1
|
Shi J, Zhang X, Lu M, He X, Wan Y, Yu X, Huang Z, Cai M, Yu C. Eco-friendly utilization and microbiological characteristics of coal gangue substrate via functional microbial fermentation. ENVIRONMENTAL RESEARCH 2025; 271:121035. [PMID: 39914706 DOI: 10.1016/j.envres.2025.121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/12/2025]
Abstract
The development of the coal mining industry increased the production of coal gangue that was one of the most common solid wastes in China. In this study, a simple in situ treatment of gangue was developed. Without the addition of exogenous soil, through composting by using Acinetobacter lwoffii XAQ2297 with a small amount of corn stover powder, the gangue was as a substrate for planting alfalfa. Moreover, the proportion of the formulation was optimized. Results showed that compared with the control group, A. lwoffii XAQ2297 could increase the release of humic acid from gangue. The best growth of alfalfa was achieved when the ratio of gangue to corn stover powder was 9:1, which was able to increase the survival rate of alfalfa to more than 50%. The analysis of substrate properties indicated that urease was the main positive influencing factor, sulfate ions were the main negative influencing factors. In the diversity analysis, Bacillus and Herbinix were the main genera that play a positive role, whereas Pseudomonas and Brevundimonas were the genera involving the main negative influence. This study provides a new strategy for gangue matrixification and reduces the cost of gangue utilization.
Collapse
Affiliation(s)
- Junhao Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xiaoyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Mengting Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xingxing He
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yong Wan
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Centre of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
2
|
Pentari C, Mylona EP, Zerva A, Topakas E. Synergistic effects of distinct arabinofuranosidase specificities in lignocellulose degradation by different hemicellulases. Int J Biol Macromol 2025; 302:140575. [PMID: 39900162 DOI: 10.1016/j.ijbiomac.2025.140575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Arabinoxylan is a prevalent hemicellulose type, notably heterogeneous and resistant to biodegradation. Arabinofuranosidases (Abfs) remove arabinofuranosyl decorations of arabinoxylan, thus enabling hydrolysis by xylanases. However, a variety of Abf and xylanase specificities have emerged in recent years, necessitating a deeper understanding of their role in biomass degradation. This work investigates the biochemical features of TtAbf43 from Thermothelomyces thermophila, which specifically removes the O-3-linked arabinofuranose moieties from di-substituted xylopyranoses. The enzyme also exhibited secondary hydrolytic activity on o-nitrophenyl-β-d-xylopyranoside and arabinan. The hydrolysis of pretreated wheat and corn bran substrates was assessed using TtAbf43 and AnAbf51, two enzymes with distinct catalytic specificities. The Abfs enhanced the performance of endo-xylanases TmXyn10 and AnXyn11, promoting the release of xylo-oligomers, while the xylanases, in turn, stimulated arabinose release by the Abfs. Additionally, the Abfs facilitated the endo- and exo-activities of the bifunctional xylobiohydrolase/glucuronoxylanase TtXyn30A for the release of xylobiose and short aldouronic acids from biomass. AnAbf51 also acted in synergy with the acetyl xylan esterase OCE6 and the exo-deacetylase TtCE16B in debranching enzymatically derived oligomers from lignocellulose, whereas TtAbf43 remained unaffected by the esterases. These diverse synergistic relationships among different hemicellulases could assist the development of new enzymatic approaches for efficient biomass valorization.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelia Pinelopi Mylona
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Capetti CCDM, Ontañon O, Navas LE, Campos E, Simister R, Dowle A, Liberato MV, Pellegrini VDOA, Gómez LD, Polikarpov I. Sugarcane bagasse derived xylooligosaccharides produced by an arabinofuranosidase/xylobiohydrolase from Bifidobacterium longum in synergism with xylanases. Carbohydr Polym 2024; 339:122248. [PMID: 38823916 DOI: 10.1016/j.carbpol.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.
Collapse
Affiliation(s)
- Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura E Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, CNAP, University of York, York YO10 5DD, United Kingdom
| | - Adam Dowle
- Technology Facility, Proteomics Laboratory, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marcelo Vizoná Liberato
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | | | - Leonardo D Gómez
- Centre for Novel Agricultural Products, Department of Biology, CNAP, University of York, York YO10 5DD, United Kingdom.
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
4
|
St John FJ, Bynum L, Tauscheck DA, Crooks C. Use of xylosidase 3C from Segatella baroniae to discriminate xylan non-reducing terminus substitution characteristics. BMC Res Notes 2024; 17:175. [PMID: 38915023 PMCID: PMC11197168 DOI: 10.1186/s13104-024-06835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE New characterized carbohydrate-active enzymes are needed for use as tools to discriminate complex carbohydrate structural features. Fungal glycoside hydrolase family 3 (GH3) β-xylosidases have been shown to be useful for the structural elucidation of glucuronic acid (GlcA) and arabinofuranose (Araf) substituted oligoxylosides. A homolog of these GH3 fungal enzymes from the bacterium Segatella baroniae (basonym Prevotella bryantii), Xyl3C, has been previously characterized, but those studies did not address important functional specificity features. In an interest to utilize this enzyme for laboratory methods intended to discriminate the structure of the non-reducing terminus of substituted xylooligosaccharides, we have further characterized this GH3 xylosidase. RESULTS In addition to verification of basic functional characteristics of this xylosidase we have determined its mode of action as it relates to non-reducing end xylose release from GlcA and Araf substituted oligoxylosides. Xyl3C cleaves xylose from the non-reducing terminus of β-1,4-xylan until occurrence of a penultimate substituted xylose. If this substitution is O2 linked, then Xyl3C removes the non-reducing xylose to leave the substituted xylose as the new non-reducing terminus. However, if the substitution is O3 linked, Xyl3C does not hydrolyze, thus leaving the substitution one-xylose (penultimate) from the non-reducing terminus. Hence, Xyl3C enables discrimination between O2 and O3 linked substitutions on the xylose penultimate to the non-reducing end. These findings are contrasted using a homologous enzyme also from S. baroniae, Xyl3B, which is found to yield a penultimate substituted nonreducing terminus regardless of which GlcA or Araf substitution exists.
