1
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
3
|
Buikstra JE, DeWitte SN, Agarwal SC, Baker BJ, Bartelink EJ, Berger E, Blevins KE, Bolhofner K, Boutin AT, Brickley MB, Buzon MR, de la Cova C, Goldstein L, Gowland R, Grauer AL, Gregoricka LA, Halcrow SE, Hall SA, Hillson S, Kakaliouras AM, Klaus HD, Knudson KJ, Knüsel CJ, Larsen CS, Martin DL, Milner GR, Novak M, Nystrom KC, Pacheco-Forés SI, Prowse TL, Robbins Schug G, Roberts CA, Rothwell JE, Santos AL, Stojanowski C, Stone AC, Stull KE, Temple DH, Torres CM, Toyne JM, Tung TA, Ullinger J, Wiltschke-Schrotta K, Zakrzewski SR. Twenty-first century bioarchaeology: Taking stock and moving forward. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:54-114. [PMID: 36790761 DOI: 10.1002/ajpa.24494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
Abstract
This article presents outcomes from a Workshop entitled "Bioarchaeology: Taking Stock and Moving Forward," which was held at Arizona State University (ASU) on March 6-8, 2020. Funded by the National Science Foundation (NSF), the School of Human Evolution and Social Change (ASU), and the Center for Bioarchaeological Research (CBR, ASU), the Workshop's overall goal was to explore reasons why research proposals submitted by bioarchaeologists, both graduate students and established scholars, fared disproportionately poorly within recent NSF Anthropology Program competitions and to offer advice for increasing success. Therefore, this Workshop comprised 43 international scholars and four advanced graduate students with a history of successful grant acquisition, primarily from the United States. Ultimately, we focused on two related aims: (1) best practices for improving research designs and training and (2) evaluating topics of contemporary significance that reverberate through history and beyond as promising trajectories for bioarchaeological research. Among the former were contextual grounding, research question/hypothesis generation, statistical procedures appropriate for small samples and mixed qualitative/quantitative data, the salience of Bayesian methods, and training program content. Topical foci included ethics, social inequality, identity (including intersectionality), climate change, migration, violence, epidemic disease, adaptability/plasticity, the osteological paradox, and the developmental origins of health and disease. Given the profound changes required globally to address decolonization in the 21st century, this concern also entered many formal and informal discussions.
Collapse
Affiliation(s)
- Jane E Buikstra
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Sharon N DeWitte
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Sabrina C Agarwal
- Department of Anthropology, University of California Berkeley, Berkeley, California, USA
| | - Brenda J Baker
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Eric J Bartelink
- Department of Anthropology, California State University, Chico, California, USA
| | - Elizabeth Berger
- Department of Anthropology, University of California, Riverside, California, USA
| | | | - Katelyn Bolhofner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Alexis T Boutin
- Department of Anthropology, Sonoma State University, Rohnert Park, California, USA
| | - Megan B Brickley
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Michele R Buzon
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - Carlina de la Cova
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Lynne Goldstein
- Department of Anthropology, Michigan State University, East Lansing, Michigan, USA
| | | | - Anne L Grauer
- Department of Anthropology, Loyola University Chicago, Chicago, Illinois, USA
| | - Lesley A Gregoricka
- Department of Sociology, Anthropology, & Social Work, University of South Alabama, Mobile, Alabama, USA
| | - Siân E Halcrow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sarah A Hall
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Simon Hillson
- Institute of Archaeology, University College London, London, UK
| | - Ann M Kakaliouras
- Department of Anthropology, Whittier College, Whittier, California, USA
| | - Haagen D Klaus
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Kelly J Knudson
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Christopher J Knüsel
- Préhistoire à l'Actuel: Culture, Environnement et Anthropologie, University of Bordeaux, CNRS, MC, PACEA, UMR5199, F-33615, Pessac, France
| | | | - Debra L Martin
- Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - George R Milner
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mario Novak
- Center for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Kenneth C Nystrom
- Department of Anthropology, State University of New York at New Paltz, New Paltz, New York, USA
| | | | - Tracy L Prowse
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Gwen Robbins Schug
- Environmental Health Program, University of North Carolina, Greensboro, North Carolina, USA
| | | | - Jessica E Rothwell
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Ana Luisa Santos
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Christopher Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Anne C Stone
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Kyra E Stull
- Department of Anthropology, University of Nevada, Reno, Reno, Nevada, USA
| | - Daniel H Temple
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Christina M Torres
- Department of Anthropology and Heritage Studies, University of California, Merced, USA, and Instituto de Arqueología y Antropología, Universidad Católica del Norte, Antofagasta, Chile
| | - J Marla Toyne
- Department of Anthropology, University of Central Florida, Orlando, Florida, USA
| | - Tiffiny A Tung
- Department of Anthropology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jaime Ullinger
- Bioanthropology Research Institute, Quinnipiac University, Hamden, Connecticut, USA
| | | | | |
Collapse
|
4
|
Li T, Zhang S, Yang Y, Zhang L, Yuan Y, Zou J. Co-regulation of circadian clock genes and microRNAs in bone metabolism. J Zhejiang Univ Sci B 2022; 23:529-546. [PMID: 35794684 DOI: 10.1631/jzus.b2100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tingting Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shihua Zhang
- College of Graduate Education, Jinan Sport University, Jinan 250102, China
| | - Yuxuan Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Xu Y, Ma J, Xu G, Ma D. Recent advances in the epigenetics of bone metabolism. J Bone Miner Metab 2021; 39:914-924. [PMID: 34250565 DOI: 10.1007/s00774-021-01249-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022]
Abstract
Osteoporosis is a common form of metabolic bone disease that is costly to treat and is primarily diagnosed on the basis of bone mineral density. As the influences of genetic lesions and environmental factors are increasingly studied in the pathological development of osteoporosis, regulated epigenetics are emerging as the important pathogenesis mechanisms in osteoporosis. Recently, osteoporosis genome-wide association studies and multi-omics technologies have revealed that susceptibility loci and the misregulation of epigenetic modifiers are key factors in osteoporosis. Over the past decade, extensive studies have demonstrated epigenetic mechanisms, such as DNA methylation, histone/chromatin modifications, and non-coding RNAs, as potential contributing factors in osteoporosis that affect disease initiation and progression. Herein, we review recent advances in epigenetics in osteoporosis, with a focus on exploring the underlying mechanisms and potential diagnostic/prognostic biomarker applications for osteoporosis.
