene Deletion. Curr Microbiol 2023; 80:76. [PMID: 36650293 DOI: 10.1007/s00284-023-03188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Sinorhizobium meliloti Rm1021 (S. meliloti Rm1021) is a Gram-negative, soil-dwelling α-proteobacterium which serves as a model microorganism for the studies of symbiotic nitrogen fixation. The S. meliloti Rm1021 genome consists of one chromosome and two megaplasmids, pSymA and pSymB. Gene deletion is an essential tool for the elucidation of gene function and generation of mutants with improved properties. However, only two gene deletion methods, counterselectable marker sacB-based and FLP/FRT, Cre/loxP site-specific recombination, have been reported for S. meliloti Rm1021 gene deletion. Both methods require time-consuming and tedious gene cloning and conjugation steps. Herein, a λ Red recombineering-mediated gene deletion strategy is reported. The mutant was obtained via electroporating overlap-extension PCR-generated linear targeting DNA into Red-proficient cells. One gene each from the S. meliloti Rm1021 chromosome, megaplasmid SymA and pSymB was deleted, with deletion efficiency up to 100%. The straightforward and highly efficient recombineering procedure holds the promise to be a general gene manipulation method for S. meliloti Rm1021.
Collapse
Affiliation(s)
- Jun Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qiong Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Guoyi Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Romeo L, Esposito A, Bernacchi A, Colazzo D, Vassallo A, Zaccaroni M, Fani R, Del Duca S. Application of Cloning-Free Genome Engineering to Escherichia coli. Microorganisms 2023; 11:microorganisms11010215. [PMID: 36677507 PMCID: PMC9866961 DOI: 10.3390/microorganisms11010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The propagation of foreign DNA in Escherichia coli is central to molecular biology. Recent advances have dramatically expanded the ability to engineer (bacterial) cells; however, most of these techniques remain time-consuming. The aim of the present work was to explore the possibility to use the cloning-free genome editing (CFGE) approach, proposed by Döhlemann and coworkers (2016), for E. coli genetics, and to deepen the knowledge about the homologous recombination mechanism. The E. coli auxotrophic mutant strains FB182 (hisF892) and FB181 (hisI903) were transformed with the circularized wild-type E. coli (i) hisF gene and hisF gene fragments of decreasing length, and (ii) hisIE gene, respectively. His+ clones were selected based on their ability to grow in the absence of histidine, and their hisF/hisIE gene sequences were characterized. CFGE method allowed the recombination of wild-type his genes (or fragments of them) within the mutated chromosomal copy, with a different recombination frequency based on the fragment length, and the generation of clones with a variable number of in tandem his genes copies. Data obtained pave the way to further evolutionary studies concerning the homologous recombination mechanism and the fate of in tandem duplicated genes.
Collapse
Affiliation(s)
- Lucia Romeo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Bernacchi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Daniele Colazzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Renato Fani
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (R.F.); (S.D.D.)
| | - Sara Del Duca
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (R.F.); (S.D.D.)
| |
Collapse
|
6
|
Li M, Huo YX, Guo S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. BIOLOGY 2022; 11:571. [PMID: 35453770 PMCID: PMC9024924 DOI: 10.3390/biology11040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
Nonmodel microbes with unique and diverse metabolisms have become rising stars in synthetic biology; however, the lack of efficient gene engineering techniques still hinders their development. Recently, the use of base editors has emerged as a versatile method for gene engineering in a wide range of organisms including nonmodel microbes. This method is a fusion of impaired CRISPR/Cas9 nuclease and base deaminase, enabling the precise point mutation at the target without inducing homologous recombination. This review updates the latest advancement of base editors in microbes, including the conclusion of all microbes that have been researched by base editors, the introduction of newly developed base editors, and their applications. We provide a list that comprehensively concludes specific applications of BEs in nonmodel microbes, which play important roles in industrial, agricultural, and clinical fields. We also present some microbes in which BEs have not been fully established, in the hope that they are explored further and so that other microbial species can achieve arbitrary base conversions. The current obstacles facing BEs and solutions are put forward. Lastly, the highly efficient BEs and other developed versions for genome-wide reprogramming of cells are discussed, showing great potential for future engineering of nonmodel microbes.
Collapse
Affiliation(s)
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| |
Collapse
|
7
|
Del Valle I, Fulk EM, Kalvapalle P, Silberg JJ, Masiello CA, Stadler LB. Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. Front Microbiol 2021; 11:618373. [PMID: 33633695 PMCID: PMC7901896 DOI: 10.3389/fmicb.2020.618373] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid diversification of synthetic biology tools holds promise in making some classically hard-to-solve environmental problems tractable. Here we review longstanding problems in the Earth and environmental sciences that could be addressed using engineered microbes as micron-scale sensors (biosensors). Biosensors can offer new perspectives on open questions, including understanding microbial behaviors in heterogeneous matrices like soils, sediments, and wastewater systems, tracking cryptic element cycling in the Earth system, and establishing the dynamics of microbe-microbe, microbe-plant, and microbe-material interactions. Before these new tools can reach their potential, however, a suite of biological parts and microbial chassis appropriate for environmental conditions must be developed by the synthetic biology community. This includes diversifying sensing modules to obtain information relevant to environmental questions, creating output signals that allow dynamic reporting from hard-to-image environmental materials, and tuning these sensors so that they reliably function long enough to be useful for environmental studies. Finally, ethical questions related to the use of synthetic biosensors in environmental applications are discussed.