Collapse
Affiliation(s)
- Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Dr, Madison, WI, 53726, USA.
| | - Loreen Bynum
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Dr, Madison, WI, 53726, USA
| | - Dante A Tauscheck
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Dr, Madison, WI, 53726, USA
| | - Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Dr, Madison, WI, 53726, USA
| |
Collapse
|
5
|
Long L, Lin Q, Wang J, Ding S. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications. World J Microbiol Biotechnol 2024; 40:84. [PMID: 38294733 DOI: 10.1007/s11274-023-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of β-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, China CO-OP, Nanjing, 211111, People's Republic of China
| | - Jing Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
6
|
Wang Y, Qian J, Yan F, Wang Y, Shi T, Zhang Z, Ye C, Huang H. DSEMR: A database for special environment microorganisms resource and associating them with synthetic biological parts. Synth Syst Biotechnol 2023; 8:647-653. [PMID: 37840639 PMCID: PMC10569984 DOI: 10.1016/j.synbio.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Special environmental microorganisms are considered to be of great industrial application value because of their special genotypes, physiological functions and metabolites. The research and development of special environmental microorganisms will certainly bring about some innovations in biotechnology processes and change the face of bioengineering. The Special Environmental Microbial Database (DSEMR) is a comprehensive database that provides information on special environmental microbial resources and correlates them with synthetic biological parts. DSEMR aggregates information on specific environmental microbial genomes, physiological properties, culture media, biological parts, and metabolic pathways, and provides online tool analysis data, including 5268 strains from 620 genera, 31 media, and 42,126 biological parts. In short, DSEMR will become an important resource for the study of microorganisms in special environments and actively promote the development of synthetic biology.
Collapse
Affiliation(s)
- Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Yao T, Deemer DG, Chen MH, Reuhs BL, Hamaker BR, Lindemann SR. Differences in fine arabinoxylan structures govern microbial selection and competition among human gut microbiota. Carbohydr Polym 2023; 316:121039. [PMID: 37321733 DOI: 10.1016/j.carbpol.2023.121039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Dietary fibers are known to modulate microbiome composition, but it is unclear to what extent minor fiber structural differences impact community assembly, microbial division of labor, and organismal metabolic responses. To test the hypothesis that fine linkage variations afford different ecological niches for distinct communities and metabolism, we employed a 7-day in vitro sequential batch fecal fermentation with four fecal inocula and measured responses using an integrated multi-omics approach. Two sorghum arabinoxylans (SAXs) were fermented, with one (RSAX) having slightly more complex branch linkages than the other (WSAX). Although there were minor glycoysl linkage differences, consortia on RSAX retained much higher species diversity (42 members) than on WSAX (18-23 members) with distinct species-level genomes and metabolic outcomes (e.g., higher short chain fatty acid production from RSAX and more lactic acid produced from WSAX). The major SAX-selected members were from genera of Bacteroides and Bifidobacterium and family Lachnospiraceae. Carbohydrate active enzyme (CAZyme) genes in metagenomes revealed broad AX-related hydrolytic potentials among key members; however, CAZyme genes enriched in different consortia displayed various catabolic domain fusions with diverse accessory motifs that differ among the two SAX types. These results suggest that fine polysaccharide structure exerts deterministic selection effect for distinct fermenting consortia.
Collapse
Affiliation(s)
- Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Dane G Deemer
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Ming-Hsu Chen
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; Institute of Food Science and Technology of National Taiwan University. No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Bradley L Reuhs
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Pentari C, Zerva A, Dimarogona M, Topakas E. The xylobiohydrolase activity of a GH30 xylanase on natively acetylated xylan may hold the key for the degradation of recalcitrant xylan. Carbohydr Polym 2023; 305:120527. [PMID: 36737185 DOI: 10.1016/j.carbpol.2022.120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Acetyl substitutions are common on the hemicellulosic structures of lignocellulose, which up until recently were known to inhibit xylanase activity. Emerging data, however, suggest that xylanases are able to accommodate acetyl side-groups within their catalytic site. In the present work, a fungal GH30 xylanase from Thermothelomyces thermophila, namely TtXyn30A, was shown to release acetylated xylobiose when acting on pretreated lignocellulosic substrate. The released disaccharides could be acetylated at the 2-OH, 3-OH or both positions of the non-reducing end xylose, but the existence of the acetylation on the reducing end cannot be excluded. The synergy of TtXyn30A with acetyl esterases indicates that particular subsites within its active site cannot tolerate acetylated xylopyranose residues. Molecular docking showed that acetyl group can be accommodated on the 2- or 3-OH position of the non-reducing end xylose, unlike the reducing-end xylose (subsite -1), where only 3-OH decoration can be accommodated. Such insight into the catalytic activity of TtXyn30A could contribute to a better understanding of its biological role and thus lead to a more sufficient biotechnological utilization.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
9
|
The In Silico Characterization of Monocotyledonous α-l-Arabinofuranosidases on the Example of Maize. Life (Basel) 2023; 13:life13020266. [PMID: 36836625 PMCID: PMC9964162 DOI: 10.3390/life13020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/26/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Plant α-l-arabinofuranosidases remove terminal arabinose from arabinose-containing substrates such as plant cell wall polysaccharides, including arabinoxylans, arabinogalactans, and arabinans. In plants, de-arabinosylation of cell wall polysaccharides accompanies different physiological processes such as fruit ripening and elongation growth. In this report, we address the diversity of plant α-l-arabinofuranosidases of the glycoside hydrolase (GH) family 51 through their phylogenetic analysis as well as their structural features. The CBM4-like domain at N-terminus was found to exist only in GH51 family proteins and was detected in almost 90% of plant sequences. This domain is similar to bacterial CBM4, but due to substitutions of key amino acid residues, it does not appear to be able to bind carbohydrates. Despite isoenzymes of GH51 being abundant, in particular in cereals, almost half of the GH51 proteins in Poales have a mutation of the acid/base residue in the catalytic site, making them potentially inactive. Open-source data on the transcription and translation of GH51 isoforms in maize were analyzed to discuss possible functions of individual isoenzymes. The results of homology modeling and molecular docking showed that the substrate binding site can accurately accommodate terminal arabinofuranose and that arabinoxylan is a more favorable ligand for all maize GH51 enzymes than arabinan.
