1
|
Kutraite I, Augustiniene E, Malys N. Hydroxybenzoic acids: Microbial metabolism, pathway engineering and products. Biotechnol Adv 2025; 81:108571. [PMID: 40154763 DOI: 10.1016/j.biotechadv.2025.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Hydroxybenzoic acids (HBAs) are plant secondary metabolites exhibiting antioxidant, antiviral, anticancer and antibacterial activities. A high and constantly increasing demand for these compounds underlines the need for novel and efficient production methods, as commonly applied plant extraction and chemical synthesis approaches are susceptible to low yields and are environmentally hazardous. Switching to biotechnology and replacing petroleum-based chemicals has potential to improve eco-efficiency in sustainable bioeconomy. With the increased focus on the production of materials using renewable resources and bio-based feedstocks, microbial fermentation and engineering drives the development and optimization of sustainable bioproduction. This systematic review summarizes current knowledge of microbial HBAs metabolism and biosynthesis. Here, the existing challenges are highlighted and the potential strategies for improved microbial production of HBAs are identified. Key aspects of HBAs metabolism and complexity of the factors related to bacterial strain selection, titer, and bioprocess strategy are examined. The opportunities of HBAs bioproduction using engineered microbial cell factories are discussed in detail and insights for synthesis improvement are presented.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Ernesta Augustiniene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
2
|
Yu J, Li C, Cheng Y, Guo S, Lu H, Xie X, Ji H, Qiao Y. Mechanism and improvement of yeast tolerance to biomass-derived inhibitors: A review. Biotechnol Adv 2025; 81:108562. [PMID: 40107432 DOI: 10.1016/j.biotechadv.2025.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lignocellulosic biomass is regarded as a potentially valuable second-generation biorefinery feedstock. Yeast has the ability to metabolize this substrate and convert it into fuel ethanol and an array of other chemical products. Nevertheless, during the pretreatment of lignocellulosic biomass, inhibitors (furanaldehydes, carboxylic acids, phenolic compounds, etc.) are generated, which impede the growth and metabolic activities of yeast cells. Consequently, developing yeast strains with enhanced tolerance to these inhibitors is a crucial technological objective, as it can significantly enhance the efficiency of lignocellulosic biorefineries. This review provides a concise overview of the process of inhibitor generation and the detrimental effects of these inhibitors on yeast. It also summarizes the current state of research on the mechanisms of yeast tolerance to these inhibitors, focusing specifically on recent advances in enhancing yeast tolerance to these inhibitors by rational and non-rational strategies. Finally, it discusses the current challenges and future research directions.
Collapse
Affiliation(s)
- Jinling Yu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Cuili Li
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yajie Cheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Shaobo Guo
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Hongzhao Lu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xiuchao Xie
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yanming Qiao
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China.
| |
Collapse
|
3
|
Jia HY, Xu T, Wang C, Zhu HW, Li BZ, Yuan YJ, Liu ZH. Emerging biotechnological strategies advancing biological lignin valorization towards polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2025; 424:132278. [PMID: 39986625 DOI: 10.1016/j.biortech.2025.132278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Lignin is the largest renewable aromatic resource available for producing high-value products such as biomaterials, biofuels, and chemicals. Polyhydroxyalkanoate (PHA) is a biodegradable and biocompatible polymer synthesized by various microorganisms, offering broad application potential. Microbial conversion of lignin-derived aromatics into PHA promoted both lignin valorization and PHA biosynthesis. However, lignin's recalcitrance and heterogeneity pose significant challenges for its microbial degradation and value-added utilization. This review examines the entire pathway of lignin conversion into high-value products, highlighting the advantages of microbial processes for synthesizing PHA and promoting the biological upgrading of lignin. Additionally, synthetic biology techniques and metabolic regulation strategies can further enhance microbial PHA synthesis. Overall, integrating microbial PHA synthesis with lignin bioconversion not only facilitates lignin valorization but also supports the sustainable production of PHA, making a significant contribution to the utilization and sustainable development of biomass resources.
Collapse
Affiliation(s)
- Hai-Yuan Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Tao Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Chen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Hong-Wei Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Bing-Zhi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Ying-Jin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Zhi-Hua Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China.
