1
|
Tamayo E, Nada B, Hafermann I, Benz JP. Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate. Appl Microbiol Biotechnol 2024; 108:83. [PMID: 38189952 PMCID: PMC10774165 DOI: 10.1007/s00253-023-12907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Basant Nada
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Isabell Hafermann
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Panagopoulos V, Boura K, Dima A, Karabagias IK, Bosnea L, Nigam PS, Kanellaki M, Koutinas AA. Consolidated bioprocessing of lactose into lactic acid and ethanol using non-engineered cell factories. BIORESOURCE TECHNOLOGY 2022; 345:126464. [PMID: 34864183 DOI: 10.1016/j.biortech.2021.126464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is the consolidated bioprocessing of lactose into lactic acid and ethanol using non-engineered Cell Factories (CFs). Therefore, two different types of composite biocatalysts (CF1-CF2) based on Saccharomyces cerevisiae with immobilized microorganism or enzyme on starch gel (SG) were prepared for 5% w/v lactose fermentation. In CF1, S. cerevisiae was covered with SG containing Lactobacillus casei, Lactobacillus bulgaricus, Kluyveromyces marxianus CF1a-c. S. cerevisiae/SG-β-galactosidase (CF1d) was also used for simultaneous saccharification and fermentation (SSF) of lactose. In CF2, S. cerevisiae immobilized on tubular cellulose (TC) was covered with SG containing the aforementioned microorganisms (CF2a-c). The wet CF1d resulted in 96% of the theoretical ethanol yield while the wet CF1b and freeze-dried CF2b resulted in 89% of the theoretical lactic acid yield. The repeated batches using the CF2a-c exhibited better results than using CF1a-c. Subsequently, the freeze-dried CF2 as preservative and more manageable were verified for future exploitation of whey.
Collapse
Affiliation(s)
- Vassilios Panagopoulos
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26504, Greece
| | - Konstantina Boura
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26504, Greece
| | - Agapi Dima
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26504, Greece
| | - Ioannis K Karabagias
- Department of Food Science & Technology, School of Agricultural Sciences, University of Patras, Charilaou Trikoupi 2, 30100 Agrinio, Greece
| | - Loulouda Bosnea
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26504, Greece; Hellenic Agricultural Organization DEMETER, Dairy Research Institute, Katsikas, 45221, Ioannina, Greece
| | - Poonam S Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine Northern Ireland, United Kingdom
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26504, Greece
| | - Athanasios A Koutinas
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26504, Greece.
| |
Collapse
|
3
|
Lu M, Mosleh I, Abbaspourrad A. Engineered Microbial Routes for Human Milk Oligosaccharides Synthesis. ACS Synth Biol 2021; 10:923-938. [PMID: 33909411 DOI: 10.1021/acssynbio.1c00063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human milk oligosaccharides (HMOs) are one of the important ingredients in human milk, which have attracted great interest due to their beneficial effect on the health of newborns. The large-scale production of HMOs has been researched using engineered microbial routes due to the availability, safety, and low cost of host strains. In addition, the development of molecular biology technology and metabolic engineering has promoted the effectiveness of HMOs production. According to current reports, 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'-SL), 6'-sialyllactose (6'-SL), and some fucosylated HMOs with complex structures have been produced via the engineered microbial route, with 2'-FL having been produced the most. However, due to the uncertainty of metabolic patterns, the selection of host strains has certain limitations. Aside from that, the expression of appropriate glycosyltransferase in microbes is key to the synthesis of different HMOs. Therefore, finding a safe and efficient glycosyltransferase has to be addressed when using engineered microbial pathways. In this review, the latest research on the production of HMOs using engineered microbial routes is reported. The selection of host strains and adapting different metabolic pathways helped researchers designing engineered microbial routes that are more conducive to HMOs production.
