1
|
Jiang Y, Song C, Yan J, Luo L, Gao S, Jiang F, Wei Z, Chen J, Liu Z, Ge J. Based on single-cell and transcriptome data, ferroptosis and the immunological landscape in osteosarcoma were discovered. Discov Oncol 2025; 16:636. [PMID: 40299087 PMCID: PMC12040805 DOI: 10.1007/s12672-025-02427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Ferroptosis has been demonstrated to have a significant role in osteosarcoma (OS), a highly aggressive and invasive malignant bone tumor. Nevertheless, the precise molecular mechanism underlying OS remains unknown. Understanding the makeup of the immune microenvironment in OS is crucial for its therapy, as the disease grows in the highly specialized, complex, and dynamic bone microenvironment. Resveratrol (Res) possesses anti-inflammatory, immunomodulatory, chemopreventive, antioxidant, and anticancer properties, it is unknown if it can modify ferroptosis to prevent OS. This time, using single-cell analysis and other bioinformatic studies, we will clarify the targets and composition of the immunological microenvironment of the ferroptosis process in OS, as well as the role of certain transcription factors in it. Ultimately, network pharmacology and vitro experiment have led to the initial identification of the molecular processes governing ferroptosis in OS, which are regulated by Res. The findings suggested the potential use of ALB, EGFR, GPX4, IL6, STAT3, and PTEN as OS prognostic and diagnostic biomarkers. Chondroblastic, myeloid cells, osteoblastic OS, CD4 + T, NK, CD8 + T, B cells, M1 macrophages, Chondro_Proli, etc. made up the majority of the immunological microenvironment of OS. The entire cellular trajectory demonstrates that immune cells infiltrating during the early stages of OS are mostly CD4 + T, NK, CD8 + T, B_cell, and M1 macrophages. This affects the development of myeloid cells and chondroblastic cells, which ultimately leads to the progression of highly malignant chondro cells to OS. Numerous pathways allow transcription factors including BCLAF1, MAF, SP1, TCF12, KLF11, and KMT2D to contribute to the development of tumors. Finally, by interacting with the aforementioned targets, cells, Res is thought to impede the evolution of OS. In conclusion, ferroptosis and alterations in the immunological milieu are significant factors in the development of OS, and Res may one day be employed as a therapeutic drug to treat OS.
Collapse
Affiliation(s)
- Yingcun Jiang
- Department of Orthopedics, The Affiliated Hospital (Zhongshan), Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiyuan Yan
- Department of Orthopedics, The Affiliated Hospital (Health Center), Southwest Medical University, Luzhou, Sichuan, China
| | - Liang Luo
- Department of Orthopedics, The First People's Hospital of Mianyang, Mianyang, Sichuan, China
| | - Silong Gao
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Jiang
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangchao Wei
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinwen Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China.
| | - Jianhua Ge
- Department of Orthopedics, The Affiliated Hospital (Zhongshan), Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Power K, Leandri R, Federico G, De Vico G, Leonardi L. Ferritinophagy: a possible new iron-related metabolic target in canine osteoblastic osteosarcoma. Front Vet Sci 2025; 12:1546872. [PMID: 40196812 PMCID: PMC11973301 DOI: 10.3389/fvets.2025.1546872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Canine osteosarcomas (COS) are the most common bone tumors in dogs, characterized by high metastatic rates, poor prognosis, and poor responsiveness to routine therapies, which highlights the need for new treatment targets. In this context, the metabolism of neoplastic cells represents an increasingly studied element, as cancer cells depend on particular metabolic pathways that are also elements of vulnerability. Among these, tumor cells (TCs) show higher iron requirements to sustain proliferation (so-called iron addiction), which are achieved by increasing iron uptake and/or by activating ferritinophagy, a process mediated by the Nuclear receptor Co-Activator 4 (NCOA4) leading to iron mobilization from ferritin (Ft) deposits. Previous studies have shown that COS cells overexpress Transferrin Receptor 1 (TfR1) to increase iron uptake. In this study we evaluated the immunohistochemical expression of ferritinophagy-related proteins, namely Ferritin Heavy chain (FTH1) and NCOA4, and proliferating cell nuclear antigen (PCNA) in canine normal bone and canine osteoblastic osteosarcoma (COOS) samples. Normal samples revealed negative/weak immunoreactivity for FTH1, NCOA4 and PCNA in <10% of osteocytes. In COOS samples the majority of neoplastic cells showed immunoreactivity to FTH1, NCOA4 and PCNA. Our data suggest that the activation of ferritinophagy by COOS cells responds to the need for feed their "iron addiction." These data, though preliminary, further suggest that targeting iron metabolism represents a new potential strategy worthy of further study to be transferred into clinical practice.
