1
|
Aoki J, Koshikawa R, Asayama M. Recent progress in the cyanobacterial products and applications of phycocyanins. World J Microbiol Biotechnol 2025; 41:84. [PMID: 40011288 DOI: 10.1007/s11274-025-04297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Recent developments in the research on cyanobacterial products have drawn increasing attention, especially in the production and application of phycocyanin, which has shown great potential in various fields. Cyanobacteria are photosynthetic prokaryotes that live on Earth and are the ancestors of plant chloroplasts. They have a compact genome size compared to other eukaryotic photosynthesizing microorganisms; some species are genetically engineered and have high growth potential in indoor culture, and some strainscan maintain high growth potential even in outdoor culture. Cyanobacteria are valuable because they can selectively and effectively produce and recover useful substances that are poorly produced by other microalgae, although this depends on the algal species. However, the social implementation of biorefineries using cyanobacteria involves issues such as setting up useful products in addition to the culture methods and strains to be used. This review aims to present research trends over the last 20 years on the production of useful substances such as biodegradable plastics, lipids, polysaccharides, and pigment proteins (phycocyanins) from cyanobacteria. Phycocyanin is mainly recovered and purified by filamentous cyanobacteria and has contributed to the research field, especially in the food and beverage industry. Additionally, the production and functions of phycocyanin are summarized to provide a better understanding of these possibilities. Their potential applications as environmentally friendly materials are also described to further contribute to the research field and social implementation.
Collapse
Affiliation(s)
- Jinichi Aoki
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho Fuchu-shi, Tokyo, 183-8509, Japan
| | - Runa Koshikawa
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan.
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, Yong YC. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol 2024; 108:33. [PMID: 38175234 DOI: 10.1007/s00253-023-12821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - YaFei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Tunca B, Kutlar FE, Kas A, Yilmazel YD. Enhanced biohydrogen production from high loads of unpretreated cattle manure by cellulolytic bacterium Caldicellulosiruptor bescii at 75 °C. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:401-410. [PMID: 37776811 DOI: 10.1016/j.wasman.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulolytic bacterium capable of fermenting crystalline cellulose identified to date, and it also has a superior ability to degrade plant biomass without any pretreatment. This study is the first to assess the potential of utilizing unpretreated cattle manure (UCM) as a feedstock for hydrogen (H2) production by C. bescii at a concentration range between 2.5-50 g volatile solids (VS)/L. At 50 g VS/L UCM concentrations, H2 production ceased due to inhibition of C. bescii. To alleviate the impacts of inhibition, two strategies were adopted: (i) reduction of H2 build-up in the reactor headspace via gas sparging and (ii) adaptation of C. bescii to UCM via adaptive laboratory evolution (ALE). The former increased H2 yield by 47% compared to the control reactors, where no sparging was applied. The latter increased H2 yield by 142% compared to the control reactors inoculated by the wild type C. bescii. The UCM-adapted C. bescii demonstrated a remarkable H2 yield of 161.3 ± 1.6 mL H2/g VSadded at 15 g VS/L. This yield represents a twofold increase compared to the maximum H2 yield reported in the literature amongst fermentation studies utilizing manure as feed. At 15 g VS/L, around 73% of UCM was solubilized, and the carbon balance indicated that most of the effluent carbon was in the sugar- and acid-form. The remarkable ability of C. bescii to produce H2 from UCM under non-sterile conditions presents a significant potential for sustainable biohydrogen production from renewable feedstocks.
