1
|
Wang YS, Zhou YZ, Wang XD, Zhang GZ. Enhancement of Bacterial Survival and Self-Healing Performance in Mortars After Exposure to Negative Temperature Using Alumina Hollow Spheres as Bacterial Carriers. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2245. [PMID: 40428982 PMCID: PMC12112990 DOI: 10.3390/ma18102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Negative temperature environments inhibit bacterial survival in cementitious materials and reduce the self-healing ability of bacteria. To address this challenge, acid-etched alumina hollow spheres are proposed as carriers to encapsulate microorganisms in cementitious materials. The effects of these carriers on the mechanical properties, thermal conductivity, self-healing properties, and self-healing products of specimens after exposure to -20 °C were investigated. Finally, the self-healing mechanism was examined and analyzed. The results demonstrated the effectiveness of the acid-etched hollow microbeads as bacterial carriers. The addition of the alumina hollow spheres participating in the cement hydration reaction enhanced the mechanical properties of the mortar and reduced its thermal conductivity, which supported bacterial survival in the negative temperature environment. Although negative temperature environments may reduce bacterial populations, the hydrolysis of aluminum ions in the alumina hollow spheres during bacterial metabolism resulted in the precipitation of aluminum hydroxide flocs. These flocs adsorbed free calcium carbonate in the pores, converting it into effective calcium carbonate with cementing properties, thus enhancing the crack healing capability of the examined specimens. This microbe-based self-healing strategy, utilizing alumina hollow spheres as bacterial carriers, is anticipated to provide an effective solution for achieving efficient crack self-healing in mortars that is resistant to the detrimental effects of negative temperature conditions.
Collapse
Affiliation(s)
- Yan-Sheng Wang
- School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China; (Y.-S.W.); (Y.-Z.Z.)
| | - Yi-Ze Zhou
- School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China; (Y.-S.W.); (Y.-Z.Z.)
| | - Xu-Dong Wang
- School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China; (Y.-S.W.); (Y.-Z.Z.)
| | - Guang-Zhu Zhang
- School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China; (Y.-S.W.); (Y.-Z.Z.)
- College of Catholic, Songsim Global Campus, The Catholic University of Korea, Bucheon-si 14662, Republic of Korea
| |
Collapse
|
2
|
Ciuchcinski K, Czerwonka G, Decewicz P, Godlewska Z, Misiolek K, Zegadlo K, Styczynski M, Dziewit L. Genome-guided development of a bacterial two-strain system for low-temperature soil biocementation. Appl Microbiol Biotechnol 2025; 109:66. [PMID: 40100368 PMCID: PMC11919988 DOI: 10.1007/s00253-025-13448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Degradation and erosion of soil is a significant threat to global food security and overall agricultural productivity. This issue is exacerbated by climate change and intensive human activity, meaning that the development of sustainable solutions for those problems is critical. Microbially induced calcite precipitation (MICP) offers a promising approach to stabilise soil particles; however, its applicability at low temperatures remains limited. In our study, we introduce a novel two-strain system combining the type strain for biocementation experiments, Sporosarcina pasteurii DSM 33, and Sporosarcina sp. ANT_H38, a novel, psychrotolerant strain obtained from the Antarctic. The novel strain enabled enhanced biocementation performance when combined with the type strain. Biocementation experiments showed a 3.5-fold increase in soil cohesion, while maintaining a similar internal friction angle compared to the type strain alone (10.7 kPa vs 34.12 kPa; 0.55 kPa for untreated soil). The increased cohesion significantly reduces susceptibility to erosion, offering a practical and sustainable solution. Furthermore, to better understand the mechanisms driving this process, we conducted a comprehensive bioinformatic analysis of the ANT_H38 genome, revealing unique cold-adaptive genes, as well as urease genes, which are evolutionarily distant from other Sporosarcina ureases. Those results provide valuable insights into the strain's functional adaptations, particularly under low-temperature conditions. Overall, our study addresses a critical issue, offering a robust, nature-based solution that enhances soil resilience through MICP. Performed laboratory work confirms the potential of the system for real-world applications, while the comprehensive bioinformatic analysis provides the much needed context and information regarding the possible mechanisms behind the process. KEY POINTS: • Antarctic Sporosarcina sp. ANT_H38 contains unique urease genes • Two-strain ANT_H38/DSM33 system effectively stabilises soil at low temperatures • Two-strain system has potential for stopping soil erosion and desertification.