Collapse
Affiliation(s)
- Karen Power
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rebecca Leandri
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giorgia Federico
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Tang Z, Zhang Z, Zhao J, Zhang F, Zhang Y, Wen Y, Li M, Sun J, Shi L, Chen W, Li Z, Guo Z, Liu Y. Integrated analysis of multiple programmed cell death-related prognostic genes and functional validation of apoptosis-related genes in osteosarcoma. Int J Biol Macromol 2025; 307:142113. [PMID: 40089239 DOI: 10.1016/j.ijbiomac.2025.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Osteosarcoma (OS) is one of the most prevalent bone malignancies with a poor prognosis. Various types of programmed cell death patterns can influence cancer progression and response to treatment. We aimed to integrate different molecular characteristics of cell death for risk stratification and personalized therapy. First, we obtained transcriptomic, single-cell transcriptomic, and clinical information from the TARGET-OS and GEO databases as well as analyzed genes in fourteen cell death patterns to establish the cell death index (CDI) signature. A nomogram constructed from the CDI calculated from seven genes in combination with metastasis could effectively predict the prognosis of OS patients. Subsequently, the prognostic value and immune characteristics in CDI-defined subgroups were analyzed. A construct nomogram model was also constructed with clinical information. Notably, immunohistochemistry confirmed that the expression of GALNT14, a core gene in CDI model, correlated with poor survival. Deficiency of the highly expressed prognostic gene GALNT14 significantly repressed OS progression and OS cell proliferation by promoting apoptosis. We subsequently demonstrated that Bortezomib, a targeted inhibitor of GALNT14, can be used to enhance chemosensitivity. Finally, it was further elucidated that Bortezomib reduces MT2A glycosylation and improves its stability to promote apoptosis in OS cells by inhibiting GALNT14 expression. In summary, integration of multiple cell death genes may improve the ability to stratify risk in patients with OS, and targeting GALNT14 with Bortezomib improves chemotherapy sensitivity and induces apoptosis.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China; Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Zhang
- Department of Orthopedic Surgery, Guyuan People's Hospital, Ningxia, China
| | - Jungang Zhao
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yiran Zhang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yanhua Wen
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Miaozhen Li
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jin Sun
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| | - Zheng Guo
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| | - Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
4
|
Wang L, Liu X, Lv H, Zhang H, Lin R, Xu S, Zhang C, Lou S, Qiu Z, Sun C, Cui N. Research Progress on Natural Products That Regulate miRNAs in the Treatment of Osteosarcoma. BIOLOGY 2025; 14:61. [PMID: 39857292 PMCID: PMC11759184 DOI: 10.3390/biology14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
miRNAs are small non-coding RNA molecules that play critical roles in the regulation of gene expression and have been closely associated with various diseases, including cancer. These molecules significantly influence the cell cycle of tumor cells and control programmed cell death (apoptosis). Currently, research on miRNAs has become a major focus in developing cancer therapies. Osteosarcoma, a malignant neoplasm predominantly occurring during adolescence and later in life, is characterized by a high propensity for metastasis. This review explores the role of miRNAs in the initiation and progression of cancer, highlighting their potential as predictive biomarkers for disease. It discusses the mechanisms by which natural products modulate miRNA activity to influence apoptosis, ferroptosis, and autophagy in osteosarcoma cells, aiming to identify new strategies for osteosarcoma treatment. Recent studies on how natural products regulate miRNAs to reduce tumor cell resistance to chemotherapy are also reviewed. Furthermore, the review elaborates on how natural products regulate m6A modifications to influence miRNA expression, thereby exerting antitumor effects. In this process, interactions between m6A modifications and miRNAs have been identified, with both jointly influencing tumorigenesis and cancer progression, offering a new perspective in osteosarcoma treatment. These approaches could help uncover novel regulatory mechanisms in osteosarcoma pathways and provide a theoretical foundation for developing new drugs and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Xinyu Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Haoze Lv
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Han Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Rimei Lin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Shan Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Chaojing Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Shilei Lou
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Cong Sun
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Ning Cui
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
5
|
Cimmino A, Gioia M, Clementi ME, Faraoni I, Marini S, Ciaccio C. Polydatin-Induced Shift of Redox Balance and Its Anti-Cancer Impact on Human Osteosarcoma Cells. Curr Issues Mol Biol 2024; 47:21. [PMID: 39852136 PMCID: PMC11764470 DOI: 10.3390/cimb47010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on the human Osteosarcoma (OS) cells SAOS-2 and U2OS. Using cell-based biochemical assays, we found that cytotoxic doses of PD (100-200 µM) promote ROS production, deplete glutathione (GSH), and elevate levels of both total iron and intracellular malondialdehyde (MDA), which are key markers of ferroptosis. Notably, the ROS scavenger N-acetylcysteine (NAC) and the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially reverse PD's cytotoxic effects. Interestingly, PD's ability to hinder cell adhesion and migration appears independent of its pro-oxidant effect. Analysis of the oxidative stress regulators SIRT1 and Nrf2 at the gene and protein levels using real-time PCR and Western blot indicates an early oxidative response to PD treatment. PD remains effective under tumor-like conditions of hypoxia and serum starvation, and sensitizes OS cells to ROS-inducing chemotherapeutics like doxorubicin (DOX) and cisplatin (CIS). Importantly, PD exhibits minimal toxicity to non-tumorigenic cells (hFOB), suggesting a favorable therapeutic profile. Overall, our findings underscore that PD-induced redox imbalance plays a crucial role in its anti-OS effects, warranting further exploration into the molecular mechanisms behind its pro-oxidant activity.
Collapse
Affiliation(s)
- Alessio Cimmino
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy; (A.C.); (M.G.); (S.M.)
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy; (A.C.); (M.G.); (S.M.)
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Isabella Faraoni
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy;
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy; (A.C.); (M.G.); (S.M.)
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy; (A.C.); (M.G.); (S.M.)
| |
Collapse
|
6
|
Wang Z, Yan Q, Wang Z, Hu Z, Wang C, Zhang X, Gao X, Bai X, Chen X, Zhang L, Lv D, Liu H, Chen Y. Ferroptosis and its implications in bone-related diseases. PeerJ 2024; 12:e18626. [PMID: 39619200 PMCID: PMC11606331 DOI: 10.7717/peerj.18626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Ferroptosis, a recently recognized form of regulated cell death (RCD) characterized by iron-dependent lipid peroxide accumulation, has emerged as a noteworthy regulator in various bone-related diseases, including osteoporosis (OP), osteoarthritis (OA), and osteosarcoma (OS). OS primarily afflicts the elderly, rendering them susceptible to fractures due to increased bone fragility. OA represents the most prevalent arthritis in the world, often observed in the aging population. OS predominantly manifests during adolescence, exhibiting an aggressive nature and bearing a significantly unfavorable prognosis. In this review article, we present an overview of the characteristics and mechanism of ferroptosis and its involvement in bone-related diseases, with a particular focus on OP, OA, and OS. Furthermore, we summarize chemical compounds or biological factors that impact bone-related diseases by regulating ferroptosis. Through an in-depth exploration of ferroptosis based on current research findings, this review provides promising insights for potential therapeutic approaches to effectively manage and mitigate the impact of these bone-related pathological conditions.