Collapse
Affiliation(s)
- Ilenne Del Valle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
8
|
Shaw D, Serrano L, Lluch-Senar M. Lox'd in translation: contradictions in the nomenclature surrounding common lox-site mutants and their implications in experiments. MICROBIOLOGY (READING, ENGLAND) 2021; 167:000997. [PMID: 33284099 PMCID: PMC8116776 DOI: 10.1099/mic.0.000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
The Cre-Lox system is a highly versatile and powerful DNA recombinase mechanism, mainly used in genetic engineering to insert or remove desired DNA sequences. It is widely utilized across multiple fields of biology, with applications ranging from plants, to mammals, to microbes. A key feature of this system is its ability to allow recombination between mutant lox sites. Two of the most commonly used mutant sites are named lox66 and lox71, which recombine to create a functionally inactive double mutant lox72 site. However, a large portion of the published literature has incorrectly annotated these mutant lox sites, which in turn can lead to difficulties in replication of methods, design of proper vectors and confusion over the proper nomenclature. Here, we demonstrate common errors in annotations, the impacts they can have on experimental viability, and a standardized naming convention. We also show an example of how this incorrect annotation can induce toxic effects in bacteria that lack optimal DNA repair systems, exemplified by Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Pulmobiotics SL, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| |
Collapse
|
9
|
Zheng Y, Chen L, Zhu Z, Li D, Zhou P. Multigene engineering of medium-chain fatty acid biosynthesis in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. 3 Biotech 2020; 10:340. [PMID: 32714735 DOI: 10.1007/s13205-020-02340-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) are an ideal feedstock for biodiesel and a range of oleochemical products. In this study, different combinations of CnFATB3, CnLPAAT-B and CnKASI from coconut (Cocos nucifera L.) were coexpressed in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. Transgenic lines expressing different combinations of these genes were designated FL (FatB3 + LPAAT-B), FK (FatB3 + KASI) and FLK (FatB3 + LPAAT-B + KASI). The homozygous seeds of transgenic Arabidopsis thaliana expressing high levels of these genes were screened, and their fatty acid composition and lipid contents were determined. Compared with its content in wild-type A. thaliana, the lauric acid (C12:0) content was significantly increased by at least 395%, 134% and 124% in FLK, FL and FK seeds, respectively. Meanwhile, the myristic acid (C14:0) content was significantly increased by at least 383%, 106% and 102% in FL, FLK and FK seeds, respectively, compared to its level in wild-type seeds. Therefore, the FLK plants exhibited the best effects to increase the level of C12:0, and FL expressed the optimal combination of genes to increase the level of 14:0 MCFA.
Collapse
Affiliation(s)
- Yusheng Zheng
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Lizhi Chen
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Zhiyong Zhu
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Dongdong Li
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Peng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
10
|
Dimitriu T, Marchant L, Buckling A, Raymond B. Bacteria from natural populations transfer plasmids mostly towards their kin. Proc Biol Sci 2019; 286:20191110. [PMID: 31238848 PMCID: PMC6599995 DOI: 10.1098/rspb.2019.1110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasmids play a key role in microbial ecology and evolution, yet the determinants of plasmid transfer rates are poorly understood. Particularly, interactions between donor hosts and potential recipients are understudied. Here, we investigate the importance of genetic similarity between naturally co-occurring Escherichia coli isolates in plasmid transfer. We uncover extensive variability, spanning over five orders of magnitude, in the ability of isolates to donate and receive two different plasmids, R1 and RP4. Overall, transfer is strongly biased towards clone-mates, but not correlated to genetic distance when donors and recipients are not clone-mates. Transfer is limited by the presence of a functional restriction-modification system in recipients, suggesting sharing of strain-specific defence systems contributes to bias towards kin. Such restriction of transfer to kin sets the stage for longer-term coevolutionary interactions leading to mutualism between plasmids and bacterial hosts in natural communities.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Lauren Marchant
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Angus Buckling
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Ben Raymond
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| |
Collapse
|
11
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
12
|
Targeted cloning of a large gene cluster from Lecanicillium genome by Cre/ loxP based method. J Microbiol Methods 2018; 150:47-54. [DOI: 10.1016/j.mimet.2018.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022]
|
13
|