Collapse
Affiliation(s)
- Karol Ciuchcinski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Czerwonka
- Division of Microbiology, Institute of Biology, Faculty of Exact and Natural Sciences, Jan Kochanowski University, Kielce, Poland
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zofia Godlewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Misiolek
- Department of Hydraulic Engineering and Hydraulics, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Zegadlo
- Division of Microbiology, Institute of Biology, Faculty of Exact and Natural Sciences, Jan Kochanowski University, Kielce, Poland
| | - Michal Styczynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Cao X, Cui Q, Li D, Liu Y, Liu K, Li Z. Characteristics of Soil Microbial Community Structure in Different Land Use Types of the Huanghe Alluvial Plain. Microorganisms 2025; 13:273. [PMID: 40005640 PMCID: PMC11857921 DOI: 10.3390/microorganisms13020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
The Huanghe alluvial plain plays a crucial role in biodiversity conservation. However, its ecosystem has become sensitive and fragile due to long-term human disturbances. Enhancing the resilience of this ecosystem and promoting the sustainable use of land resources are key to addressing its ecological challenges. Soil microbial communities are vital to ecosystem functioning, and land use is a major human factor influencing their structure and diversity. Existing research on the Huanghe alluvial plain primarily focuses on soil physicochemical properties and moisture content, with relatively limited attention given to soil microorganisms. Therefore, this study, using the Wudi Tanyang Forest Farm in the Huanghe alluvial plain as a case study, employs high-throughput metagenomic sequencing to analyze the composition and diversity of soil bacteria, eukaryota, archaea, and virus communities in five different land use types (Tamarix chinensis forest, Fraxinus chinensis forest, farmland, wetland, and grassland). The results indicate that: (1) At the phylum level, the top three bacteria communities were Pseudomonadota, Acidobacteriota, and Actinomycetota; the top three in the eukaryota communities were Ascomycota, Mucoromycota, and Basidiomycotina; the top three in the archaea communities were Nitrososphaerota, Euryarchaeota, and Candidatus Thermoplasmatota; and the virus communities were dominated by Uroviricota; (2) The microbial community structure of the Tamarix chinensis forest and the Fraxinus chinensis forest was similar, and was significantly different from the other three land use types; (3) The land use type had a significant effect on the diversity of the soil microbial communities, with a higher diversity in the wetland and grassland soils; (4) The dominant species of the soil microbial communities under different land use types showed significant differences. This study provides theoretical support for land use optimization and sustainable soil management in the Huanghe alluvial plain region.
Collapse
Affiliation(s)
- Xintong Cao
- State Key Laboratory of Environmental Benchmarking and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (X.C.); (D.L.); (Y.L.)
- College of Ecology, Lanzhou University, Lanzhou 730000, China;
| | - Qinghua Cui
- Institute of Environmental Protection Science and Technology of Binzhou, Binzhou 256600, China;
| | - Daiqing Li
- State Key Laboratory of Environmental Benchmarking and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (X.C.); (D.L.); (Y.L.)
| | - Yu Liu
- State Key Laboratory of Environmental Benchmarking and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (X.C.); (D.L.); (Y.L.)
| | - Kun Liu
- College of Ecology, Lanzhou University, Lanzhou 730000, China;
| | - Zhuoqing Li
- State Key Laboratory of Environmental Benchmarking and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (X.C.); (D.L.); (Y.L.)