Collapse
Affiliation(s)
- Zihao Wang
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Qiupeng Yan
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Teaching and Research Section of Introduction to Basic Medicine, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Zhen Wang
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Zunguo Hu
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
| | - Chenchen Wang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xue Zhang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xueshuai Gao
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xue Bai
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xiaosu Chen
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Lingyun Zhang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Danyue Lv
- Shandong Second Medical University, Clinical Medicine, School of Clinical Medicine, Weifang, Shandong, China
| | - Huancai Liu
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
| | - Yanchun Chen
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| |
Collapse
|
7
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
8
|
Qiu X, He H, Zeng H, Tong X, Zhang C, Liu Y, Liao Z, Liu Q. Integrative transcriptome analysis identifies MYBL2 as a poor prognosis marker for osteosarcoma and a pan-cancer marker of immune infiltration. Genes Dis 2024; 11:101004. [PMID: 38292182 PMCID: PMC10825309 DOI: 10.1016/j.gendis.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/23/2023] [Accepted: 04/29/2023] [Indexed: 02/01/2024] Open
Abstract
MYBL2 (MYB proto-oncogene like 2) is an emerging prognostic marker for malignant tumors, and its potential role in osteosarcoma and its relationship with immune infiltration in pan-cancer is yet to be elucidated. We constructed a transcription factor activity profile of osteosarcoma using the single-cell regulatory network inference algorithm based on single-cell RNA sequencing data obtained from the Gene Expression Omnibus. Subsequently, we calculated the extent of MYBL2 activation in malignant proliferative osteoblasts. We also explored the association between MYBL2 and chemotherapy resistance in osteosarcoma. Furthermore, we systematically correlated MYBL2 with immunological signatures in the tumor microenvironment in pan-cancer, including immune cell infiltration, immune checkpoints, and tumor immunotherapy prognosis. Finally, we developed and validated a risk score (MRGS), derived an osteosarcoma risk score nomogram based on MRGS, and tested its ability to predict prognosis. MYBL2 and gene enrichment analyses in osteosarcoma and pan-cancer revealed that MYBL2 was positively correlated with cell proliferation and tumor immune pathways. MYBL2 expression positively correlated with SLC19A1 in pan-cancer and osteosarcoma cell lines. Pan-cancer immune infiltration analysis revealed that MYBL2 was correlated with myeloid-derived suppressor cells, Th2 cell infiltration, CD276, RELT gene expression, and tumor mutation burden. In summary, MYBL2 regulates proliferation, progression, and immune infiltration in osteosarcoma and pan-cancer. Therefore, we found that MYBL2 could be used as a potential marker for predicting the osteosarcoma prognosis. Patients with osteosarcoma and high MYBL2 expression are theoretically more sensitive to methotrexate. An osteosarcoma prognostic nomogram can provide new ideas in the search for osteosarcoma prognostic markers.
Collapse
Affiliation(s)
- Xinzhu Qiu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongbo He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Xiaopeng Tong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Can Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yupeng Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Zhan Liao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
9
|
ZHU YIWEN, YANG LIU, YU YING, XIONG YING, XIAO PING, FU XIAO, LUO XIN. Hydroxysafflor yellow A induced ferroptosis of Osteosarcoma cancer cells by HIF-1α/HK2 and SLC7A11 pathway. Oncol Res 2024; 32:899-910. [PMID: 38686047 PMCID: PMC11055989 DOI: 10.32604/or.2023.042604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 05/02/2024] Open
Abstract
Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis. Since there is no permanent therapy for this condition, it is necessary to develop a cure. Therefore, this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A (HYSA) in osteosarcoma cell lines (MG63). In this investigational study, MG63 cells were utilized. Microarray experiments, quantitative polymerase chain reaction (qPCR), immunofluorescent staining, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption, lactate production, and ATP levels, proliferation assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, and Western blot were performed. In MG63 cells, HYSA lowered cell proliferation and metastasis rates, suppressed EDU cell number, and enhanced caspase-3/9 activity levels. HYSA reduced the Warburg effect and induced ferroptosis (FPT) in MG63 cells. Inhibiting ferroptosis diminished HYSA's anti-cancer activities in MG63 cells. The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA's anti-cancer activities in MG63 cells. HIF-1α is one target spot for HYSA in a model of osteosarcoma cancer (OC). HYSA altered HIF-1α's thermophoretic activity; following binding with HYSA, HIF-1α's melting point increased from ~55°C to ~60°C. HYSA significantly enhanced the thermal stability of exogenous WT HIF-1α while not affecting Mut HIF-1α, suggesting that ARG-311, GLY-312, GLN-347, and GLN-387 may be involved in the interaction between HIF-1α and HYSA. Conclusively, our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway. HYSA is a possible therapeutic option for OC or other cancers.
Collapse
Affiliation(s)
- YIWEN ZHU
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - LIU YANG
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YING YU
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YING XIONG
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - PING XIAO
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - XIAO FU
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - XIN LUO
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
10
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
11
|
Huang C, Li Y, Li B, Liu X, Luo D, Liu Y, Wei M, Yang Z, Xu Y. Identifying potential ferroptosis key genes for diagnosis and treatment of postmenopausal osteoporosis through competitive endogenous RNA network analysis. Heliyon 2024; 10:e23672. [PMID: 38226266 PMCID: PMC10788451 DOI: 10.1016/j.heliyon.2023.e23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/24/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Objective Postmenopausal osteoporosis (PMOP) is a common systemic metabolic bone disorder that is owing to the reduced estrogen secretion and imbalance of bone absorption and bone formation in postmenopausal women. Ferroptosis has been identified as a novel modulatory mechanism of osteoporosis. Nevertheless, the particular modulatory mechanism between ferroptosis and PMOP is still unclear. The objective of the current investigation was to detect potential biomarkers connected to ferroptosis in PMOP and discover its probable mechanism through bioinformatics. Methods We downloaded PMOP-related microarray datasets from the database of Gene Expression Omnibus (GEO) and obtained the differentially expressed genes (DEGs). Utilizing bioinformatics analysis, the DEGs were intersected with the ferroptosis dataset to obtain ferroptosis-connected mRNAs. Enrichment analysis employing KOBAS 3.0 was conducted to comprehend the biological functions and enrichment pathways of the DEGs. The generation of the protein-protein interaction (PPI) network was conducted with the aim of identifying central genes. Lastly, the coexpression and competitive endogenous RNA (ceRNA) networks were built using Cytoscape. With the help of external datasets GSE56815 to verify the reliability of the hub genes by plotting ROC curves. Results We identified 178 DE microRNAs (miRNAs), 138 DE circular RNAs (circRNAs), and 86 ferroptosis-related mRNAs. Enrichment analysis exhibited that mRNAs were primarily connected with the signaling pathways of PI3K/Akt, metabolism, mTOR, FoxO, HIF-1, AMPK, MAPK, ferroptosis, VEGF, and NOD-like receptors. Generation of the PPI network detected eight hub genes. The circRNA/miR-23b-3p/PTEN axis may relieve PMOP by inhibiting ferroptosis through targeting the pathway of PI3K/Akt signaling, which is a vital modulatory pathway for PMOP progression. Moreover, the ROC curves ultimately indicates that the four hub genes have greater diagnostic importance in PMOP samples in contrast to the normal group samples, which may be possible markers for PMOP diagnosis. Conclusions Bioinformatics analysis identified four hub genes, namely, PTEN, SIRT1, VEGFA, and KRAS, as potential biomarkers for PMOP diagnosis and management. Moreover, the circRNA/miR-23b-3p/PTEN axis may relieve PMOP by suppressing ferroptosis through targeting the pathway of PI3K/Akt signaling, providing a new avenue to explore the pathogenesis of PMOP.