diCenzo GC, Finan TM. Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions. Methods Mol Biol 2018; 1716:291-314. [PMID: 29222759 DOI: 10.1007/978-1-4939-7528-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rate at which all genes within a bacterial genome can be identified far exceeds the ability to characterize these genes. To assist in associating genes with cellular functions, a large-scale bacterial genome deletion approach can be employed to rapidly screen tens to thousands of genes for desired phenotypes. Here, we provide a detailed protocol for the generation of deletions of large segments of bacterial genomes that relies on the activity of a site-specific recombinase. In this procedure, two recombinase recognition target sequences are introduced into known positions of a bacterial genome through single cross-over plasmid integration. Subsequent expression of the site-specific recombinase mediates recombination between the two target sequences, resulting in the excision of the intervening region and its loss from the genome. We further illustrate how this deletion system can be readily adapted to function as a large-scale in vivo cloning procedure, in which the region excised from the genome is captured as a replicative plasmid. We next provide a procedure for the metabolic analysis of bacterial large-scale genome deletion mutants using the Biolog Phenotype MicroArray™ system. Finally, a pipeline is described, and a sample Matlab script is provided, for the integration of the obtained data with a draft metabolic reconstruction for the refinement of the reactions and gene-protein-reaction relationships in a metabolic reconstruction.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
14
|
Döhlemann J, Wagner M, Happel C, Carrillo M, Sobetzko P, Erb TJ, Thanbichler M, Becker A. A Family of Single Copy repABC-Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium Sinorhizobium meliloti. ACS Synth Biol 2017; 6:968-984. [PMID: 28264559 PMCID: PMC7610768 DOI: 10.1021/acssynbio.6b00320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
A considerable
share of bacterial species maintains segmented genomes.
Plant symbiotic α-proteobacterial rhizobia contain up to six repABC-type replicons in addition to the primary chromosome.
These low or unit-copy replicons, classified as secondary chromosomes,
chromids, or megaplasmids, are exclusively found in α-proteobacteria.
Replication and faithful partitioning of these replicons to the daughter
cells is mediated by the repABC region. The importance
of α-rhizobial symbiotic nitrogen fixation for sustainable agriculture
and Agrobacterium-mediated plant transformation as
a tool in plant sciences has increasingly moved biological engineering
of these organisms into focus. Plasmids are ideal DNA-carrying vectors
for these engineering efforts. On the basis of repABC regions collected from α-rhizobial secondary replicons, and
origins of replication derived from traditional cloning vectors, we
devised the versatile family of pABC shuttle vectors propagating in Sinorhizobium meliloti, related members of the Rhizobiales, and Escherichia coli. A modular plasmid library
providing the elemental parts for pABC vector assembly was founded.
The standardized design of these vectors involves five basic modules:
(1) repABC cassette, (2) plasmid-derived origin of
replication, (3) RK2/RP4 mobilization site (optional), (4) antibiotic
resistance gene, and (5) multiple cloning site flanked by transcription
terminators. In S. meliloti, pABC vectors showed
high propagation stability and unit-copy number. We demonstrated stable
coexistence of three pABC vectors in addition to the two indigenous
megaplasmids in S. meliloti, suggesting combinability
of multiple compatible pABC plasmids. We further devised an in vivo cloning strategy involving Cre/lox-mediated translocation of large DNA fragments to an autonomously
replicating repABC-based vector, followed by conjugation-mediated
transfer either to compatible rhizobia or E. coli.
Collapse
Affiliation(s)
- Johannes Döhlemann
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Marcel Wagner
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Carina Happel
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Martina Carrillo
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
| | - Tobias J. Erb
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Martin Thanbichler
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
15
|
Serrania J, Johner T, Rupp O, Goesmann A, Becker A. Massive parallel insertion site sequencing of an arrayed Sinorhizobium meliloti signature-tagged mini-Tn 5 transposon mutant library. J Biotechnol 2017; 257:9-12. [PMID: 28235609 DOI: 10.1016/j.jbiotec.2017.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 01/16/2023]
Abstract
Transposon mutagenesis in conjunction with identification of genomic transposon insertion sites is a powerful tool for gene function studies. We have implemented a protocol for parallel determination of transposon insertion sites by Illumina sequencing involving a hierarchical barcoding method that allowed for tracking back insertion sites to individual clones of an arrayed signature-tagged transposon mutant library. This protocol was applied to further characterize a signature-tagged mini-Tn 5 mutant library comprising about 12,000 mutants of the symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti (Pobigaylo et al., 2006; Appl. Environ. Microbiol. 72, 4329-4337). Previously, insertion sites have been determined for 5000 mutants of this library. Combining an adapter-free, inverse PCR method for sequencing library preparation with next generation sequencing, we identified 4473 novel insertion sites, increasing the total number of transposon mutants with known insertion site to 9562. The number of protein-coding genes that were hit at least once by a transposon increased by 1231 to a total number of 3673 disrupted genes, which represents 59% of the predicted protein-coding genes in S. meliloti.
Collapse
Affiliation(s)
- Javier Serrania
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Tobias Johner
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
16
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|