Collapse
Affiliation(s)
- Mengyao Lu
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| | - Imann Mosleh
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Panagopoulos V, Dima A, Boura K, Bosnea L, Nigam PS, Kanellaki M, Koutinas AA. Cell factory models of non-engineered S. cerevisiae containing lactase in a second layer for lactose fermentation in one batch. Enzyme Microb Technol 2021; 145:109750. [PMID: 33750540 DOI: 10.1016/j.enzmictec.2021.109750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 11/29/2022]
Abstract
The objective of this project was to ferment lactose and whey to ethanol in one-step process. Models of cell factory of non-engineered S.cerevisiae have been proposed to ferment lactose. The cell factory of non-engineered S. cerevisiae/SG-lactase was prepared by the addition, of a starch gel solution containing lactase on non-engineered S. cerevisiae, and freeze drying of it. The 2-layer non engineered S.cerevisiae-TC/SG-lactase factory was prepared by immobilizing S. cerevisiae on the internal layer of tubular cellulose (TC), and the lactase enzyme was contained in the upper layer of starch gel (SG) covering cells of S. cerevisiae. Using such cell factory for the fermentation of lactose, alcohol yield of 23-32 mL/L at lactose conversion of 71-100%. The improvement in alcohol yield by cell factory versus co-immobilization of lactase enzyme and S. cerevisiae on alginates, was found in the range of 28-78%. Likewise, the cell factories are more effective than engineered S. cerevisiae. The fermentation of whey instead of lactose resulted in a significant reduction of the fermentation time. Freeze-dried cell factories led to improved results as compared with non-freeze dried. When lactase was substituted with L. casei, ethanol and lactic acid were produced simultaneously at high concentrations, but in a much longer fermentation time. The cell factories can be considered as models for white biotechnology using lactose containing raw materials. This suggested cell factory model can be applied for other bioconversions using the appropriate enzymes and cells, in the frame of White Biotechnology without genetic modification.
Collapse
Affiliation(s)
- Vassilios Panagopoulos
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Agapi Dima
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Konstantina Boura
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Loulouda Bosnea
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Poonam S Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Athanasios A Koutinas
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
5
|
de Ruijter JC, Igarashi K, Penttilä M. The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:foaa019. [PMID: 32310262 PMCID: PMC7204792 DOI: 10.1093/femsyr/foaa019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Processed lignocellulosic biomass is a source of mixed sugars that can be used for microbial fermentation into fuels or higher value products, like chemicals. Previously, the yeast Saccharomyces cerevisiae was engineered to utilize its cellodextrins through the heterologous expression of sugar transporters together with an intracellular expressed β-glucosidase. In this study, we screened a selection of eight (putative) cellodextrin transporters from different yeast and fungal hosts in order to extend the catalogue of available cellobiose transporters for cellobiose fermentation in S. cerevisiae. We confirmed that several in silico predicted cellodextrin transporters from Aspergillus niger were capable of transporting cellobiose with low affinity. In addition, we found a novel cellobiose transporter from the yeast Lipomyces starkeyi, encoded by the gene Ls120451. This transporter allowed efficient growth on cellobiose, while it also grew on glucose and lactose, but not cellotriose nor cellotetraose. We characterized the transporter more in-depth together with the transporter CdtG from Penicillium oxalicum. CdtG showed to be slightly more efficient in cellobiose consumption than Ls120451 at concentrations below 1.0 g/L. Ls120451 was more efficient in cellobiose consumption at higher concentrations and strains expressing this transporter grew slightly slower, but produced up to 30% more ethanol than CdtG.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| | - Kiyohiko Igarashi
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yajoi, Bunkyo, Tokyo 113–8657, Japan
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| |
Collapse
|
6
|
The Potential Production of the Bioactive Compound Pinene Using Whey Permeate. Processes (Basel) 2020. [DOI: 10.3390/pr8030263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pinene is a secondary plant metabolite that has functional properties as a flavor additive as well as potential cognitive health benefits. Although pinene is present in low concentrations in several plants, it is possible to engineer microorganisms to produce pinene. However, feedstock cost is currently limiting the industrial scale-up of microbial pinene production. One potential solution is to leverage waste streams such as whey permeate as an alternative to expensive feedstocks. Whey permeate is a sterile-filtered dairy effluent that contains 4.5% weight/weight lactose, and it must be processed or disposed of due its high biochemical oxygen demand, often at significant cost to the producer. Approximately 180 million m3 of whey is produced annually in the U.S., and only half of this quantity receives additional processing for the recovery of lactose. Given that organisms such as recombinant Escherichia coli grow on untreated whey permeate, there is an opportunity for dairy producers to microbially produce pinene and reduce the biological oxygen demand of whey permeate via microbial lactose consumption. The process would convert a waste stream into a valuable coproduct. This review examines the current approaches for microbial pinene production, and the suitability of whey permeate as a medium for microbial pinene production.