Collapse
Affiliation(s)
- Chengcheng Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yang Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Bo Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Xiujuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Dan Luo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Mengjuan Wei
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - ZhenGuo Yang
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yunsheng Xu
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| |
Collapse
|
12
|
He C, Jiang Y, Guo Y, Wu Z. Amplified Ferroptosis and Apoptosis Facilitated by Differentiation Therapy Efficiently Suppress the Progression of Osteosarcoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302575. [PMID: 37394717 DOI: 10.1002/smll.202302575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/20/2023] [Indexed: 07/04/2023]
Abstract
Osteosarcoma (OS) is the most frequent osseous neoplasm among young people aged 10-20. Currently, the leading treatment for osteosarcoma is a combination of surgery and chemotherapy. However, the mortality remains high due to chemoresistance, metastasis, and recurrence, attributing to the existence of cancer stem cells (CSCs) as reported. To target CSCs, differentiation therapy attracts increasing attention, inducing CSCs to bulk tumor cells with elevated reactive oxygen species (ROS) levels and less chemoresistance. Moreover, increasing studies have implied that ferroptosis is a promising approach to eliminating cancer cells through eliciting oxidative damage and subsequent apoptosis, effectively bypassing chemoresistance. Here, a cancer-cell-membrane-decorated biocompatible formulation (GA-Fe@CMRALi liposome) is constructed to combat OS efficiently by combining distinct differentiation and ferroptosis therapies through magnified ROS-triggered ferroptosis and apoptosis with homologous target capability to tumor sites. The combinational approach exhibited favorable therapeutic efficacy against OS in vitro and in vivo. Impressively, the potential mechanisms are revealed by mRNA sequencing. This study provides a tactical design and typical paradigm of the synergized differentiation and ferroptosis therapies to combat heterogeneous OS.
Collapse
Affiliation(s)
- Chao He
- Department of Orthopedic Surgery, Translational Research Center of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuhang Jiang
- Department of Orthopedic Surgery, Translational Research Center of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuan Guo
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zenghui Wu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| |
Collapse
|
13
|
Nirala BK, Yamamichi T, Petrescu DI, Shafin TN, Yustein JT. Decoding the Impact of Tumor Microenvironment in Osteosarcoma Progression and Metastasis. Cancers (Basel) 2023; 15:5108. [PMID: 37894474 PMCID: PMC10605493 DOI: 10.3390/cancers15205108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, highly metastatic bone malignancy in children and adolescents. Despite advancements in multimodal treatment strategies, the prognosis for patients with metastatic or recurrent disease has not improved significantly in the last four decades. OS is a highly heterogeneous tumor; its genetic background and the mechanism of oncogenesis are not well defined. Unfortunately, no effective molecular targeted therapy is currently available for this disease. Understanding osteosarcoma's tumor microenvironment (TME) has recently gained much interest among scientists hoping to provide valuable insights into tumor heterogeneity, progression, metastasis, and the identification of novel therapeutic avenues. Here, we review the current understanding of the TME of OS, including different cellular and noncellular components, their crosstalk with OS tumor cells, and their involvement in tumor progression and metastasis. We also highlight past/current clinical trials targeting the TME of OS for effective therapies and potential future therapeutic strategies with negligible adverse effects.
Collapse
Affiliation(s)
| | | | | | | | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA; (B.K.N.); (T.Y.); (D.I.P.); (T.N.S.)
| |
Collapse
|
14
|
Nie J, Ling Y, Jin M, Chen Z, Liu W, Shen W, Fang T, Li J, He Y. Butyrate enhances erastin-induced ferroptosis of osteosarcoma cells via regulating ATF3/SLC7A11 pathway. Eur J Pharmacol 2023; 957:176009. [PMID: 37619784 DOI: 10.1016/j.ejphar.2023.176009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Osteosarcoma (OS) is a highly fatal bone tumor characterized by high degree of malignancy and early lung metastasis. Traditional chemotherapy fails in improving the efficacy and survival rate of patients with OS. Butyrate (NaBu) has been reported as a new antitumor drug for inhibiting proliferation and inducing apoptosis in various cancer cells. However, the effect of NaBu on the ferroptosis of OS is still unknown. This study aimed to investigate whether NaBu promotes erastin-induced ferroptosis in OS cells and to uncover the underlying mechanism. Here, we found that NaBu significantly enhanced erastin-induced ferroptosis in vitro and in vivo. Compared with the group that erastin used alonely, pre-treating with NaBu exacerbated erastin-meditated GSH depletion, lipid peroxidation, and mitochondrial morphologic changes in OS cells. In a subcutaneous OS model, NaBu combined with erastin significantly reduced tumor growth and increased the levels of 4-HNE. Mechanistically, NaBu downregulated SLC7A11 transcription via regulating ATF3 expression. Overexpression of ATF3 facilitated erastin to induce ferroptosis, while ATF3 knockdown attenuated NaBu-induced ferroptosis sensitivity. In conclusion, our findings revealed a previously unidentified role of NaBu in erastin-induced ferroptosis by regulating SLC7A11, suggesting that NaBu may be a potential therapeutic agent for OS treatment.
Collapse
Affiliation(s)
- Jiangbo Nie
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China
| | - Yuhang Ling
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China
| | - Zhuo Chen
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China
| | - Wei Liu
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Weiyun Shen
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Tianshun Fang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China.
| | - Ying He
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
15
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
16
|
Panez-Toro I, Muñoz-García J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F, Heymann D. Advances in Osteosarcoma. Curr Osteoporos Rep 2023:10.1007/s11914-023-00803-9. [PMID: 37329384 PMCID: PMC10393907 DOI: 10.1007/s11914-023-00803-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE OF REVIEW This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease. RECENT FINDINGS Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme. The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Javier Muñoz-García
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
| | - Jorge W Vargas-Franco
- University of Antioquia, Department of Basic Studies, Faculty of Odontology, Medellin, Colombia
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Marie-Françoise Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), 75012, Paris, France
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
- University of Sheffield, Medical School, Department of Oncology and Metabolism, S10 2RX, Sheffield, UK.