Collapse
|
10
|
Xie Y, Cai G, Xu M, Han B, Li C, Lu J. The effect of barley infected with xylanase‐producing filamentous fungi on premature yeast flocculation. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Xie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- College of Biology and Food Engineering Jilin Institute of Chemical Technology Jilin 132022 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Jiangnan University Wuxi 214122 China
| | - Guolin Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Jiangnan University Wuxi 214122 China
| | - Minwei Xu
- Department of Plant Sciences North Dakota State University Fargo ND 58108 USA
| | - Bingxin Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
| | - Cun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Jiangnan University Wuxi 214122 China
| |
Collapse
|
11
|
Wang F, Ge X, Yuan Z, Zhang X, Chu X, Lu F, Liu Y. Insights into the mechanism for the high-alkaline activity of a novel GH43 β-xylosidase from Bacillus clausii with a promising application to produce xylose. Bioorg Chem 2022; 126:105887. [DOI: 10.1016/j.bioorg.2022.105887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
|
12
|
Xie Y, Xu M, Han B, Chen T, Cai G, Lu J. Barley Husk Degraded by Fusarium graminearum MH1 Induced Premature Yeast Flocculation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10296-10304. [PMID: 35947430 DOI: 10.1021/acs.jafc.2c03114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Premature yeast flocculation (PYF) is one of the pivotal problems affecting beer flavor and production. PYF is induced by certain non-starch polysaccharides produced by the degradation of malted barley husks upon the growth of contaminated microorganisms, such as Fusarium graminearum. In this research, the formation mechanism of PYF was uncovered by investigating the secretome of F. graminearum MH1 inoculated to the barley husk. The polysaccharide extract of degraded husk was ultrafiltrated into four fractions and characterized by the minimum PYF concentration, molecular mass distribution, monosaccharide composition, and zeta potential. Among the four fractions, the high-molecular-weight polysaccharide fraction had the highest content of uronic acid and the most negative zeta potential, which contributed to the most severe PYF phenomenon. In addition, the PYF yeast showed a more negative zeta potential than the control yeast during the small-scale brewing process. This is aligned to the negatively charged polysaccharides potentially bonded to the surface of yeast cells through the calcium cation in the same fermentation system, which results in rapid flocculation and precipitation. Approximately 12% of the 214 proteins identified in the Fusarium graminearum MH1 secretome were hemicellulases, which substantially interpreted the mechanism of polysaccharides inducing PYF yeast during beer brewing.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Bingxin Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Tianming Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Guolin Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Zerva A, Pentari C, Ferousi C, Nikolaivits E, Karnaouri A, Topakas E. Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 342:126058. [PMID: 34597805 DOI: 10.1016/j.biortech.2021.126058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The field of enzymatic degradation of lignocellulose is actively growing and the recent updates of the last few years indicate that there is still much to learn. The growing number of protein sequences with unknown function in microbial genomes indicates that there is still much to learn on the mechanisms of lignocellulose degradation. In this review, a summary of the progress in the field is presented, including recent discoveries on the nature of the structural polysaccharides, new technologies for the discovery and functional annotation of gene sequences including omics technologies, and the novel lignocellulose-acting enzymes described. Novel enzymatic activities and enzyme families as well as accessory enzymes and their synergistic relationships regarding biomass breakdown are described. Moreover, it is shown that all the valuable knowledge of the enzymatic decomposition of plant biomass polymers can be employed towards the decomposition and upgrading of synthetic polymers, such as plastics.