Collapse
|
7
|
Havukainen S, Valkonen M, Koivuranta K, Landowski CP. Studies on sugar transporter CRT1 reveal new characteristics that are critical for cellulase induction in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:158. [PMID: 32944074 PMCID: PMC7491124 DOI: 10.1186/s13068-020-01797-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Trichoderma reesei is an ascomycete fungus that has a tremendous capability of secreting extracellular proteins, mostly lignocellulose-degrading enzymes. Although many aspects of the biology of this organism have been unfolded, the roles of the many sugar transporters coded in its genome are still a mystery with a few exceptions. One of the most interesting sugar transporters that has thus far been discovered is the cellulose response transporter 1 (CRT1), which has been suggested to be either a sugar transporter or a sensor due to its seemingly important role in cellulase induction. RESULTS Here we show that CRT1 is a high-affinity cellobiose transporter, whose function can be complemented by the expression of other known cellobiose transporters. Expression of two sequence variants of the crt1 gene in Saccharomyces cerevisiae revealed that only the variant listed in the RUT-C30 genome annotation has the capability to transport cellobiose and lactose. When expressed in the Δ crt1 strain, the variant listed in the QM6a genome annotation offers partial complementation of the cellulase induction, while the expression of the RUT-C30 variant or cellobiose transporters from two other fungal species fully restore the cellulase induction. CONCLUSIONS These results add to our knowledge about the fungal metabolism of cellulose-derived oligosaccharides, which have the capability of inducing the cellulase production in many species. They also help us to deepen our understanding of the T. reesei lactose metabolism, which can have important consequences as this sugar is used as the inducer of protein secretion in many industrial processes which employ this species.
Collapse
Affiliation(s)
- Sami Havukainen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150 Espoo, Finland
| | - Mari Valkonen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150 Espoo, Finland
| | - Kari Koivuranta
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150 Espoo, Finland
| | | |
Collapse
|
8
|
Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nat Commun 2019; 10:1356. [PMID: 30902987 PMCID: PMC6430769 DOI: 10.1038/s41467-019-09288-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/21/2019] [Indexed: 01/22/2023] Open
Abstract
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production.
Collapse
|
9
|
Abdel–Gawad SA, Abd El–Aziz HM. Removal of Pharmaceuticals From Aqueous Medium Using Entrapped Activated Carbon in Alginate. AIR, SOIL AND WATER RESEARCH 2019; 12:117862211984876. [DOI: 10.1177/1178622119848761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The adsorption of entrapped activated carbon in alginate polymer (AG–AC) was investigated by measuring the removal of organic compounds. The general concept is that the entrapped activated carbon in alginate polymer could be used as a low–cost adsorbent for ascorbic acid and lactose removal from industrial wastewater. Ascorbic acid and lactose are the most pharmaceutical wastes that can introduce throughout the industrial process and lead to an increase in the amount of chemical oxygen demand (COD) in wastewater. Different ascorbic acid and lactose concentrations were prepared in the laboratory. The efficient removal is affected by external variables (eg, pH, contact time, adsorbent dosage, concentrations, and stirring rate). Percent removal for ascorbic acid and lactose at pH 3 using dose 30 g for 60 minutes with a fixed stirring rate at 100 rpm was about 70% and 50%, respectively. Ascorbic acid and lactose adsorption onto entrapped activated carbon in alginate polymer obey well with Freundlich adsorption isotherm.
Collapse
Affiliation(s)
- Soha A Abdel–Gawad
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
10
|
Mousa AH, Bakry AM, Wang G, Zhang H. Efficacy of Saccharomyces Boulardii Metabolism during Fermentation of Milk Fortified with Wheat Grain Juice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ahmed Hassan Mousa
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- Faculty of Environmental Agricultural Science, Arish University
| | - Amr Mohamed Bakry
- Department of Dairy Science, Faculty of Agriculture, Suez Canal University
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University
- National Engineering Research Center for Functional Food, Jiangnan University
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University
| |
Collapse
|
11
|
Sousa CCD, Gonçalves GTI, Falleiros LNSS. Ethanol Production Using Agroindustrial Residues as Fermentation Substrates byKluyveromyces marxianus. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2018.0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Liu JJ, Kwak S, Pathanibul P, Lee JW, Yu S, Yun EJ, Lim H, Kim KH, Jin YS. Biosynthesis of a Functional Human Milk Oligosaccharide, 2'-Fucosyllactose, and l-Fucose Using Engineered Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:2529-2536. [PMID: 30350568 DOI: 10.1021/acssynbio.8b00134] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