| |
Collapse
|
17
|
Jiacong H, Qirui Y, Haonan L, Yichang S, Yan C, Keng C. Zoledronic acid induces ferroptosis by upregulating POR in osteosarcoma. Med Oncol 2023; 40:141. [PMID: 37036615 DOI: 10.1007/s12032-023-01988-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023]
Abstract
Osteosarcoma, usually originating in the stroma, is the most common primary bone cancer in adolescents, and its prognosis is poor. Surgery, adjuvant and neoadjuvant chemotherapy and radiation therapy are not satisfactory at the present time. Therefore, it is critical to develop novel therapeutic strategies to improve the quality of life and long-term survival rate of osteosarcoma patients. In this study, we discovered that zoledronic acid (ZOL) dramatically increased cell death in osteosarcoma cells, and this cytotoxicity was greatly reversed by liproxstatin-1 (a ferroptosis inhibitor). ZOL also had an obvious effect on lipid peroxidation and reactive oxygen species (ROS), which suggested that ZOL most certainly induces ferroptosis in osteosarcoma cells. In addition, we further found that ZOL increases cytochrome P450 oxidoreductase (POR) expression dose dependently in osteosarcoma cell lines. Knockdown of POR attenuated ZOL-induced cytotoxicity and attenuated the effect of ferroptosis in osteosarcoma cells, which indicated that POR plays an important role in ferroptosis. Moreover, we also found that ZOL inhibits osteosarcoma growth in vivo. Our findings suggest that ZOL induces ferroptosis by upregulating POR expression to increase ROS levels and upregulate lipid peroxidation levels in osteosarcoma cells. POR may be used as a therapeutic target to inhibit osteosarcoma.
Collapse
Affiliation(s)
- Hong Jiacong
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Yang Qirui
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Li Haonan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Song Yichang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Chen Yan
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China.
| | - Chen Keng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Li G, Lei J, Xu D, Yu W, Bai J, Wu G. Integrative analyses of ferroptosis and immune related biomarkers and the osteosarcoma associated mechanisms. Sci Rep 2023; 13:5770. [PMID: 37031292 PMCID: PMC10082853 DOI: 10.1038/s41598-023-33009-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor with high metastatic potential and relapse risk. To study the regulatory mechanism of the OS microenvironment, a complex regulatory network involving the ferroptosis- and immune response-related genes remains to be established. In the present study, we determined the effect of a comprehensive evaluation system established on the basis of ferroptosis- and immune-related genes on the immune status, related biomarkers, prognosis, and the potential regulatory networks underlying OS based on the TARGET and Gene Expression Omnibus databases that contain information on OS patients by bioinformatics analyses. We first characterized individual ferroptosis scores and immune scores through gene set variation analysis (GSVA) against TARGET-OS datasets. We then identified differentially expressed genes by score groups. Weighted gene co-expression network analysis was performed to identify the most relevant ferroptosis-related and immune-related gene modules, which facilitated the identification of 327 ferroptosis gene and 306 immune gene candidates. A 4-gene (WAS, CORT, WNT16, and GLB1L2) signature was constructed and valuation using the least absolute shrinkage and selection operator-Cox regression models to effectively predict OS prognosis. The prediction efficiency was further validated by GSE39055. We stratified patients based on the prognostic scoring systems. Eight hub genes (namely CD3D, CD8A, CD3E, IL2, CD2, MYH6, MYH7, and MYL2) were identified, and TF-miRNA target regulatory networks were constructed. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, and GSVA were used to determine the signature's potential pathways and biological functions, which showed that the hub genes were enriched in ferroptosis-associated biological functions and immune-associated molecular mechanisms. Thereafter, we investigated the proportion and infiltration extent of 22 infiltrating immune cells by using CIBERSORT, which revealed significant subgroup differences in CD8 + T cells, M0 macrophages, and M2 macrophages. In conclusion, we determined a new ferroptosis-related and immune-related gene signature for predicting OS patients' prognosis and further explored the ferroptosis and immunity interactions during OS development, which provides insights into the exploration of molecular mechanisms and targeted therapies in patients with OS.
Collapse
Affiliation(s)
- Guibin Li
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Jie Lei
- Department of Hospital affairs, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Dexin Xu
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Wenchang Yu
- Department of Drug management, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Jinping Bai
- Chronic disease outpatient service, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Ge Wu
- Department of Clinical Pharmacy, Jilin Province FAW General Hospital, Changchun, Jilin, China.
| |
Collapse
|
19
|
Wang L, Pan S. The regulatory effects of p53 on the typical and atypical ferroptosis in the pathogenesis of osteosarcoma: A systematic review. Front Genet 2023; 14:1154299. [PMID: 37065475 PMCID: PMC10090352 DOI: 10.3389/fgene.2023.1154299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
Study background: As a rare condition, osteosarcoma affects approximately 3% of all cancer patients. Its exact pathogenesis remains largely unclear. The role of p53 in up- and down-regulating atypical and typical ferroptosis in osteosarcoma remains unclear. The primary objective of the present study is investigating the role of p53 in regulating typical and atypical ferroptosis in osteosarcoma. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and the Patient, Intervention, Comparison, Outcome, and Studies (PICOS) protocol were used in the initial search. The literature search was performed in six electronic databases, including EMBASE, Cochrane library of trials, Web of Science, PubMed, Google Scholar, and Scopus Review, using keywords connected by Boolean operators. We focused on studies that adequately defined patient profiles described by PICOS. Results and discussion: We found that p53 played fundamental up- and down-regulatory roles in typical and atypical ferroptosis, resulting in either advancement or suppression of tumorigenesis, respectively. Direct and indirect activation or inactivation of p53 downregulated its regulatory roles in ferroptosis in osteosarcoma. Enhanced tumorigenesis was attributed to the expression of genes associated with osteosarcoma development. Modulation of target genes and protein interactions, especially SLC7A11, resulted in enhanced tumorigenesis. Conclusion: Typical and atypical ferroptosis in osteosarcoma were regulatory functions of p53. The activation of MDM2 inactivated p53, leading to the downregulation of atypical ferroptosis, whereas activation of p53 upregulated typical ferroptosis. Further studies should be performed on the regulatory roles of p53 to unmask its possible clinical applications in the management of osteosarcoma.