Collapse
Affiliation(s)
- Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
14
|
Liu Y, Vanderhaeghen S, Feiler W, Angelov A, Baudrexl M, Zverlov V, Liebl W. Characterization of Two α-l-Arabinofuranosidases from Acetivibrio mesophilus and Their Synergistic Effect in Degradation of Arabinose-Containing Substrates. Microorganisms 2021; 9:microorganisms9071467. [PMID: 34361903 PMCID: PMC8307384 DOI: 10.3390/microorganisms9071467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Arabinofuranosidases are important accessory enzymes involved in the degradation of arabinose-containing poly- and oligosaccharides. Two arabinofuranosidases from the recently described novel anaerobic cellulolytic bacterium Acetivibrio mesophilus, designated AmAraf51 and AmAraf43, were heterologously expressed in Escherichia coli and biochemically characterized. AmAraf51 not only removed arabinose moieties at O-3, O-2 and terminal O-5 positions of arabinose-containing oligosaccharides, but also exhibited exo-β-xylosidase side activity. In comparison, AmAraf43 preferably cleaved 1,3-linkages from arabinosyl disubstitutions. AmAraf51 and AmAraf43 demonstrated maximum activity at 70 °C and 57 °C, respectively. Judging from the genetic context and substrate specificity, AmAraf51 may decompose internalized arabino/xylo-oligosaccharides. The embedding of the AmAraf43 gene between genes for several putative xylanolytic enzymes, along with its enzymatic properties suggests that AmAraf43 cleaves arabinose decorations from heteroxylans extracellularly. The enzymes revealed completely converse activity profiles towards arabinan/arabinoxylan: AmAraf51 displayed strong activity on arabinan, while AmAraf43 prefers arabinoxylan. AmAraf51 dramatically stimulated the saccharification level of wheat arabinoxylan (WAX-RS) and sugar beet arabinan when administered along with xylanase M_Xyn10 or arabinanase PpAbn43, respectively. For WAX-RS degradation, the yield of arabinose and xylose was boosted 13.77-fold and 4.96-fold, respectively. The bifunctional activity, thermostability and high catalytic efficiency make AmAraf51 an interesting candidate for industrial applications.
Collapse
|
15
|
Functional and structural characterization of an α-ʟ-arabinofuranosidase from Thermothielavioides terrestris and its exquisite domain-swapped β-propeller fold crystal packing. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140533. [DOI: 10.1016/j.bbapap.2020.140533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/25/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022]
|
16
|
Rettenmaier R, Lo YK, Schmidt L, Munk B, Lagkouvardos I, Neuhaus K, Schwarz W, Liebl W, Zverlov V. A Novel Primer Mixture for GH48 Genes: Quantification and Identification of Truly Cellulolytic Bacteria in Biogas Fermenters. Microorganisms 2020; 8:E1297. [PMID: 32854333 PMCID: PMC7565076 DOI: 10.3390/microorganisms8091297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022] Open
Abstract
Genomic studies revealed the glycoside hydrolases of family 48 (GH48) as a powerful marker for the identification of truly cellulolytic bacteria. Here we report an improved method for detecting cellulolytic bacteria in lab-scale biogas fermenters by using GH48 genes as a molecular marker in DNA and RNA samples. We developed a mixture of primers for the specific amplification of a GH48 gene region in a broad range of bacteria. Additionally, we built a manually curated reference database containing GH48 gene sequences directly linked to the corresponding taxonomic information. Phylogenetic correlation analysis of GH48 to 16S rRNA gene sequences revealed that GH48 gene sequences with 94% identity belong with high confidence to the same genus. Applying this analysis, GH48 amplicon reads revealed that at mesophilic fermenter conditions, 50-99% of the OTUs appear to belong to novel taxa. In contrast, at thermophilic conditions, GH48 gene sequences from the genus Hungateiclostridium dominated with 60-91% relative abundance. The novel primer combinations enabled detection and relative quantification of a wide spectrum of GH48 genes in cellulolytic microbial communities. Deep phylogenetic correlation analysis and a simplified taxonomic identification with the novel database facilitate identification of cellulolytic organisms, including the detection of novel taxa in biogas fermenters.
Collapse
Affiliation(s)
- Regina Rettenmaier
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
| | - Yat Kei Lo
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
| | - Larissa Schmidt
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
| | - Bernhard Munk
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany;
| | - Ilias Lagkouvardos
- ZIEL—Core Facility Microbiome, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (I.L.); (K.N.)
| | - Klaus Neuhaus
- ZIEL—Core Facility Microbiome, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (I.L.); (K.N.)
| | - Wolfgang Schwarz
- Aspratis GmbH. Munich, Germany, Hübnerstr. 11, 80637 Munich, Germany;
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
- Institute of Molecular Genetics of National Research Centre (Kurchatov Institute), Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
17
|
Highly alkali-stable and cellulase-free xylanases from Fusarium sp. 21 and their application in clarification of orange juice. Int J Biol Macromol 2020; 155:572-580. [PMID: 32246958 DOI: 10.1016/j.ijbiomac.2020.03.249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
Xylanase is a versatile tool in the food, fiber biobleaching and biofuel industries. Here, to discover new enzyme with special properties, we cloned three xylanases (Xyn11A, Xyn11B, and Xyn11C) by mining the genome of the xylanase producing fungus strain Fusarium sp. 21, biochemically characterized these enzyme and explored their potential application in juice processing. Both Xyn11A and Xyn11B had an optimal pH of 6.0 and optimal temperature of 45 °C, and retained >90% of the residual activity at pH range of 5-10.5 for 24 h. Xyn11C displayed the maximum activity at pH 5.0 and 45 °C and outstanding pH stability with a minimal loss of activity in the pH range of 2.0-10.5. These three xylanases displayed a strong specificity towards beechwood and corncob xylan, with no activity for other substrates. Xyn11A showed much a higher activity against corncob xylan, while Xyn11B and Xyn11C presented higher activities against beechwood xylan. Xyn11A catalyzed the hydrolysis of beechwood xylan with a Km of 4.25 ± 0.29 mg·mL-1 and kcat/Km of 30.34 ± 0.65 mL·s-1·mg-1, while the hydrolysis of corncob xylan had Km and kcat/Km values of 14.73 ± 1.43 mg·mL-1and 26.48 ± 0.11 mL·s-1·mg-1, respectively. Xyn11B and Xyn11C hydrolyzed beechwood xylan with Km of 9.8 ± 0.69 mg·mL-1, and 4.89 ± 0.38 mg·mL-1and kcat/Km values of 45.07 ± 1.66 mL-1·mg-1, and 26.95 ± 0.67 mL·s-1·mg-1, respectively. Beechwood xylan hydrolysates catalyzed by these three xylanases contained xylobiose, xylotriose and xylooligosaccharides (XOS). The clarification of orange juice was improved when treated with these three xylanases. Conclusively, the desirable pH stability and substrate specificity make Xyn11A, Xyn11B and Xyn11C have high potential for application in fiber biobleaching, wine and fruit juice clarification, as well as probiotic XOS production.