2'-fucosyllactose (2-FL), one of the most abundant human milk oligosaccharides (HMOs), has received much attention due to its health-promoting activities, such as stimulating the growth of beneficial gut microorganisms, inhibiting pathogen infection, and enhancing the host immune system. Consequently, large quantities of 2-FL are on demand for food applications as well as in-depth investigation of its biological properties. Biosynthesis of 2-FL has been attempted primarily in Escherichia coli, which might not be the best option to produce food and cosmetic ingredients due to the presence of endotoxins on the cell surface. In this study, an alternative route to produce 2-FL via a de novo pathway using a food-grade microorganism, Saccharomyces cerevisiae, has been devised. Specifically, heterologous genes, which are necessary to achieve the production of 2-FL from a mixture of glucose and lactose, were introduced into S. cerevisiae. When the lactose transporter (Lac12), de novo GDP-l-fucose pathway (consisting of GDP-d-mannose-4,6-dehydratase (Gmd) and GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase (WcaG)), and α1,2-fucosyltransferase (FucT2) were introduced, the resulting engineered strain (D452L-gwf) produced 0.51 g/L of 2-FL from a batch fermentation. In addition, 0.41 g/L of l-fucose was produced when α-l-fucosidase was additionally expressed in the 2-FL producing strain (D452L-gwf). To our knowledge, this is the first report of 2-FL and l-fucose production in engineered S. cerevisiae via the de novo pathway. This study provides the possibility of producing HMOs by a food-grade microorganism S. cerevisiae and paves the way for more HMO production in the future.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Suryang Kwak
- Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Panchalee Pathanibul
- Department of Food Science and Human Nutrition, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Eun Ju Yun
- Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hayoon Lim
- Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Su Jin
- Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Jayakody LN, Liu JJ, Yun EJ, Turner TL, Oh EJ, Jin YS. Direct conversion of cellulose into ethanol and ethyl-β-d-glucoside via engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2018; 115:2859-2868. [PMID: 30011361 DOI: 10.1002/bit.26799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/02/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Abstract
Simultaneous saccharification and fermentation (SSF) of cellulose via engineered Saccharomyces cerevisiae is a sustainable solution to valorize cellulose into fuels and chemicals. In this study, we demonstrate the feasibility of direct conversion of cellulose into ethanol and a biodegradable surfactant, ethyl-β-d-glucoside, via an engineered yeast strain (i.e., strain EJ2) expressing heterologous cellodextrin transporter (CDT-1) and intracellular β-glucosidase (GH1-1) originating from Neurospora crassa. We identified the formation of ethyl-β-d-glucoside in SSF of cellulose by the EJ2 strain owing to transglycosylation activity of GH1-1. The EJ2 strain coproduced 0.34 ± 0.03 g ethanol/g cellulose and 0.06 ± 0.00 g ethyl-β-d-glucoside/g cellulose at a rate of 0.30 ± 0.02 g·L-1 ·h-1 and 0.09 ± 01 g·L-1 ·h-1 , respectively, during the SSF of Avicel PH-101 cellulose, supplemented only with Celluclast 1.5 L. Herein, we report a possible coproduction of a value-added chemical (alkyl-glucosides) during SSF of cellulose exploiting the transglycosylation activity of GH1-1 in engineered S. cerevisiae. This coproduction could have a substantial effect on the overall technoeconomic feasibility of theSSF of cellulose.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Eun Ju Yun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Timothy Lee Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
14
|
Yu S, Liu JJ, Yun EJ, Kwak S, Kim KH, Jin YS. Production of a human milk oligosaccharide 2'-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:101. [PMID: 29950173 PMCID: PMC6020385 DOI: 10.1186/s12934-018-0947-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 2'-Fucosyllactose (2-FL), one of the most abundant oligosaccharides in human milk, has potential applications in foods due to its health benefits such as the selective promotion of bifidobacterial growth and the inhibition of pathogenic microbial binding to the human gut. Owing to the limited amounts of 2-FL in human milk, alternative microbial production of 2-FL is considered promising. To date, microbial production of 2-FL has been studied mostly in Escherichia coli. In this study, 2-FL was produced alternatively by using a yeast Saccharomyces cerevisiae, which may have advantages over E. coli. RESULTS Fucose and lactose were used as the substrates for the salvage pathway which was constructed with fkp coding for a bifunctional enzyme exhibiting L-fucokinase and guanosine 5'-diphosphate-L-fucose phosphorylase activities, fucT2 coding for α-1,2-fucosyltransferase, and LAC12 coding for lactose permease. Production of 2-FL by the resulting engineered yeast was verified by mass spectrometry. 2-FL titers of 92 and 503 mg/L were achieved from 48-h batch fermentation and 120-h fed-batch fermentation fed with ethanol as a carbon source, respectively. CONCLUSIONS This is the first report on 2-FL production by using yeast S. cerevisiae. These results suggest that S. cerevisiae can be considered as a host engineered for producing 2-FL via the salvage pathway.
Collapse
Affiliation(s)
- Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Suryang Kwak
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
15
|
Turner TL, Kim E, Hwang C, Zhang GC, Liu JJ, Jin YS. Short communication: Conversion of lactose and whey into lactic acid by engineered yeast. J Dairy Sci 2016; 100:124-128. [PMID: 27837988 DOI: 10.3168/jds.2016-11784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022]
Abstract
Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker's yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a β-glucosidase (GH1-1, which also acts as a β-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1-expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast.
Collapse
Affiliation(s)
- Timothy L Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801
| | - Eunbee Kim
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana 61801
| | - ChangHoon Hwang
- Department of Food Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Guo-Chang Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801.
| |
Collapse
|