Collapse
Affiliation(s)
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Abstract
Osteosarcoma (OS) is the most common primary solid malignant tumour of bone, with rapid progression and a very poor prognosis. Iron is an essential nutrient that makes it an important player in cellular activities due to its inherent ability to exchange electrons, and its metabolic abnormalities are associated with a variety of diseases. The body tightly regulates iron content at the systemic and cellular levels through various mechanisms to prevent iron deficiency and overload from damaging the body. OS cells regulate various mechanisms to increase the intracellular iron concentration to accelerate proliferation, and some studies have revealed the hidden link between iron metabolism and the occurrence and development of OS. This article briefly describes the process of normal iron metabolism, and focuses on the research progress of abnormal iron metabolism in OS from the systemic and cellular levels.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, People's Republic of China
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Hebei Province, Shijiazhuang, 050011, People's Republic of China
| | - Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Hebei Province, Shijiazhuang, 050011, People's Republic of China
| | - Helin Feng
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
21
|
Li X, Liu J. FANCD2 inhibits ferroptosis by regulating the JAK2/STAT3 pathway in osteosarcoma. BMC Cancer 2023; 23:179. [PMID: 36814203 PMCID: PMC9945409 DOI: 10.1186/s12885-023-10626-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND This research aimed to investigate the roles of fanconi anemia complementation group D2 (FANCD2) on the regulation of ferroptosis in osteosarcoma progression. METHODS The function of FANCD2 on cell viability, invasion, migration, and tumor growth were explored. FANCD2 and pathway-related genes were determined by western blot. Ferroptosis-associated markers were determined, including lipid peroxidation, labile iron pool (LIP), ferrous iron (Fe2+), and ferroptosis-related genes. RESULTS FANCD2 expression was increased in osteosarcoma cells. FANCD2 knockdown reduced cell viability, invasion, and migration of osteosarcoma cells. FANCD2 knockdown regulated ferroptosis-related gene expression, and distinctly increased the levels of LIP, Fe2+, and lipid peroxidation, and these effects were reversed by a ferroptosis inhibitor Fer-1. In addition, JAK2 and STAT3 expression were reduced by silencing of FANCD2, and STAT3 activator (colivelin) distinctly reversed tumor suppressor effects of FANCD2 silencing on osteosarcoma development. CONCLUSION These findings suggested that FANCD2 silencing could suppress osteosarcoma cell viability, migration, invasion, and tumor growth, and induced ferroptosis by regulating the JAK2/STAT3 axis. These findings may provide novel therapeutic ideas for clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xujun Li
- grid.8547.e0000 0001 0125 2443Department of Orthopaedic, Minhang Hospital, Fudan University, No.170, Xinsong Road, Xinzhuang Town, Minhang District, Shanghai City, 201199 China
| | - Jiangyi Liu
- Department of Orthopaedic, Minhang Hospital, Fudan University, No.170, Xinsong Road, Xinzhuang Town, Minhang District, Shanghai City, 201199, China.
| |
Collapse
|
22
|
Zhang F, Yan Y, Cai Y, Liang Q, Liu Y, Peng B, Xu Z, Liu W. Current insights into the functional roles of ferroptosis in musculoskeletal diseases and therapeutic implications. Front Cell Dev Biol 2023; 11:1112751. [PMID: 36819098 PMCID: PMC9936329 DOI: 10.3389/fcell.2023.1112751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is a novel type of cell death associated with iron accumulation and excessive lipid peroxidation. Elucidating the underlying molecular mechanisms of ferroptosis is intensively related to the development and treatment of multiple diseases, including musculoskeletal disorders. Moreover, in vitro and in vivo studies have shown the importance of oxidative stress in musculoskeletal conditions such as osteoporosis, osteoarthritis, rheumatoid arthritis, and osteosarcoma. Ferroptosis-derived clinical management of musculoskeletal diseases offers tremendous and attractive opportunities. Notably, ferroptosis agonists have been proven to enhance the sensitivity of osteosarcoma cells to conventional therapeutic strategies. In this review, we have mainly focused on the implications of ferroptosis regulation in the pathophysiology and therapeutic response of musculoskeletal disorders. Understanding roles of ferroptosis for controlling musculoskeletal diseases might provide directions for ferroptosis-driven therapies, which could be promising for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, China
| |
Collapse
|
23
|
Huang H, Ye Z, Li Z, Wang B, Li K, Zhou K, Cao H, Zheng J, Wang G. Employing machine learning using ferroptosis-related genes to construct a prognosis model for patients with osteosarcoma. Front Genet 2023; 14:1099272. [PMID: 36733341 PMCID: PMC9888665 DOI: 10.3389/fgene.2023.1099272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Identifying effective biomarkers in osteosarcoma (OS) is important for predicting prognosis. We investigated the prognostic value of ferroptosis-related genes (FRGs) in OS. Transcriptome and clinical data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus. FRGs were obtained from the ferroptosis database. Univariate COX regression and LASSO regression screening were performed and an FRG-based prognostic model was constructed, which was validated using the Gene Expression Omnibus cohort. The predictive power of the model was assessed via a subgroup analysis. A nomogram was constructed using clinical markers with independent prognostic significance and risk score results. The CIBERSORT algorithm was used to detect the correlation between prognostic genes and 22 tumor-infiltrating lymphocytes. The expression of prognostic genes in erastin-treated OS cell lines was verified via real-time PCR. Six prognostic FRGs (ACSL5, ATF4, CBS, CDO1, SCD, and SLC3A2) were obtained and used to construct the risk prognosis model. Subjects were divided into high- and low-risk groups. Prognosis was worse in the high-risk group, and the model had satisfactory prediction performance for patients younger than 18 years, males, females, and those with non-metastatic disease. Univariate COX regression analysis showed that metastasis and risk score were independent risk factors for patients with OS. Nomogram was built on independent prognostic factors with superior predictive power and patient benefit. There was a significant correlation between prognostic genes and tumor immunity. Six prognostic genes were differentially expressed in ferroptosis inducer-treated OS cell lines. The identified prognostic genes can regulate tumor growth and progression by affecting the tumor microenvironment.