Collapse
|
18
|
Sun J, Xu F, Lu J. A Glycoside Hydrolase Family 62 A-L-Arabinofuranosidase from Trichoderma Reesei and Its Applicable Potential during Mashing. Foods 2020; 9:foods9030356. [PMID: 32204354 PMCID: PMC7143738 DOI: 10.3390/foods9030356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023] Open
Abstract
Arabinoxylan is the second most abundant component in the endosperm cell wall of barley and it has been shown to have negative effects on the viscosity and filtration rate of wort and beer. In this study, a glycoside hydrolase (GH) family 62 α-L-arabinofuranosidase (AFase), termed as TrAbf62A, was purified from the culture filtrate of Trichoderma reesei CICC 41495 by a combined chromatographic method. The preferred substrates of the purified TrAbf62A were soluble, highly substituted arabinoxylan oligosaccharides and polymers, similar to the type found in barley grain. TrAbf62A exhibited activity towards oligomeric and polymeric arabinoxylans, as well as colorimetric arabinose-based substrates, thus meeting the criteria to be classified as a type B AFase. TrAbf62A released mainly arabinose and xylose from soluble wheat arabinoxylan, thus indicating a dual lytic enzyme activity. Supplementation of TrAbf62A during mashing, with a loading of 12 mU/g malt, resulted in a 36.3% decrease in arabinoxylan polymer content, a 5.6% reduction in viscosity, and finally, a 22.1% increase in filtration rate. These results revealed that TrAbf62A has a high potential value in improving lautering performance during mashing.
Collapse
Affiliation(s)
- Junyong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China;
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Feng Xu
- Wuxi Newway Biotechnology Co. Ltd., 100 Konggang Road, Wuxi 214122, Jiangsu, China;
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China;
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Correspondence: ; Tel./Fax: +86-510-85918191
| |
Collapse
|
19
|
Underlin EN, Böhm M, Madsen R. Synthesis of Arabinoxylan Oligosaccharides by Preactivation-Based Iterative Glycosylations. J Org Chem 2019; 84:16036-16054. [PMID: 31762276 DOI: 10.1021/acs.joc.9b02529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A concise synthetic strategy has been developed for assembling densely substituted arabinoxylan oligosaccharides, which are valuable substrates for characterizing hemicellulose-degrading enzymes. The xylan backbone has been prepared by an iterative preactivation-based glycosylation approach with phenyl thioglycosides. The preactivation has been performed with in situ generated p-nitrobenzenesulfenyl triflate prior to addition of the acceptor. The glycosylation temperature was shown to have an important impact on the yield of the coupling. The arabinose substituents have been introduced in one high-yielding glycosylation with an N-phenyl trifluoroacetimidate donor. The strategy has been successfully employed for the synthesis of three heptasaccharides in seven steps and overall yields of 24-36% from the corresponding monosaccharide building blocks.
Collapse
Affiliation(s)
- Emilie N Underlin
- Department of Chemistry , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Maximilian Böhm
- Department of Chemistry , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Robert Madsen
- Department of Chemistry , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
20
|
Yang Y, Yang J, Wang R, Liu J, Zhang Y, Liu L, Wang F, Yuan H. Cooperation of hydrolysis modes among xylanases reveals the mechanism of hemicellulose hydrolysis by Penicillium chrysogenum P33. Microb Cell Fact 2019; 18:159. [PMID: 31542050 PMCID: PMC6754857 DOI: 10.1186/s12934-019-1212-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Xylanases randomly cleave the internal β-1,4-glycosidic bonds in the xylan backbone and are grouped into different families in the carbohydrate-active enzyme (CAZy) database. Although multiple xylanases are detected in single strains of many filamentous fungi, no study has been reported on the composition, synergistic effect, and mode of action in a complete set of xylanases secreted by the same microorganism. Results All three xylanases secreted by Penicillium chrysogenum P33 were expressed and characterized. The enzymes Xyl1 and Xyl3 belong to the GH10 family and Xyl3 contains a CBM1 domain at its C-terminal, whereas Xyl2 belongs to the GH11 family. The optimal temperature/pH values were 35 °C/6.0, 50 °C/5.0 and 55 °C/6.0 for Xyl1, Xyl2, and Xyl3, respectively. The three xylanases exhibited synergistic effects, with the maximum synergy observed between Xyl3 and Xyl2, which are from different families. The synergy between xylanases could also improve the hydrolysis of cellulase (C), with the maximum amount of reducing sugars (5.68 mg/mL) observed using the combination of C + Xyl2 + Xyl3. Although the enzymatic activity of Xyl1 toward xylan was low, it was shown to be capable of hydrolyzing xylooligosaccharides into xylose. Xyl2 was shown to hydrolyze xylan to long-chain xylooligosaccharides, whereas Xyl3 hydrolyzed xylan to xylooligosaccharides with a lower degree of polymerization. Conclusions Synergistic effect exists among different xylanases, and it was higher between xylanases from different families. The cooperation of hydrolysis modes comprised the primary mechanism for the observed synergy between different xylanases. This study demonstrated, for the first time, that the hydrolysates of GH11 xylanases can be further hydrolyzed by GH10 xylanases, but not vice versa.