1
|
Zhang S, Shu M, Gong Z, Liu X, Zhang C, Liang Y, Lin Q, Zhou B, Guo T, Liu J. Enhancing extracellular monascus pigment production in submerged fermentation with engineered microbial consortia. Food Microbiol 2024; 121:104499. [PMID: 38637070 DOI: 10.1016/j.fm.2024.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 04/20/2024]
Abstract
In this study, we investigated the impact of microbial interactions on Monascus pigment (MP) production. We established diverse microbial consortia involving Monascus purpureus and Lactobacillus fermentum. The addition of Lactobacillus fermentum (4% at 48 h) to the submerged fermentation of M. purpureus resulted in a significantly higher MP production compared to that achieved using the single-fermentation system. Co-cultivation with immobilized L. fermentum led to a remarkable increase of 59.18% in extracellular MP production, while mixed fermentation with free L. fermentum caused a significant decrease of 66.93% in intracellular MPs, contrasting with a marginal increase of 4.52% observed during co-cultivation with immobilized L. fermentum and the control group respectively. The findings indicate an evident enhancement in cell membrane permeability of M. purpureus when co-cultivated with immobilized L. fementum. Moreover, integrated transcriptomic and metabolomic analyses were conducted to elucidate the regulatory mechanisms underlying MP biosynthesis and secretion following inoculation with immobilized L. fementum, with specific emphasis on glycolysis, steroid biosynthesis, fatty acid biosynthesis, and energy metabolism.
Collapse
Affiliation(s)
- Song Zhang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Meng Shu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zihan Gong
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xinyi Liu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Chenyu Zhang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ying Liang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Bo Zhou
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Jun Liu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Yi Y, Jin X, Chen M, Coldea TE, Zhao H. Surfactant-mediated bio-manufacture: A unique strategy for promoting microbial biochemicals production. Biotechnol Adv 2024; 73:108373. [PMID: 38704106 DOI: 10.1016/j.biotechadv.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
3
|
Wang B, Wang Q, Yang Y, Zhang X, Wang J, Jia J, Wu Q. Bidirectional fermentation of Monascus and Mulberry leaves enhances GABA and pigment contents: establishment of strategy, studies of bioactivity and mechanistic. Prep Biochem Biotechnol 2024; 54:73-85. [PMID: 37139803 DOI: 10.1080/10826068.2023.2207111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bidirectional fermentation is a technology that utilizes fungi to ferment medicinal edible substrates, with synergistic and complementary advantages. In this work, a fermentation strategy was established to produce a high yield of γ-aminobutyric acid (GABA) and Monascus pigments (MPs) using Monascus and mulberry leaves (MLs). Firstly, the basic fermentation parameters were determined using single-factor experiments, followed by Plackett-Burman (PB) experimental design to identify MLs, glucose, peptone, and temperature as significant influencing factors. The fermentation parameters were optimized using an artificial neural network (ANN). Finally, the effects of bidirectional fermentation of MLs and Monascus were investigated by bioactivity analysis, microstructure observation, and RT-qPCR. The outcomes showed that the bidirectional fermentation significantly increased the bioactive content and promoted the secondary metabolism of Monascus. The established fermentation conditions were 44.2 g/L of MLs, 57 g/L of glucose, 15 g/L of peptone, 1 g/L of MgSO4, 2 g/L of KH2PO4, 8% (v/v) of inoculum, 180 rpm, initial pH 6, 32 °C and 8 days. The content of GABA reached 13.95 g/L and the color value of MPs reached 408.07 U/mL. This study demonstrated the feasibility of bidirectional fermentation of MLs and Monascus, providing a new idea for the application of MLs and Monascus.
Collapse
Affiliation(s)
- Biao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qihang Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yi Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Junqiang Jia
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qiongying Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
4
|
Liu H, Luo Z, Rao Y. Manipulation of fungal cell wall integrity to improve production of fungal natural products. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:49-78. [PMID: 38783724 DOI: 10.1016/bs.aambs.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungi, as an important industrial microorganism, play an essential role in the production of natural products (NPs) due to their advantages of utilizing cheap raw materials as substrates and strong protein secretion ability. Although many metabolic engineering strategies have been adopted to enhance the biosynthetic pathway of NPs in fungi, the fungal cell wall as a natural barrier tissue is the final and key step that affects the efficiency of NPs synthesis. To date, many important progresses have been achieved in improving the synthesis of NPs by regulating the cell wall structure of fungi. In this review, we systematically summarize and discuss various strategies for modifying the cell wall structure of fungi to improve the synthesis of NPs. At first, the cell wall structure of different types of fungi is systematically described. Then, strategies to disrupt cell wall integrity (CWI) by regulating the synthesis of cell wall polysaccharides and binding proteins are summarized, which have been applied to improve the synthesis of NPs. In addition, we also summarize the studies on the regulation of CWI-related signaling pathway and the addition of exogenous components for regulating CWI to improve the synthesis of NPs. Finally, we propose the current challenges and essential strategies to usher in an era of more extensive manipulation of fungal CWI to improve the production of fungal NPs.