Collapse
Affiliation(s)
- Berivan Tunca
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Feride Ece Kutlar
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Aykut Kas
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
4
|
Gao EB, Wu J, Ye P, Qiu H, Chen H, Fang Z. Rewiring carbon flow in Synechocystis PCC 6803 for a high rate of CO 2-to-ethanol under an atmospheric environment. Front Microbiol 2023; 14:1211004. [PMID: 37323905 PMCID: PMC10265512 DOI: 10.3389/fmicb.2023.1211004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Cyanobacteria are an excellent microbial photosynthetic platform for sustainable carbon dioxide fixation. One bottleneck to limit its application is that the natural carbon flow pathway almost transfers CO2 to glycogen/biomass other than designed biofuels such as ethanol. Here, we used engineered Synechocystis sp. PCC 6803 to explore CO2-to-ethanol potential under atmospheric environment. First, we investigated the effects of two heterologous genes (pyruvate decarboxylase and alcohol dehydrogenase) on ethanol biosynthesis and optimized their promoter. Furthermore, the main carbon flow of the ethanol pathway was strengthened by blocking glycogen storage and pyruvate-to-phosphoenolpyruvate backflow. To recycle carbon atoms that escaped from the tricarboxylic acid cycle, malate was artificially guided back into pyruvate, which also created NADPH balance and promoted acetaldehyde conversion into ethanol. Impressively, we achieved high-rate ethanol production (248 mg/L/day at early 4 days) by fixing atmospheric CO2. Thus, this study exhibits the proof-of-concept that rewiring carbon flow strategies could provide an efficient cyanobacterial platform for sustainable biofuel production from atmospheric CO2.
Collapse
Affiliation(s)
- E-Bin Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junhua Wu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Penglin Ye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiyan Qiu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhen Fang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Liu K, Guo L, Chen X, Liu L, Gao C. Microbial synthesis of glycosaminoglycans and their oligosaccharides. Trends Microbiol 2023; 31:369-383. [PMID: 36517300 DOI: 10.1016/j.tim.2022.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Compared with chemical synthesis and tissue extraction methods, microbial synthesis of glycosaminoglycans (GAGs) is attractive because of the advantages of eco-friendly processes, production safety, and sustainable development. However, boosting the efficiency of microbial cell factories, precisely regulating GAG molecular weights, and rationally controlling the sulfation degree of GAGs remain challenging. To address these issues, various strategies, including genetic, enzymatic, metabolic, and fermentation engineering, have been developed. In this review, we summarize the recent progress in the construction of efficient GAG-producing microbial cell factories, regulation of the molecular weight of GAGs, and modification of GAG chains. Moreover, future studies, remaining challenges, and potential solutions in this field are discussed.
Collapse
Affiliation(s)
- Kaifang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Cheng J, Zhang K, Li J, Hou Y. Using δF IP as a potential biomarker for risk assessment of environmental pollutants in aquatic ecosystem: A case study of marine cyanobacterium Synechococcus sp. PCC7002. CHEMOSPHERE 2023; 313:137621. [PMID: 36566796 DOI: 10.1016/j.chemosphere.2022.137621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Increased hazardous substances application causes more environmental pollution and risks for human health. Microalgae are the important biological groups in marine ecosystem, and considered to be sensitive to environmental pollutants. Therefore, toxicity test on marine microalgae could provide the most efficient method for aquatic toxicity assessment, and could also be used as the early warning signals in aquatic ecosystem. In view of this, our study aimed at investigating the toxicity potential of two typical organic compounds, and screening out novel photosynthetic indicators for the risk assessment of environmental pollutants. In this study, benzyl alcohol and 2-phenylethanol were chosen as the target organic compounds, and preliminary toxicity mechanism of these organic compounds on marine cyanobacterium Synechococcus sp. PCC7002 was investigated with chlorophyll fluorescence technology. Results showed that PCC7002 could be affected by benzyl alcohol or 2-phenylethanol stress, and the toxicity effect was concentration-dependent. And external benzyl alcohol and 2-phenylethanol stress damaged the oxygen evolving complex, and suppressed electron transport at the donor and receptor sides of photosystem II (PSII), influencing the absorption, transfer, and application of light energy. Furthermore, potential biomarkers were screened by half maximal inhibitory concentration (IC50) on the basis of pearson correlation coefficient analysis, and fluorescence intensity difference between the I-step and P-step of OJIP curve (δFIP) seems to be the most sensitive indicator for external stress. This study would be of significant interest to the biomarker community, and pave the way for the practical resource for marine pollution monitoring and assessment.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, 570100, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuyong Hou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