| |
Collapse
|
4
|
Wei H, Wang Y, Zeng Y, Yang N, Jiang Y, Suo Y. Enhanced tolerance of Clostridium tyrobutyricum to lignin-derived phenolic acids by overexpressing native reductases. J Biotechnol 2025; 404:9-17. [PMID: 40185369 DOI: 10.1016/j.jbiotec.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/01/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Ferulic acid (Fer) and p-coumaric acid (Coum) are major phenolic inhibitors in lignocellulosic hydrolysates that severely hinder the growth and metabolism of Clostridia species. This study demonstrates that the reduction of Fer and Coum to dihydroferulic acid and phloretic acid by Clostridium tyrobutyricum significantly alleviates their toxicity. Overexpression of the dho1 and sdr1 genes, encoding Fer and Coum reductases, respectively, in C. tyrobutyricum can significantly enhance tolerance to these phenolic acids. As a result, the recombinant strain ATCC 25755/ds, which co-overexpresses dho1 and sdr1, exhibited a marked increase in butyrate production compared to the wild-type strain under phenolic acid stress. In fed-batch fermentation with a 1.0 g/L mixture of Fer and Coum (1:1, w/w), ATCC 25755/ds showed a 35.1 % increase in butyrate production and a 61.1 % higher productivity. These results indicate that enhancing phenolic acid reduction can significantly improve Clostridia's tolerance to phenolic acids, thereby strengthening the biotransformation of lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Hailing Wei
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yuexin Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yu Zeng
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Na Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yuntao Jiang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - Yukai Suo
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| |
Collapse
|
5
|
Tian L, Qi T, Zhang F, Tran VG, Yuan J, Wang Y, He N, Cao M. Synthetic biology approaches to improve tolerance of inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2025; 78:108477. [PMID: 39551454 DOI: 10.1016/j.biotechadv.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Increasing attention is being focused on using lignocellulose for valuable products. Microbial decomposition can convert lignocellulose into renewable biofuels and other high-value bioproducts, contributing to sustainable development. However, the presence of inhibitors in lignocellulosic hydrolysates can negatively affect microorganisms during fermentation. Improving microbial tolerance to these hydrolysates is a major focus in metabolic engineering. Traditional detoxification methods increase costs, so there is a need for cheap and efficient cell-based detoxification strategies. Synthetic biology approaches offer several strategies for improving microbial tolerance, including redox balancing, membrane engineering, omics-guided technologies, expression of protectants and transcription factors, irrational engineering, cell flocculation, and other novel technologies. Advances in molecular biology, high-throughput sequencing, and artificial intelligence (AI) allow for precise strain modification and efficient industrial production. Developing AI-based computational models to guide synthetic biology efforts and creating large-scale heterologous libraries with automation and high-throughput technologies will be important for future research.
Collapse
Affiliation(s)
- Linyue Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tianqi Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
6
|
Chen C, Gao C, Hu G, Wei W, Wang X, Wen J, Chen X, Liu L, Song W, Wu J. Rational and Semirational Approaches for Engineering Salicylate Production in Escherichia coli. ACS Synth Biol 2024; 13:3563-3575. [PMID: 39455289 DOI: 10.1021/acssynbio.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Salicylate plays a pivotal role as a pharmaceutical intermediate in drugs, such as aspirin and lamivudine. The low catalytic efficiency of key enzymes and the inherent toxicity of salicylates to cells pose significant challenges to large-scale microbial production. In this study, we introduced the salicylate synthase Irp9 into an l-phenylalanine-producing Escherichia coli, constructing the shortest salicylate biosynthetic pathway. Subsequent protein engineering increased the catalytic efficiency of Irp9 by 33.5%. Furthermore, by integrating adaptive evolution with transcriptome analysis, we elucidated the crucial mechanism of efflux proteins in salicylate tolerance. The elucidation of this mechanism guided us in the targeted modification of these transport proteins, achieving a reported maximum level of 3.72 g/L of salicylate in a shake flask. This study highlights the importance of efflux proteins for enhancing the productivity of microbial cell factories in salicylate production, which also holds potential for application in the green synthesis of other phenolic acids.
Collapse
Affiliation(s)
- Chenghu Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoge Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Chen A, Zhang B, Bao J. Adaptive evolution of Paecilomyces variotii enhanced the biodetoxification of high-titer inhibitors in pretreated lignocellulosic feedstock. BIORESOURCE TECHNOLOGY 2024; 411:131351. [PMID: 39182793 DOI: 10.1016/j.biortech.2024.131351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
High inhibitor concentrations in lignocellulose feedstock negatively affect the degradation rate of biodetoxification strains. This study designed two adaptive laboratory evolutions in solid substrate and liquid medium to boost the biodetoxification capacity of P. variotii to high titers of lignocellulose-derived inhibitors, resulting in two evolved strains AC70 and ZW70. The results showed that the evolutionary adaptation in liquid medium could better boost the acetic acid assimilation compared to that on solid substrate. Transcriptional analysis revealed that the evolved strains exhibited a significant upregulation of adh, acs, ach1, and ackA directly related to the initial steps of acetate and furan aldehydes metabolisms. ZW70 strain can effectively remove the high concentration inhibitors cocktail from the hydrolysates derived from pretreated wheat straw and furfural residues. The biodetoxified hydrolysates by ZW70 were successfully used for cellulose chiral L-lactic acid production with the titers of ∼110 g/L, which were over 20 % higher than that detoxified by parental strain.
Collapse
Affiliation(s)
- Agustian Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
8
|
Li M, Chu Y, Dong X, Ji H. General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts. World J Microbiol Biotechnol 2023; 40:49. [PMID: 38133718 DOI: 10.1007/s11274-023-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Yeast cells are often subjected to various types of weak acid stress in the process of industrial production, food processing, and preservation, resulting in growth inhibition and reduced fermentation performance. Under acidic conditions, weak acids enter the near-neutral yeast cytoplasm and dissociate into protons and anions, leading to cytoplasmic acidification and cell damage. Although some yeast strains have developed the ability to survive weak acids, the complexity and diversity of stresses during industrial production still require the application of appropriate strategies for phenotypes improvement. In this review, we summarized current knowledge concerning weak acid stress response and resistance, which may suggest important targets for further construction of more robust strains. We also highlight current feasible strategies for improving the weak acid resistance of yeasts, such as adaptive laboratory evolution, transcription factors engineering, and cell membrane/wall engineering. Moreover, the challenges and perspectives associated with improving the competitiveness of industrial strains are also discussed. This review provides effective strategies for improving the industrial phenotypes of yeast from multiple dimensions in future studies.
Collapse
Affiliation(s)
- Mengmeng Li
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yunfei Chu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, PR China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|