Collapse
Affiliation(s)
- Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China.
| |
Collapse
|
5
|
Zhou MJ, Hu LX, Hu WS, Huang JB, Huang XL, Gao XL, Luo YN, Xue ZL, Liu Y. Enhanced vitamin K2 production by engineered Bacillus subtilis during leakage fermentation. World J Microbiol Biotechnol 2023; 39:224. [PMID: 37291450 DOI: 10.1007/s11274-023-03671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Menaquinone-7 (MK-7), a valuable member of the vitamin K2 series, is an essential nutrient for humans. It is used for treating coagulation disorders, and osteoporosis, promoting liver function recovery, and preventing cardiovascular diseases. In this study, to further improve the metabolic synthesis of MK-7 by the mutant strain, the effect of surfactants on the metabolic synthesis of MK-7 by the mutant strain Bacillus subtilis 168 KO-SinR (BS168 KO-SinR) was analyzed. The scanning electron microscopy and flow cytometry results showed that the addition of surfactants changed the permeability of the cell membrane of the mutant strain and the structural components of the biofilm. When 0.7% Tween-80 was added into the medium, the extracellular and intracellular synthesis of MK-7 reached 28.8 mg/L and 59.2 mg/L, respectively, increasing the total synthesis of MK-7 by 80.3%. Quantitative real-time PCR showed that the addition of surfactant significantly increased the expression level of MK-7 synthesis-related genes, and the electron microscopy results showed that the addition of surfactant changed the permeability of the cell membrane. The research results of this paper can serve as a reference for the industrial development of MK-7 prepared by fermentation.
Collapse
Affiliation(s)
- Meng-Jie Zhou
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Liu-Xiu Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
- Anhui Zhang Hengchun Pharmaceutical Co., LTD, Wuhu, 241000, China
| | - Wen-Song Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jun-Bao Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xi-Lin Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xu-Li Gao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Ya-Ni Luo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zheng-Lian Xue
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Yan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| |
Collapse
|
6
|
A mutant of Monascus purpureus obtained by carbon ion beam irradiation yielded yellow pigments using various nitrogen sources. Enzyme Microb Technol 2023; 162:110121. [DOI: 10.1016/j.enzmictec.2022.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
7
|
Disruption of the Chitin Biosynthetic Pathway Results in Significant Changes in the Cell Growth Phenotypes and Biosynthesis of Secondary Metabolites of Monascus purpureus. J Fungi (Basel) 2022; 8:jof8090910. [PMID: 36135635 PMCID: PMC9503372 DOI: 10.3390/jof8090910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the gene monascus-5162 from Monascus purpureus LQ-6, identified as chitin synthase gene VI (chs6), was knocked out to disrupt the chitin biosynthetic pathway and regulate the biosynthesis of Monascus pigments (MPs) and citrinin. The results showed that the aerial hyphae on a solid medium were short and sparse after the deletion of chs6 in M. purpureus LQ-6, significantly reducing the germination percentage of active spores to approximately 22%, but the colony diameter was almost unaffected. Additionally, the deletion of chs6 changed the mycelial morphology of M. purpureus LQ-6 during submerged fermentation and increased its sensitivity to environmental factors. MP and citrinin biosynthesis was dramatically inhibited in the recombinant strain. Furthermore, comparative transcriptome analysis revealed that the pathways related to spore development and growth, including the MAPK signaling pathway, chitin biosynthetic pathway, and regulatory factors LaeA and WetA genes, were significantly downregulated in the early phase of fermentation. The mRNA expression levels of genes in the cluster of secondary metabolites were significantly downregulated, especially those related to citrinin biosynthesis. This is the first detailed study to reveal that chs6 plays a vital role in regulating the cell growth and secondary metabolism of the Monascus genus.