7
|
Agarwal P, Soni R, Kaur P, Madan A, Mishra R, Pandey J, Singh S, Singh G. Cyanobacteria as a Promising Alternative for Sustainable Environment: Synthesis of Biofuel and Biodegradable Plastics. Front Microbiol 2022; 13:939347. [PMID: 35903468 PMCID: PMC9325326 DOI: 10.3389/fmicb.2022.939347] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
With the aim to alleviate the increasing plastic burden and carbon footprint on Earth, the role of certain microbes that are capable of capturing and sequestering excess carbon dioxide (CO2) generated by various anthropogenic means was studied. Cyanobacteria, which are photosynthetic prokaryotes, are promising alternative for carbon sequestration as well as biofuel and bioplastic production because of their minimal growth requirements, higher efficiency of photosynthesis and growth rates, presence of considerable amounts of lipids in thylakoid membranes, and cosmopolitan nature. These microbes could prove beneficial to future generations in achieving sustainable environmental goals. Their role in the production of polyhydroxyalkanoates (PHAs) as a source of intracellular energy and carbon sink is being utilized for bioplastic production. PHAs have emerged as well-suited alternatives for conventional plastics and are a parallel competitor to petrochemical-based plastics. Although a lot of studies have been conducted where plants and crops are used as sources of energy and bioplastics, cyanobacteria have been reported to have a more efficient photosynthetic process strongly responsible for increased production with limited land input along with an acceptable cost. The biodiesel production from cyanobacteria is an unconventional choice for a sustainable future as it curtails toxic sulfur release and checks the addition of aromatic hydrocarbons having efficient oxygen content, with promising combustion potential, thus making them a better choice. Here, we aim at reporting the application of cyanobacteria for biofuel production and their competent biotechnological potential, along with achievements and constraints in its pathway toward commercial benefits. This review article also highlights the role of various cyanobacterial species that are a source of green and clean energy along with their high potential in the production of biodegradable plastics.
Collapse
|
8
|
Hu L, Guo S, Wang B, Fu R, Fan D, Jiang M, Fei Q, Gonzalez R. Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions. Biotechnol Adv 2022; 59:107954. [DOI: 10.1016/j.biotechadv.2022.107954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
9
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
10
|
Kajla S, Kumari R, Nagi GK. Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Arch Microbiol 2022; 204:149. [DOI: 10.1007/s00203-021-02677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
|
11
|
Andrews F, Faulkner M, Toogood HS, Scrutton NS. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:240. [PMID: 34920731 PMCID: PMC8684110 DOI: 10.1186/s13068-021-02091-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2021] [Indexed: 06/07/2023]
Abstract
Current industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.
Collapse
Affiliation(s)
- Fraser Andrews
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen S Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Lancaster Business Park, Caton Road, Lancaster, LA1 3SW, Lancashire, UK.
| |
Collapse
|
12
|
Engineering cyanobacteria with enhanced growth in simulated flue gases for high-yield bioethanol production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 2020; 43:107578. [PMID: 32553809 DOI: 10.1016/j.biotechadv.2020.107578] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Photosynthetic cyanobacteria are capable of utilizing sunlight and CO2 as sole energy and carbon sources, respectively. With genetically modified cyanobacteria being used as a promising chassis to produce various biofuels and chemicals in recent years, future large-scale cultivation of cyanobacteria would have to be performed in seawater, since freshwater supplies of the earth are very limiting. However, high concentration of salt is known to inhibit the growth of cyanobacteria. This review aims at comparing the mechanisms that different cyanobacteria respond to salt stress, and then summarizing various strategies of developing salt-tolerant cyanobacteria for seawater cultivation, including the utilization of halotolerant cyanobacteria and the engineering of salt-tolerant freshwater cyanobacteria. In addition, the challenges and potential strategies related to further improving salt tolerance in cyanobacteria are also discussed.
Collapse
|