1
|
Krishna J, Subash Chandra Bose K, Varadharaj S, Sankaranarayanan M. A metabolic-engineering framework approach via fed-batch fermentation for enhancing glucaric acid production in Komagataella phaffii. Enzyme Microb Technol 2025; 187:110627. [PMID: 40101541 DOI: 10.1016/j.enzmictec.2025.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Glucaric acid (D-saccharic acid) is an organic compound belonging to glucuronic acid derivatives, whose commercial synthesis involves the use of hazardous solvents. Biosynthetic production in Saccharomyces cerevisiae has limitations, such as ethanolic fermentation, redox strategy limitations, and low pH toxicity. Komagataella phaffii (K. phaffii) formly known Pichia pastoris, an alternative and robust engineerable organism, is a promising biotransformation agent for glucaric acid production. However, K. phaffii lacks native biosynthetic pathways for glucaric acid synthesis at the industrial scale. There is no proof-of-concept glucaric acid production system. Therefore, gene expression profiling-based metabolic engineering of glucaric acid producing gene cassette was performed using in-fusion cloning. Product production was enhanced using fed-batch fermentation of the key metabolite, myo-inositol; this improved the yield of glucaric acid. The expression was optimized through cofactor recycling and codon optimization for the UDH gene. Fed-batch fermentation with mixed supplementation (Myo-inositol + Monosodium glutamate) as substrate in engineered K. phaffii (X33-GA) enhanced glucaric acid synthesis to 17.6 g/L. In addition, we present simple HPLC and LC-MS techniques for quantifying glucaric acid and its precursors in the fermentation samples. The proof-of-concept results from both shake flask and bioreactor studies provide a unique perspective on sustainable, cost-effective, and green technological alternatives for glucaric acid synthesis.
Collapse
Affiliation(s)
| | | | - Sindhu Varadharaj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu 600025, India
| | | |
Collapse
|
2
|
Zhou J, Xue Y, Zhang Z, Wang Y, Wu A, Gao X, Liu Z, Zheng Y. Cell factories for biosynthesis of D-glucaric acid: a fusion of static and dynamic strategies. World J Microbiol Biotechnol 2024; 40:292. [PMID: 39112688 DOI: 10.1007/s11274-024-04097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/26/2024] [Indexed: 10/17/2024]
Abstract
D-glucaric acid is an important organic acid with numerous applications in therapy, food, and materials, contributing significantly to its substantial market value. The biosynthesis of D-glucaric acid (GA) from renewable sources such as glucose has garnered significant attention due to its potential for sustainable and cost-effective production. This review summarizes the current understanding of the cell factories for GA production in different chassis strains, from static to dynamic control strategies for regulating their metabolic networks. We highlight recent advances in the optimization of D-glucaric acid biosynthesis, including metabolic dynamic control, alternative feedstocks, metabolic compartments, and so on. Additionally, we compare the differences between different chassis strains and discuss the challenges that each chassis strain must overcome to achieve highly efficient GA productions. In this review, the processes of engineering a desirable cell factory for highly efficient GA production are just like an epitome of metabolic engineering of strains for chemical biosynthesis, inferring general trends for industrial chassis strain developments.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yinan Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zheng Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yihong Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anyi Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Ding N, Sun L, Zhou X, Zhang L, Deng Y, Yin L. Enhancing glucaric acid production from myo-inositol in Escherichia coli by eliminating cell-to-cell variation. Appl Environ Microbiol 2024; 90:e0014924. [PMID: 38808978 PMCID: PMC11218621 DOI: 10.1128/aem.00149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Glucaric acid (GA) is a value-added chemical and can be used to manufacture food additives, anticancer drugs, and