| |
Collapse
|
4
|
Šovljanski O, Lončar B, Pezo L, Saveljić A, Tomić A, Brunet S, Filipović V, Filipović J, Čanadanović-Brunet J, Ćetković G, Travičić V. Unlocking the Potential of the ANN Optimization in Sweet Potato Varieties Drying Processes. Foods 2023; 13:134. [PMID: 38201161 PMCID: PMC10778433 DOI: 10.3390/foods13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
This study explores the unexploited potential of Artificial Neural Network (ANN) optimization techniques in enhancing different drying methods and their influence on the characteristics of various sweet potato varieties. Focusing on the intricate interplay between drying methods and the unique characteristics of white, pink, orange, and purple sweet potatoes, the presented experimental study indicates the impact of ANN-driven optimization on food-related characteristics such as color, phenols content, biological activities (antioxidant, antimicrobial, anti-hyperglycemic, and anti-inflammatory), chemical, and mineral contents. The results unveil significant variations in drying method efficacy across different sweet potato types, underscoring the need for tailored optimization strategies. Specifically, purple sweet potatoes emerge as robust carriers of phenolic compounds, showcasing superior antioxidant activities. Furthermore, this study reveals the optimized parameters of dried sweet potato, such as total phenols content of 1677.76 mg/100 g and anti-inflammatory activity of 8.93%, anti-hyperglycemic activity of 24.42%. The upgraded antioxidant capability is presented through DPPH●, ABTS●+, RP, and SoA assays with values of 1500.56, 10,083.37, 3130.81, and 22,753.97 μg TE/100 g, respectively. Additionally, the moisture content in the lyophilized sample reached a minimum of 2.97%, holding favorable chemical and mineral contents. The utilization of ANN optimization proves instrumental in interpreting complex interactions and unlocking efficiencies in sweet potato drying processes, thereby contributing valuable insights to food science and technology.
Collapse
Affiliation(s)
- Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| | - Biljana Lončar
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| | - Lato Pezo
- Engineering Department, Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Anja Saveljić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| | - Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| | - Sara Brunet
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| | - Vladimir Filipović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| | - Jelena Filipović
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jasna Čanadanović-Brunet
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| | - Gordana Ćetković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| | - Vanja Travičić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (B.L.); (A.T.); (S.B.); (V.F.); (J.Č.-B.); (G.Ć.); (V.T.)
| |
Collapse
|
5
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
6
|
Vaskevicius L, Malunavicius V, Jankunec M, Lastauskiene E, Talaikis M, Mikoliunaite L, Maneikis A, Gudiukaite R. Insights in MICP dynamics in urease-positive Staphylococcus sp. H6 and Sporosarcina pasteurii bacterium. ENVIRONMENTAL RESEARCH 2023; 234:116588. [PMID: 37423368 DOI: 10.1016/j.envres.2023.116588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbially induced calcite precipitation (MICP) is an efficient and eco-friendly technique that has attracted significant interest for resolving various problems in the soil (erosion, improving structural integrity and water retention, etc.), remediation of heavy metals, production of self-healing concrete or restoration of different concrete structures. The success of most common MICP methods depends on microorganisms degrading urea which leads to the formation of CaCO3 crystals. While Sporosarcina pasteurii is a well-known microorganism for MICP, other soil abundant microorganisms, such as Staphylococcus bacteria have not been thoroughly studied for its efficiency in bioconsolidation though MICP is a very important proccess which can ensure soil quality and health. This study aimed to analyze MICP process at the surface level in Sporosarcina pasteurii and a newly screened Staphylococcus sp. H6 bacterium as well as show the possibility of this new microorganism to perform MICP. It was observed that Staphylococcus sp. H6 culture precipitated 157.35 ± 3.3 mM of Ca2+ ions from 200 mM, compared to 176 ± 4.8 mM precipitated by S. pasteurii. The bioconsolidation of sand particles was confirmed by Raman spectroscopy and XRD analysis, which indicated the formation of CaCO3 crystals for both Staphylococcus sp. H6 and S. pasteurii cells. The water-flow test suggested a significant reduction in water permeability in bioconsolidated sand samples for both Staphylococcus sp. H6 and S. pasteurii. Notably, this study provides the first evidence that CaCO3 precipitation occurs on the surface of Staphylococcus and S. pasteurii cells within the initial 15-30 min after exposure to the biocementation solution. Furthermore, Atomic force microscopy (AFM) indicated rapid changes in cell roughness, with bacterial cells becoming completely coated with CaCO3 crystals after 90 min incubation with a biocementation solution. To our knowledge, this is the first time where atomic force microscopy was used to visualize the dynamic of MICP on cell surface.