Collapse
|
8
|
Bai J, Gong Z, Shu M, Zhao H, Ye F, Tang C, Zhang S, Zhou B, Lu D, Zhou X, Lin Q, Liu J. Increased Water-Soluble Yellow Monascus Pigment Productivity via Dual Mutagenesis and Submerged Repeated-Batch Fermentation of Monascus purpureus. Front Microbiol 2022; 13:914828. [PMID: 35756045 PMCID: PMC9218666 DOI: 10.3389/fmicb.2022.914828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Monascus pigments (MPs) have been used in the food industry for more than 2,000 years and are known for their safety, bold coloring, and physiological activity. MPs are mainly yellow (YMPs), orange (OMPs), and red (RMPs). In this study, a mutant strain Monascus purpureus H14 with high production of water-soluble YMPs (WSYMPs, λmax at 370 nm) was generated instead of primary YMPs (λmax at 420 nm), OMPs (λmax at 470 nm), and RMPs (λmax at 510 nm) produced by the parent strain M. purpureus LQ-6 through dual mutagenesis of atmospheric and room-temperature plasma and heavy ion beam irradiation (HIBI), producing 22.68 U/ml extracellular YMPs and 10.67 U/ml intracellular YMPs. WSYMP production was increased by 289.51% in optimal conditions after response surface methodology was applied in submerged fermentation. Application of combined immobilized fermentation and extractive fermentation improved productivity to 16.89 U/ml/day, 6.70 times greater than with conservative submerged fermentation. The produced WSYMPs exhibited good tone stability to environmental factors, but their pigment values were unstable to pH, light, and high concentrations of Ca2+, Zn2+, Fe2+, Cu2+, and Mg2+. Furtherly, the produced exYMPs were identified as two yellow monascus pigment components (monascusone B and C21H27NO7S) by UHPLC-ESI-MS. This strategy may be extended to industrial production of premium WSYMPs using Monascus.
Collapse
Affiliation(s)
- Jie Bai
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Zihan Gong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Meng Shu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Hui Zhao
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Fanyu Ye
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Chenglun Tang
- Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing, China.,Jiangsu Institute of Industrial Biotechnology JITRI Co. Ltd., Nanjing, China
| | - Song Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhou
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Dong Lu
- Biophysics Research Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang Zhou
- Biophysics Research Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Jun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China.,Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Waring, Changsha, China
| |
Collapse
|
9
|
Role of the Gene ndufs8 Located in Respiratory Complex I from Monascus purpureus in the Cell Growth and Secondary Metabolites Biosynthesis. J Fungi (Basel) 2022; 8:jof8070655. [PMID: 35887413 PMCID: PMC9319538 DOI: 10.3390/jof8070655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Our previous work revealed that the anabolism of Monascus secondary metabolites is closely related to cofactor metabolism. In this study, we have further investigated the regulation mechanisms of respiratory complex I in response to the cell growth and secondary metabolite biosynthesis of M. purpureus. The results showed that downregulating the mRNA level of gene ndufs8 in M. purpureus sharply increased the secondary metabolites biosynthesis, cell growth and glucose consumption rates at the fermentation metaphase; slightly increased the colony diameter and biomass, and dramatically changed the mycelia morphology; and decreased the tolerances to environmental factors (especially H2O2). It also significantly inhibited the enzymes activities of respiratory complex I, III and superoxide dismutase, but stimulated that of complex II, IV and peroxidase, leading to an increase in reactive oxygen species (ROS) level and a decrease in ATP concentration. Furthermore, transcriptome analysis revealed that the mRNA levels of genes involved in respiratory chain, tricarboxylic acid cycle, and fatty acid degradation were downregulated, but those in the citrinin and monascus pigment biosynthesis and related pathways were upregulated. These data revealed that complex I plays a vital role in regulating the cell growth and secondary metabolism of Monascus via changing the intracellular ROS and ATP levels.
Collapse
|
10
|
Feng SS, Li W, Hu YJ, Feng JX, Deng J. The biological activity and application of Monascus pigments: a mini review. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Monascus pigments (MPs), as secondary metabolites of Monascus, are microbial pigments which have been used for thousands of years. MPs are widely used in food industry as food pigments and preservatives, which have the stability of light resistance, high temperature resistance and acid-base change resistance. In addition, the antioxidant, antibacterial, antiviral and anti-tumor biological activities of MPs have also attracted people’s attention. Moreover, Due to the presence of citrinin, the safety of MPs still needs to be discussed and explored. In this paper, the production, biological activity, application in various fields and methods of detection and reduction of citrinin of MPs were reviewed, which provide new insights into the study and safe application related to human different diseases, medicines or health care products with MPs as active substances.
Collapse
Affiliation(s)
- Shan-Shan Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Wen Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Yong-Jun Hu
- Department of Ultrasound , Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University , Changsha , Hunan 410002 , China
| | - Jian-Xiang Feng
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| |
Collapse
|