polymers. The non-genetic cell-to-cell variations in GA biosynthesis are naturally inherent, indicating the presence of both high- and low-performance cells in culture. Low-performance cells can lead to nutrient waste and inefficient production. Furthermore, myo-inositol oxygenase (MIOX) is a key rate-limiting enzyme with the problem of low stability and activity in GA production. Therefore, eliminating cell-to-cell variations and increasing MIOX stability can select high-performance cells and improve GA production. In this study, an in vivo GA bioselector was constructed based on GA biosensor and tetracycline efflux pump protein TetA to continuously select GA-efficient production strains. Additionally, the upper limit of the GA biosensor was improved to 40 g/L based on ribosome-binding site optimization, achieving efficient enrichment of GA high-performance cells. A small ubiquitin-like modifier (SUMO) enhanced MIOX stability and activity. Overall, we used the GA bioselector and SUMO-MIOX fusion in fed-batch GA production and achieved a 5.52-g/L titer in Escherichia coli, which was 17-fold higher than that of the original strain.IMPORTANCEGlucaric acid is a non-toxic valuable product that was mainly synthesized by chemical methods. Due to the problems of non-selectivity, inefficiency, and environmental pollution, GA biosynthesis has attracted significant attention. The non-genetic cell-to-cell variations and MIOX stability were both critical factors for GA production. In addition, the high detection limit of the GA biosensor was a key condition for performing high-throughput screening of GA-efficient production strains. To increase GA titer, this work eliminated the cell-to-cell variations by GA bioselector constructed based on GA biosensor and TetA, and improved the stability and activity of MIOX in the GA biosynthetic pathway through fusing the SUMO to MIOX. Finally, these approaches improved the GA production by 17-fold to 5.52 g/L at 65 h. This study represents a significant step toward the industrial application of GA biosynthetic pathways in E. coli.
Collapse
Affiliation(s)
- Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Lei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xuan Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Linpei Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Toivari M, Vehkomäki ML, Ruohonen L, Penttilä M, Wiebe MG. Production of D-glucaric acid with phosphoglucose isomerase-deficient Saccharomyces cerevisiae. Biotechnol Lett 2024; 46:69-83. [PMID: 38064042 PMCID: PMC10787697 DOI: 10.1007/s10529-023-03443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 01/14/2024]
Abstract
D-Glucaric acid is a potential biobased platform chemical. Previously mainly Escherichia coli, but also the yeast Saccharomyces cerevisiae, and Pichia pastoris, have been engineered for conversion of D-glucose to D-glucaric acid via myo-inositol. One reason for low yields from the yeast strains is the strong flux towards glycolysis. Thus, to decrease the flux of D-glucose to biomass, and to increase D-glucaric acid yield, the four step D-glucaric acid pathway was introduced into a phosphoglucose isomerase deficient (Pgi1p-deficient) Saccharomyces cerevisiae strain. High D-glucose concentrations are toxic to the Pgi1p-deficient strains, so various feeding strategies and use of polymeric substrates were studied. Uniformly labelled 13C-glucose confirmed conversion of D-glucose to D-glucaric acid. In batch bioreactor cultures with pulsed D-fructose and ethanol provision 1.3 g D-glucaric acid L-1 was produced. The D-glucaric acid titer (0.71 g D-glucaric acid L-1) was lower in nitrogen limited conditions, but the yield, 0.23 g D-glucaric acid [g D-glucose consumed]-1, was among the highest that has so far been reported from yeast. Accumulation of myo-inositol indicated that myo-inositol oxygenase activity was limiting, and that there would be potential to even higher yield. The Pgi1p-deficiency in S. cerevisiae provides an approach that in combination with other reported modifications and bioprocess strategies would promote the development of high yield D-glucaric acid yeast strains.
Collapse
Affiliation(s)
- Mervi Toivari
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland.