Collapse
Affiliation(s)
- Laurynas Vaskevicius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Vilius Malunavicius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Egle Lastauskiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Martynas Talaikis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Lina Mikoliunaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Laboratory of Spectroelectrochemistry, Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekis Av. 3, LT-10257, Vilnius, Lithuania
| | - Andrius Maneikis
- Vilnius Gediminas Technical University, Sauletekis Av. 11, LT-10223, Vilnius, Lithuania
| | - Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
7
|
Wang Q, Hu Z, Li Z, Liu T, Bian G. Exploring the Application and Prospects of Synthetic Biology in Engineered Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305828. [PMID: 37677048 DOI: 10.1002/adma.202305828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
At the intersection of synthetic biology and materials science, engineered living materials (ELMs) exhibit unprecedented potential. Possessing unique "living" attributes, ELMs represent a significant paradigm shift in material design, showcasing self-organization, self-repair, adaptability, and evolvability, surpassing conventional synthetic materials. This review focuses on reviewing the applications of ELMs derived from bacteria, fungi, and plants in environmental remediation, eco-friendly architecture, and sustainable energy. The review provides a comprehensive overview of the latest research progress and emerging design strategies for ELMs in various application fields from the perspectives of synthetic biology and materials science. In addition, the review provides valuable references for the design of novel ELMs, extending the potential applications of future ELMs. The investigation into the synergistic application possibilities amongst different species of ELMs offers beneficial reference information for researchers and practitioners in this field. Finally, future trends and development challenges of synthetic biology for ELMs in the coming years are discussed in detail.
Collapse
Affiliation(s)
- Qiwen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhehui Hu
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zhixuan Li
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
8
|
The viability of spores is the key factor for microbial induced calcium carbonate precipitation. Appl Microbiol Biotechnol 2023; 107:543-552. [PMID: 36504328 DOI: 10.1007/s00253-022-12319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
While previous studies mainly focused on the total number of spores as an index to predict the calcium precipitation activity (CPA) of bacterial strains, the effect of viability of spores on microbial-induced calcium precipitation (MICP) has remained highly ignored. Therefore, for the first time, we have attempted to optimize the sporulation process in terms of viable spore production and, most importantly, aimed to build a correlation between viable spores and CPA. The results have shown that for the sporulation of Bacillus sp. H4, starch and peptone are the optimal carbon and nitrogen sources, respectively. One gram per liter of sodium chloride promotes CPA and production of viable spores, whereas an increase of sodium chloride concentration beyond 8 g L-1 significantly reduces CPA without reducing the quantity of viable spores. Exogenous conditions such as seed age, inoculation quantity, and liquid volume only pose slight influence on the sporulation and CPA. Conclusively, the spores produced under optimized conditions are more morphologically uniform and display a 20% increase in CPA compared to pre-optimized spores. Furthermore, by combining the results of heatmap analysis, it can be concluded that not only the quantity, but also the quality of viable spores is important for bacterial strain to develop high CPA and effective MICP process. This study sheds light on the breadth of biomineralization activity based on viable spores and is an imperative step toward the intelligible design of MICP-based engineering solutions. KEY POINTS: • Viability of spores is a key controlling factor in calcium precipitation activity (CPA). • Spores produced under optimized conditions display a 20% increase in CPA. • Quality of viable spores is imperative for bacterial strains to develop high CPA.
Collapse
|
9
|
Šovljanski O, Tomić A, Markov S. Relationship between Bacterial Contribution and Self-Healing Effect of Cement-Based Materials. Microorganisms 2022; 10:microorganisms10071399. [PMID: 35889117 PMCID: PMC9322135 DOI: 10.3390/microorganisms10071399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 02/07/2023] Open
Abstract
The civil research community has been attracted to self-healing bacterial-based concrete as a potential solution in the economy 4.0 era. This concept provides more sustainable material with a longer lifetime due to the reduction of crack appearance and the need for anthropogenic impact. Regardless of the achievements in this field, the gap in the understanding of the importance of the bacterial role in self-healing concrete remains. Therefore, understanding the bacterial life cycle in the self-healing effect of cement-based materials and selecting the most important relationship between bacterial contribution, self-healing effect, and material characteristics through the process of microbiologically (bacterially) induced carbonate precipitation is just the initial phase for potential applications in real environmental conditions. The concept of this study offers the possibility to recognize the importance of the bacterial life cycle in terms of application in extreme conditions of cement-based materials and maintaining bacterial roles during the self-healing effect.
Collapse
|