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruonan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiawen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fengqin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Mroueh M, Aruanno M, Borne R, de Philip P, Fierobe HP, Tardif C, Pagès S. The xyl- doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-α-l-arabinofuranosidases with complementary modes of action. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:144. [PMID: 31198441 PMCID: PMC6556953 DOI: 10.1186/s13068-019-1483-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The α-l-arabinofuranosidases (α-l-ABFs) are exoenzymes involved in the hydrolysis of α-l-arabinosyl linkages in plant cell wall polysaccharides. They play a crucial role in the degradation of arabinoxylan and arabinan and they are used in many biotechnological applications. Analysis of the genome of R. cellulolyticum showed that putative cellulosomal α-l-ABFs are exclusively encoded by the xyl-doc gene cluster, a large 32-kb gene cluster. Indeed, among the 14 Xyl-Doc enzymes encoded by this gene cluster, 6 are predicted to be α-l-ABFs belonging to the CAZyme families GH43 and GH62. RESULTS The biochemical characterization of these six Xyl-Doc enzymes revealed that four of them are α-l-ABFs. GH4316-1229 (RcAbf43A) which belongs to the subfamily 16 of the GH43, encoded by the gene at locus Ccel_1229, has a low specific activity on natural substrates and can cleave off arabinose decorations located at arabinoxylan chain extremities. GH4310-1233 (RcAbf43Ad2,3), the product of the gene at locus Ccel_1233, belonging to subfamily 10 of the GH43, can convert the double arabinose decorations present on arabinoxylan into single O2- or O3-linked decorations with high velocity (k cat = 16.6 ± 0.6 s-1). This enzyme acts in synergy with GH62-1234 (RcAbf62Am2,3), the product of the gene at locus Ccel_1234, a GH62 α-l-ABF which hydrolyzes α-(1 → 3) or α-(1 → 2)-arabinosyl linkages present on polysaccharides and arabinoxylooligosaccharides monodecorated. Finally, a bifunctional enzyme, GH62-CE6-1240 (RcAbf62Bm2,3Axe6), encoded by the gene at locus Ccel_1240, which contains a GH62-α-l-ABF module and a carbohydrate esterase (CE6) module, catalyzes deacylation of plant cell wall polymers and cleavage of arabinosyl mono-substitutions. These enzymes are also active on arabinan, a component of the type I rhamnogalacturonan, showing their involvement in pectin degradation. CONCLUSION Arabinofuranosyl decorations on arabinoxylan and pectin strongly inhibit the action of xylan-degrading enzymes and pectinases. α-l-ABFs encoded by the xyl-doc gene cluster of R. cellulolyticum can remove all the decorations present in the backbone of arabinoxylan and arabinan, act synergistically, and, thus, play a crucial role in the degradation of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Mohamed Mroueh
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Marion Aruanno
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Romain Borne
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Pascale de Philip
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Henri-Pierre Fierobe
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Chantal Tardif
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Sandrine Pagès
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
22
|
Mahmood MS, Rasul F, Saleem M, Afroz A, Malik MF, Ashraf NM, Rashid U, Naz S, Zeeshan N. Characterization of recombinant endo-1,4-β-xylanase of Bacillus halodurans C-125 and rational identification of hot spot amino acid residues responsible for enhancing thermostability by an in-silico approach. Mol Biol Rep 2019; 46:3651-3662. [PMID: 31079316 DOI: 10.1007/s11033-019-04751-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Increased demand of enzymes for industrial use has led the scientists towards protein engineering techniques. In different protein engineering strategies, rational approach has emerged as the most efficient method utilizing bioinformatics tools to produce enzymes with desired reaction kinetics; physiochemical (temperature, pH, half life, etc) and biological (selectivity, specificity, etc.) characteristics. Xylanase is one of the widely used enzymes in paper and food industry to degrade xylan component present in plant pulp. In this study endo 1,4-β-xylanase (Xyl-11A) from Bacillus halodurans C-125 was cloned in pET-22b (+) vector and expressed in Escherichia coli BL21 (DE3) expression strain. The enzyme had Michaelis constant Km of 1.32 mg ml-1 birchwoodxylan (soluble form) and maximum reaction velocity (Vmax) 73.53 mmol min-1 mg-1 with an optimum temperature of 75 °C and pH 9.0. The thermostability analysis showed that enzyme retained more than 80% of its residual activity when incubated at 75 °C for 2 h. In addition, to increase Xyl-11A thermostability, an in-silico analysis was performedto identify the hot spot amino acid residues. Consensus-based amino acid substitution was applied to evaluate multiple sequence alignment of homologs and identified 20 amino acids positions by following Jensen-Shnnon Divergence method. 3D models of 20 selected mutants were analyzed for conformational transition in protein structures by using NMSim server. Two selected mutants T6K and I17M of Xyl-11A retained 40, 60% residual activity respectively, at 85 °C for 120 min as compared to wild type enzyme which retained 37% initial activity under same conditions, confirming the enhanced thermostability of mutants. The present study showed a good approach for the identification of promising amino acid residues responsible for enhancing the thermostability of enzymes of industrial importance.