| | - Maija-Leena Vehkomäki
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland
| | - Laura Ruohonen
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland
| | - Marilyn G Wiebe
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
5
|
Zhao Y, Zuo F, Shu Q, Yang X, Deng Y. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Appl Environ Microbiol 2023; 89:e0053523. [PMID: 37212714 PMCID: PMC10304745 DOI: 10.1128/aem.00535-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Glucaric acid is a valuable chemical with applications in the detergent, polymer, pharmaceutical and food industries. In this study, two key enzymes for glucaric acid biosynthesis, MIOX4 (myo-inositol oxygenase) and Udh (uronate dehydrogenase), were fused and expressed with different peptide linkers. It was found that a strain harboring the fusion protein MIOX4-Udh linked by the peptide (EA3K)3 produced the highest glucaric acid titer and thereby resulted in glucaric acid production that was 5.7-fold higher than that of the free enzymes. Next, the fusion protein MIOX4-Udh linked by (EA3K)3 was integrated into delta sequence sites of the Saccharomyces cerevisiae opi1 mutant, and a strain, GA16, that produced a glucaric acid titer of 4.9 g/L in a shake flask fermentation was identified by a high-throughput screening method using an Escherichia coli glucaric acid biosensor. Strain improvement by further engineering was performed to regulate the metabolic flux of myo-inositol to increase the supply of glucaric acid precursors. The downregulation of ZWF1 and the overexpression of INM1 and ITR1 increased glucaric acid production significantly, and glucaric acid production was increased to 8.49 g/L in the final strain GA-ZII in a shake flask fermentation. Finally, in a 5-L bioreactor, GA-ZII produced a glucaric acid titer of 15.6 g/L through fed-batch fermentation. IMPORTANCE Glucaric acid is a value-added dicarboxylic acid that was synthesized mainly through the oxidation of glucose chemically. Due to the problems of the low selectivity, by-products, and highly polluting waste of this process, producing glucaric acid biologically has attracted great attention. The activity of key enzymes and the intracellular myo-inositol level were both rate-limiting factors for glucaric acid biosynthesis. To increase glucaric acid production, this work improved the activity of the key enzymes in the glucaric acid biosynthetic pathway through the expression of a fusion of Arabidopsis thaliana MIOX4 and Pseudomonas syringae Udh as well as a delta sequence-based integration. Furthermore, intracellular myo-inositol flux was optimized by a series of metabolic strategies to increase the myo-inositol supply, which improved glucaric acid production to a higher level. This study provided a way for constructing a glucaric acid-producing strain with good synthetic performance, making glucaric acid production biologically in yeast cells much more competitive.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanxian Shu
- Shandong Provincial Key Laboratory of Fat and Oil Deep-Processing, Shandong Bohi Industry Co., Ltd., Binzhou, Shandong, China
| | - Xiaoyan Yang
- Shandong Provincial Key Laboratory of Fat and Oil Deep-Processing, Shandong Bohi Industry Co., Ltd., Binzhou, Shandong, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Li S, Fu W, Su R, Zhao Y, Deng Y. Metabolic engineering of the malonyl-CoA pathway to efficiently produce malonate in Saccharomyces cerevisiae. Metab Eng 2022; 73:1-10. [DOI: 10.1016/j.ymben.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/17/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
|
8
|
Li S, Ma L, Fu W, Su R, Zhao Y, Deng Y. Programmable Synthetic Upstream Activating Sequence Library for Fine-Tuning Gene Expression Levels in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:1228-1239. [PMID: 35195994 DOI: 10.1021/acssynbio.1c00511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A wide dynamic range of promoters is necessary for fine-tuning transcription levels. However, weak intensity and narrow dynamic range limit transcriptional regulation via constitutive promoters. The upstream activation sequence (UAS) located upstream of the core promoter is a crucial region that could obviously enhance promoter strength. Herein, we created a random mutagenesis library consisting of 330 different variants based on the UAS of the TDH3 promoter with an ∼37-fold dynamic range by error-prone polymerase chain reaction (PCR) and obtained strong intensity mutant UAS, which was ∼12-fold greater than the wild-type UASTDH3. Analysis of the mutant library revealed 15 strength-enhancing sites and their corresponding bases of the UASTDH3 regions, which provided the impetus for a synthetic library. The resulting 32 768 mutant UAS library was constructed by permutation and combination of the bases of the 15 enhancing sites. To characterize the library, a strength prediction model was built by correlating DNA structural features and UAS strength, which provided a model between UAS sequence and intensity. Following characterization, the UAS library was applied to precisely regulate gene expression in the production of β-carotene, proving that the UAS library would be a useful tool for gene tuning in metabolic engineering. In summary, we designed, constructed, and characterized a UAS library that facilitated precise tuning of transcription levels of target proteins.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lizhou Ma
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenxuan Fu
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruifang Su
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|