Collapse
Affiliation(s)
- Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Zhifang Ye
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Zhengzhao Li
- Department of Emergency Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Bo Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Ke Li
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Kai Zhou
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Huiyuan Cao
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China,*Correspondence: Jiaxuan Zheng, ; Guangji Wang,
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China,*Correspondence: Jiaxuan Zheng, ; Guangji Wang,
| |
Collapse
|
24
|
Liu B, Dong C, Chen Q, Fan Z, Zhang Y, Wu Y, Cui T, Liu F. Circ_0007534 as new emerging target in cancer: Biological functions and molecular interactions. Front Oncol 2022; 12:1031802. [PMID: 36505874 PMCID: PMC9730518 DOI: 10.3389/fonc.2022.1031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNA (circRNAs), an important member of the non-coding RNA (ncRNA) family, are widely expressed in a variety of biological cells. Owing to their stable structures, sequence conservations, and cell- or tissue-specific expressions, these RNA have become a popular subject of scientific research. With the development of sequencing methods, it has been revealed that circRNAs exert their biological function by sponging microRNAs (miRNAs), regulating transcription, or binding to proteins. Humans have historically been significantly impacted by various types of cancer. Studies have shown that circRNAs are abnormally expressed in various cancers and are involved in the occurrence and development of malignant tumors, such as tumor cell proliferation, migration, and invasion. As one of its star molecules, circ_0007534 is upregulated in colorectal, cervical, and pancreatic cancers; is closely related to the occurrence, development, and prognosis of tumors; and is expected to become a novel tumor marker and therapeutic target. This article briefly reviews the expression and mechanism of circ_0007534 in malignant tumors based on the domestic and foreign literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Lai HT, Naumova N, Marchais A, Gaspar N, Geoerger B, Brenner C. Insight into the interplay between mitochondria-regulated cell death and energetic metabolism in osteosarcoma. Front Cell Dev Biol 2022; 10:948097. [PMID: 36072341 PMCID: PMC9441498 DOI: 10.3389/fcell.2022.948097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma (OS) is a pediatric malignant bone tumor that predominantly affects adolescent and young adults. It has high risk for relapse and over the last four decades no improvement of prognosis was achieved. It is therefore crucial to identify new drug candidates for OS treatment to combat drug resistance, limit relapse, and stop metastatic spread. Two acquired hallmarks of cancer cells, mitochondria-related regulated cell death (RCD) and metabolism are intimately connected. Both have been shown to be dysregulated in OS, making them attractive targets for novel treatment. Promising OS treatment strategies focus on promoting RCD by targeting key molecular actors in metabolic reprogramming. The exact interplay in OS, however, has not been systematically analyzed. We therefore review these aspects by synthesizing current knowledge in apoptosis, ferroptosis, necroptosis, pyroptosis, and autophagy in OS. Additionally, we outline an overview of mitochondrial function and metabolic profiles in different preclinical OS models. Finally, we discuss the mechanism of action of two novel molecule combinations currently investigated in active clinical trials: metformin and the combination of ADI-PEG20, Docetaxel and Gemcitabine.
Collapse
Affiliation(s)
- Hong Toan Lai
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Nataliia Naumova
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Gaspar
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Catherine Brenner
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
- *Correspondence: Catherine Brenner,
| |
Collapse
|
26
|
Zhang Y, He R, Lei X, Mao L, Yin Z, Zhong X, Cao W, Zheng Q, Li D. Comprehensive Analysis of a Ferroptosis-Related lncRNA Signature for Predicting Prognosis and Immune Landscape in Osteosarcoma. Front Oncol 2022; 12:880459. [PMID: 35837104 PMCID: PMC9273977 DOI: 10.3389/fonc.2022.880459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Research on the implications of ferroptosis in tumors has increased rapidly in the last decades. There are evidences that ferroptosis is involved in several aspects of cancer biology, including tumor progression, metastasis, immunomodulation, and therapeutic response. Nonetheless, the interaction between ferroptosis-related lncRNAs (FRLs) and the osteosarcoma immune microenvironment is poorly understood. In this study, a risk model composed of FRLs was developed using univariate and LASSO Cox regression analyses. On the basis of this model, FRL scores were calculated to systematically explore the role of the model in predicting the prognosis and immune characteristics of osteosarcoma patients. Survival analysis showed that osteosarcoma samples with lower FRL-score had better overall survival. After predicting the abundance of immune cells in osteosarcoma microenvironment by single-sample gene-set enrichment analysis (ssGSEA) and ESTIMATE analysis, we found that the FRL-score could distinguish immune function, immune score, stromal score, tumor purity, and tumor infiltration of immune cells in different osteosarcoma patients. In addition, FRL-score was also associated with immune checkpoint gene expression and half-maximal inhibitory concentration of chemotherapeutic agents. Finally, we confirmed that knockdown of RPARP-AS1 suppressed the malignant activity of osteosarcoma cells in vitro experiments. In general, the FRL-based prognostic signature could promote our understanding of the immune microenvironment characteristics of osteosarcoma and guide more effective treatment regimens.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rong He
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyu Yin
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyu Zhong
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenbing Cao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
- *Correspondence: Dapeng Li, ; Qiping Zheng,
| | - Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Dapeng Li, ; Qiping Zheng,
| |
Collapse
|
27
|
Xia M, Guo Z, Liu X, Wang Y, Xiao C. A glutathione-responsive sulfur dioxide polymer prodrug selectively induces ferroptosis in gastric cancer therapy. Biomater Sci 2022; 10:4184-4192. [PMID: 35727040 DOI: 10.1039/d2bm00678b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle-induced ferroptosis has been proven to be an appealing strategy in cancer treatment. Previously, we reported the synthesis of an amphiphilic polymer prodrug of SO2, mPEG-PLG(DNs), which could self-assemble to formulate nanoparticles (NP-DNs) and trigger cancer cell death by GSH consumption and SO2 release. In the current study, the potential mechanism of NP-DNs-induced cell death was further investigated. We demonstrated that NP-DNs exhibited efficient antitumor activity against gastric cancer via ferroptosis. NP-DNs could selectively accelerate lipid peroxidation through GSH depletion and SO2 generation in gastric cancer cells. In addition, the NP-DNs-induced GPX4 reduction played a collaborative role in ferroptosis. Concurrently, in vivo evaluations revealed that NP-DNs not only exhibited excellent antitumor efficiency via ferroptosis but also caused little systemic toxicity in mice. All the results showed that NP-DNs would be a promising prodrug in precision-targeted ferroptosis therapy.
Collapse
Affiliation(s)
- Mingjie Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China. .,Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Zhihui Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
28
|
Outstanding prognostic value of novel ferroptosis-related genes in chemoresistance osteosarcoma patients. Sci Rep 2022; 12:5029. [PMID: 35322804 PMCID: PMC8943205 DOI: 10.1038/s41598-022-09080-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone-derived tumor, and chemoresistance is a pivotal factor in the poor prognosis of patients with OS. Ferroptosis, as an emerging modality of regulated cell death, has demonstrated potential value in tumor chemoresistance studies. Through the gene expression omnibus database in conjunction with the FerrDb database, we identified novel ferroptosis-related differentially expressed genes (DEGs) involving chemoresistance in OS patients. Subsequently, enrichment analysis, protein-protein interaction network analysis and survival analysis were performed sequentially to recognize the hub genes and ultimately to construct a predictive model. The model constructed from the TARGET database was exhibited in a nomogram and assessed by calibration curves. The prognostic value of the model and hub genes was validated separately by an independent cohort. Twenty-two ferroptosis-related DEGs were identified, including 16 up-regulated and 6 down-regulated. Among them, expressions of CBS, COCS1, EGFR, as hub genes, were significantly associated with the prognosis of OS patients and were evidenced as independent prognostic factors. An efficient prognostic model covering hub gene expressions and clinical variables was developed and validated. Combining the results of hub genes in differential analysis, the actions of hub genes in ferroptosis, and the prognostic relevance of hub genes in patients, we revealed that CBS, SOCS1 and EGFR might play essential roles in OS and its chemoresistance with potential research and clinical value.