Collapse
Affiliation(s)
- Malik Siddique Mahmood
- Institute of Biochemistry and Biotechnology, University of the Punjab, P. O Box No, 54590, Lahore, Pakistan
| | - Faiz Rasul
- Department of Biochemistry and Molecular Biology, University of Science and Technology, Hefei, China
| | - Mahjabeen Saleem
- Institute of Biochemistry and Biotechnology, University of the Punjab, P. O Box No, 54590, Lahore, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan
| | - Muhammad Faheem Malik
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan
| | - Naeem Mehmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan
| | - Umar Rashid
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan
| | - Shumaila Naz
- Department of Biosciences, University of Gujrat, Gujrat, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, P. O Box No. 50700, Gujrat, Pakistan.
| |
Collapse
|
23
|
Atalah J, Cáceres-Moreno P, Espina G, Blamey JM. Thermophiles and the applications of their enzymes as new biocatalysts. BIORESOURCE TECHNOLOGY 2019; 280:478-488. [PMID: 30826176 DOI: 10.1016/j.biortech.2019.02.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/20/2023]
Abstract
Ecological and efficient alternatives to industrial processes have sparked interest for using microorganisms and enzymes as biocatalysts. One of the difficulties is finding candidates capable of resisting the harsh conditions in which industrial processes usually take place. Extremophiles, microorganisms naturally found in "extreme" ecological niches, produce robust enzymes for bioprocesses and product development. Thermophiles like Geobacillus, Alyciclobacillus, Anoxybacillus, Pyrococcus and Thermoccocus are some of the extremophiles containing enzymes showing special promise for biocatalysis. Glutamate dehydrogenase used in food processes, laccases and xylanases in pulp and paper processes, nitrilases and transaminases for pharmaceutical drug synthesis and lipases present in detergents, are examples of the increasing use of enzymes for biocatalytic synthesis from thermophilic microorganisms. Some of these enzymes from thermophiles have been expressed as recombinant enzymes and are already in the market. Here we will review recent discoveries of thermophilic enzymes and their current and potential applications in industry.
Collapse
Affiliation(s)
- Joaquín Atalah
- Fundación Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile
| | | | - Giannina Espina
- Fundación Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile
| | - Jenny M Blamey
- Fundación Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
24
|
Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A. Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. BIORESOURCE TECHNOLOGY 2019; 277:195-203. [PMID: 30679061 DOI: 10.1016/j.biortech.2019.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500 Million. The genome wide analysis of thermophilic fungi clearly shows the presence of elaborate genetic information coding for multiple xylanases primarily coding for GH10, GH11 in addition to GH7 and GH30 xylanases. The transcriptomics and proteome profiling has given insight into the differential expression of these xylanases in some of the thermophilic fungi. Bioprospecting has resulted in identification of novel thermophilic xylanases that have been endorsed by the industrial houses for heterologous over- expression and formulations. The future use of xylanases is expected to increase exponentially for their role in biorefineries. The discovery of new and improvement of existing xylanases using molecular tools such as directed evolution is expected to be the mainstay to meet increasing demand of thermostable xylanases.
Collapse
Affiliation(s)
- B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India.
| |
Collapse
|
25
|
A novel β-xylosidase from Anoxybacillus sp. 3M towards an improved agro-industrial residues saccharification. Int J Biol Macromol 2019; 122:1224-1234. [DOI: 10.1016/j.ijbiomac.2018.09.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022]
|
26
|
Herlet J, Schwarz WH, Zverlov VV, Liebl W, Kornberger P. Addition of β-galactosidase boosts the xyloglucan degradation capability of endoglucanase Cel9D from Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:238. [PMID: 30202433 PMCID: PMC6122707 DOI: 10.1186/s13068-018-1242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Increasing the efficiency of enzymatic biomass degradation is crucial for a more economically feasible conversion of abundantly available plant feedstock. Synergistic effects between the enzymes deployed in the hydrolysis of various hemicelluloses have been demonstrated, which can reduce process costs by lowering the amount of enzyme required for the reaction. Xyloglucan is the only major hemicellulose for which no such effects have been described yet. RESULTS We report the beneficial combination of two enzymes for the degradation of the hemicellulose xyloglucan. The addition of β-galactosidase Bga2B from Clostridium stercorarium to an in vitro hydrolysis reaction of a model xyloglucan substrate increased the enzymatic efficiency of endoglucanase Cel9D from Clostridium thermocellum to up to 22-fold. Furthermore, the total amount of enzyme required for high hydrolysis yields was lowered by nearly 80%. Increased yields were also observed when using a natural complex substrate-tamarind kernel powder. CONCLUSION The findings of this study may improve the valorization of feedstocks containing high-xyloglucan amounts. The combination of the endoglucanase Cel9D and the β-galactosidase Bga2B can be used to efficiently produce the heptasaccharide XXXG. The exploitation of one specific oligosaccharide may open up possibilities for the use as a prebiotic or platform chemical in additional reactions.