Collapse
|
29
|
Chen Y, Fan Z, Hu S, Lu C, Xiang Y, Liao S. Ferroptosis: A New Strategy for Cancer Therapy. Front Oncol 2022; 12:830561. [PMID: 35252001 PMCID: PMC8888853 DOI: 10.3389/fonc.2022.830561] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is a newly discovered form of iron-dependent cell death, which is different from other death forms. The main characteristics of ferroptosis are: (1) Amino acid metabolism. (2) Iron metabolism; (3) Lipid metabolism and Reactive oxygen species (ROS). Ferroptosis is related to the occurrence and development of a variety of cancers, especially in the drug resistance. This article reviews the research progress of iron death in tumors, and provides a theoretical reference for its further research and clinical application.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
- *Correspondence: Yu Chen,
| | - Zhihua Fan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shen Hu
- Department of Obstetrics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengchao Lu
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yi Xiang
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuzhi Liao
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
30
|
Hu Y, Han J, Ding S, Liu S, Wang H. Identification of ferroptosis-associated biomarkers for the potential diagnosis and treatment of postmenopausal osteoporosis. Front Endocrinol (Lausanne) 2022; 13:986384. [PMID: 36105394 PMCID: PMC9464919 DOI: 10.3389/fendo.2022.986384] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Postmenopausal osteoporosis (PMOP) is one of the most commonly occurring conditions worldwide and is characterized by estrogen deficiency as well as persistent calcium loss with age. The aim of our study was to identify significant ferroptosis-associated biomarkers for PMOP. METHODS AND MATERIALS We obtained our training dataset from the Gene Expression Omnibus (GEO) database using GSE56815 expression profiling data. Meanwhile, we extracted ferroptosis-associated genes for further analysis. Differentially expressed ferroptosis-associated genes (DEFAGs) between OP patients and normal controls were selected using the "limma" package. We established a ferroptosis-associated gene signature using training models, specifically, random forest (RF) and support vector machine (SVM) models. It was further validated in another dataset (GSE56814) which also showed a high AUC: 0.98, indicating high diagnostic value. Using consensus clustering, the OP patient subtypes were identified. A ferroptosis associated gene (FAG)-Scoring scheme was developed by PCA. The important candidate genes associated with OP were also compared between different ferrclusters and geneclusters. RESULTS There were significant DEFAGs acquired, of which five (HMOX1, HAMP, LPIN1, MAP3K5, FLT3) were selected for establishing a ferroptosis-associated gene signature. Analyzed from the ROC curve, our established RF model had a higher AUC value than the SVM model (RF model AUC:1.00). Considering these results, the established RF model was chosen to be the most appropriate training model. Later, based on the expression levels of the five DEFAGs, a clinical application nomogram was established. The OP patients were divided into two subtypes (ferrcluster A, B and genecluster A, B, respectively) according to the consensus clustering method based on DEFAGs and differentially expressed genes (DEGs). Ferrcluster B and genecluster B had higher ferroptosis score than ferrcluster A and genecluster A, respectively. The expression of COL1A1 gene was significantly higher in ferrcluster B and gencluster B compared with ferrcluster A and gencluster A, respectively, while there is no statistical difference in term of VDR gene, COL1A2 genes, and PTH gene expressions between ferrcluster A and B, together with gencluster A and B. CONCLUSIONS On the basis of five explanatory variables (HMOX1, HAMP, LPIN1, MAP3K5 and FLT3), we developed a diagnostic ferroptosis-associated gene signature and identified two differently categorized OP subtypes that may potentially be applied for the early diagnosis and individualized treatment of PMOP. The ER gene, VDR gene, IL-6 gene, COL1A1 and COL1A2 genes, and PTH gene are important candidate gene of OP, however, more studies are still anticipated to further elucidate the relationship between these genes and ferroptosis in OP.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- School of Graduates, Dalian Medical University, Dalian, China
| | - Jun Han
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- School of Graduates, Dalian Medical University, Dalian, China
- Department of Spine Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shengqiang Ding
- Department of Spine Surgery, The People’s Hospital of Liuyang City, Changsha, China
| | - Sanmao Liu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- School of Graduates, Dalian Medical University, Dalian, China
| | - Hong Wang
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- School of Graduates, Dalian Medical University, Dalian, China
- *Correspondence: Hong Wang,
| |
Collapse
|
31
|
Bavachin Induces Ferroptosis through the STAT3/P53/SLC7A11 Axis in Osteosarcoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1783485. [PMID: 34707773 PMCID: PMC8545544 DOI: 10.1155/2021/1783485] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022]
Abstract
Ferroptosis is a new form of regulated cell death, which is mediated by intracellular iron. Although it is reported that bavachin has antitumour effects on several tumour cells and prompts the reactive oxygen species (ROS) generation, it is unclear whether ferroptosis can be induced by bavachin in osteosarcoma (OS) cells. In this study, we found that bavachin inhibits the viability of MG63 and HOS OS cell lines along with an increase in the ferrous iron level, ROS accumulation, malondialdehyde overexpression, and glutathione depletion. Moreover, iron chelators (deferoxamine), antioxidants (Vit E), and ferroptosis inhibitors (ferrostatin-1 and liproxstatin-1) reverse bavachin-induced cell death. Bavachin also altered the mitochondrial morphology of OS cells, leading to smaller mitochondria, higher density of the mitochondrial membrane, and reduced mitochondrial cristae. Further investigation showed that bavachin upregulated the expression of transferrin receptor, divalent metal transporter-1, and P53, along with downregulating the expression of ferritin light chain, ferritin heavy chain, p-STAT3 (705), SLC7A11, and glutathione peroxidase-4 in OS cells. More importantly, STAT3 overexpression, SLC7A11 overexpression, and pretreatment with pifithrin-α (P53 inhibitor) rescued OS cell ferroptosis induced by bavachin. The results show that bavachin induces ferroptosis via the STAT3/P53/SLC7A11 axis in OS cells.
Collapse
|