Collapse
Affiliation(s)
- Jonathan Herlet
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Wolfgang H. Schwarz
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Petra Kornberger
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
27
|
Broeker J, Mechelke M, Baudrexl M, Mennerich D, Hornburg D, Mann M, Schwarz WH, Liebl W, Zverlov VV. The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:229. [PMID: 30159029 PMCID: PMC6106730 DOI: 10.1186/s13068-018-1228-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND The bioconversion of lignocellulosic biomass in various industrial processes, such as the production of biofuels, requires the degradation of hemicellulose. Clostridium stercorarium is a thermophilic bacterium, well known for its outstanding hemicellulose-degrading capability. Its genome comprises about 50 genes for partially still uncharacterised thermostable hemicellulolytic enzymes. These are promising candidates for industrial applications. RESULTS To reveal the hemicellulose-degrading potential of 50 glycoside hydrolases, they were recombinantly produced and characterised. 46 of them were identified in the secretome of C. stercorarium cultivated on cellobiose. Xylanases Xyn11A, Xyn10B, Xyn10C, and cellulase Cel9Z were among the most abundant proteins. The secretome of C. stercorarium was active on xylan, β-glucan, xyloglucan, galactan, and glucomannan. In addition, the recombinant enzymes hydrolysed arabinan, mannan, and galactomannan. 20 enzymes are newly described, degrading xylan, galactan, arabinan, mannan, and aryl-glycosides of β-d-xylose, β-d-glucose, β-d-galactose, α-l-arabinofuranose, α-l-rhamnose, β-d-glucuronic acid, and N-acetyl-β-d-glucosamine. The activities of three enzymes with non-classified glycoside hydrolase (GH) family modules were determined. Xylanase Xyn105F and β-d-xylosidase Bxl31D showed activities not described so far for their GH families. 11 of the 13 polysaccharide-degrading enzymes were most active at pH 5.0 to pH 6.5 and at temperatures of 57-76 °C. Investigation of the substrate and product specificity of arabinoxylan-degrading enzymes revealed that only the GH10 xylanases were able to degrade arabinoxylooligosaccharides. While Xyn10C was inhibited by α-(1,2)-arabinosylations, Xyn10D showed a degradation pattern different to Xyn10B and Xyn10C. Xyn11A released longer degradation products than Xyn10B. Both tested arabinose-releasing enzymes, Arf51B and Axh43A, were able to hydrolyse single- as well as double-arabinosylated xylooligosaccharides. CONCLUSIONS The obtained results lead to a better understanding of the hemicellulose-degrading capacity of C. stercorarium and its involved enzyme systems. Despite similar average activities measured by depolymerisation tests, a closer look revealed distinctive differences in the activities and specificities within an enzyme class. This may lead to synergistic effects and influence the enzyme choice for biotechnological applications. The newly characterised glycoside hydrolases can now serve as components of an enzyme platform for industrial applications in order to reconstitute synthetic enzyme systems for complete and optimised degradation of defined polysaccharides and hemicellulose.
Collapse
Affiliation(s)
- Jannis Broeker
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Matthias Mechelke
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Melanie Baudrexl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Denise Mennerich
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Daniel Hornburg
- Present Address: School of Medicine, Stanford University, Stanford, CA 94305 USA
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang H. Schwarz
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Wolfgang Liebl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| |
Collapse
|
28
|
Mechelke M, Herlet J, Benz JP, Schwarz WH, Zverlov VV, Liebl W, Kornberger P. HPAEC-PAD for oligosaccharide analysis—novel insights into analyte sensitivity and response stability. Anal Bioanal Chem 2017; 409:7169-7181. [DOI: 10.1007/s00216-017-0678-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023]
|
29
|
Herlet J, Kornberger P, Roessler B, Glanz J, Schwarz WH, Liebl W, Zverlov VV. A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:234. [PMID: 29046720 PMCID: PMC5637330 DOI: 10.1186/s13068-017-0923-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Glycoside hydrolases are important for various industrial and scientific applications. Determination of their temperature as well as pH optima and range is crucial to evaluate whether an enzyme is suitable for application in a biotechnological process. These basic characteristics of enzymes are generally determined by two separate measurements. However, these lead to a two-dimensional assessment of the pH range at one temperature (and vice versa) and do not allow prediction of the relative enzymatic performance at any pH/temperature combination of interest. In this work, we demonstrate a new method that is based on experimental data and visualizes the relationship among pH, temperature, and activity at a glance in a three-dimensional contour plot. RESULTS In this study, we present a method to determine the relative activity of an enzyme at 96 different combinations of pH and temperature in parallel. For this purpose, we used a gradient PCR cycler and a citrate-phosphate-based buffer system in microtiter plates. The approach was successfully tested with various substrates and diverse assays for glycoside hydrolases. Furthermore, its applicability was demonstrated for single enzymes using the endoglucanase Cel8A from Clostridium thermocellum as well as the commercially available complex enzyme mixture Celluclast®. Thereby, we developed a fast and adaptable method to determine simultaneously both pH and temperature ranges of enzymes over a wide range of conditions, an easy transformation of the experimental data into a contour plot for visualization, and the necessary controls. With our method, the suitability of an enzyme or enzyme mixture for any chosen combination of temperature and pH can easily be assessed at a glance. CONCLUSIONS We propose a method that offers significant advantages over commonly used methods to determine the pH and temperature ranges of enzymes. The overall relationship among pH, temperature, and activity is visualized. Our method could be applied to evaluate exactly what conditions have to be met for optimal utilization of an enzyme or enzyme mixture for both lab-scale and industrial processes. Adaptation to other enzymes, including proteases, should be possible and the method may also lead to a platform for additional applications, such as inactivation kinetics analysis.
Collapse
Affiliation(s)
- J. Herlet
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - P. Kornberger
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - B. Roessler
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - J. Glanz
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - W. H. Schwarz
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - W. Liebl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - V. V. Zverlov
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|