Collapse
Affiliation(s)
- Yuexin Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Changzheng Hospital, Second Military Medical University, Shanghai, 20000, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Quadros M, Momin M, Verma G. Design strategies and evolving role of biomaterial assisted treatment of osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111875. [PMID: 33579498 DOI: 10.1016/j.msec.2021.111875] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is the most commonly diagnosed form of bone cancer. It is characterized by a high risk of developing lung metastasis as the disease progresses. Standard treatment includes combination of surgical intervention, chemotherapy and radiotherapy. However, the non-specificity of potent chemotherapeutic agents often leads to major side effects. In this review, we discuss the role of various classes of biomaterials, including both organic as well as inorganic in realizing the local and systemic delivery of therapeutic agents like drugs, radioisotopes and even gene silencing agents to treat osteosarcoma. Biomaterial assisted unconventional therapies such as targeted therapy, nanotherapy, magnetic hyperthermia, gene therapy, photothermal and photodynamic therapies are also being explored. A wide variety of biomaterials including lipids, carbon-based materials, polymers, silica, bioactive glass, hydroxyapatite and metals are designed as delivery systems with the desired loading efficiency, release profile, and on-demand delivery. Among others, liposomal carriers have attracted a great deal of attention due to their capability to encapsulate both hydrophobic and hydrophilic drugs. Polymeric systems have high drug loading efficiency and stability and can even be tailored to achieve desired size and physiochemical properties. Carbon-based systems can also be seen as an upcoming class of therapeutics with great potential in treating different types of cancer. Inorganic materials like silica nanoparticles have high drug payload owing to their mesoporous structure. On the other hand, ceramic materials like bioactive glass and hydroxyapatite not only act as excellent delivery vectors but also participate in osteo-regeneration activity. These multifunctional biomaterials are also being investigated for their theranostic abilities to monitor cancer ablation. This review systematically discusses the vast landscape of biomaterials along with their challenges and respective opportunities for osteosarcoma therapy.
Collapse
Affiliation(s)
- Mural Quadros
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India; Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India.
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar 400 094, India.
| |
Collapse
|
7
|
Trifirò G, Mora S, Marelli S, Luzi L, Pini A. Increased fracture rate in children and adolescents with Marfan syndrome. Bone 2020; 135:115333. [PMID: 32222606 DOI: 10.1016/j.bone.2020.115333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 11/26/2022]
Abstract
Marfan syndrome (MFS) is an autosomal genetic disorder of connective tissue, due to alterated fibrillin-1. The aim of our study was to verify the rate of fractures in children with MFS in correlation to bone mineral density and compare the prevalence to the general population in the same latitude. We enrolled 80 patients (37 girls and 43 boys) with the diagnosis of Marfan syndrome, median age 10 y (3 to 17 years). Fracture occurrence was inferred from medical records of patients with MFS. Bone mineral density (BMD) was measured at lumbar spine, femoral neck and total femur by dual-energy x-ray absorptiometry. BMD values were expressed as z-scores, and adjusted for height using height-for-age z-scores. Bone turnover markers and vitamin D were measured. We assessed incidence of fracture in general pediatric population of our geographic area (45°N latitude). A total of 24 fractures were recorded in 21 patients (15 boys and 6 girls), involving both short and long bones, due to mild or moderate trauma. An incidence estimate has been calculated for each year, and an average incidence of 29.2/1000 MFS patients was obtained, markedly higher (P=0.034) than the incidence of fracture calculated in the same geographical area in pediatric patients (15.8/1000). We did not detect differences in anthropometric measurements, BMD values and biochemical indices between patients who fractured and patients who did not. Similarly, no differences were found between patients on losartan therapy and patients not in treatment for the same variables. In conclusion, the incidence of fractures was higher in patients with MFS compared to general population of the same age and latitude. The management of MFS must account bone status health and start strategies of fracture prevention.
Collapse
Affiliation(s)
- Giuliana Trifirò
- Endocrinology and Metabolism Division, IRCCS Policlinico San Donato, Milan, Italy.
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Susan Marelli
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, Milan, Italy
| | - Livio Luzi
- Endocrinology and Metabolism Division and Università degli Studi di Milano, IRCCS Policlinico San Donato, Milan, Italy
| | - Alessandro Pini
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
8
|
Wu Y, Zhang H, Tang M, Guo C, Deng A, Li J, Wang Y, Xiao L, Yang G. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis. J Transl Med 2020; 18:210. [PMID: 32448279 PMCID: PMC7245753 DOI: 10.1186/s12967-020-02367-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background The etiology of congenital scoliosis (CS) is complex and uncertain. Abnormal DNA methylation affects the growth and development of spinal development. In this study, we investigated the role of DNA methylation in CS. Methods The target region DNA methylation level in the peripheral blood of patients with CS was analyzed. Through in-depth analysis, genes closely related to the growth and development of the vertebra were identified. EdU staining was performed to verify the role of differentially expressed genes in chondrocyte proliferation. Results The hypermethylated KAT6B gene was observed in patients with CS, and was positively correlated with the Cobb angle. KAT6B was primarily expressed on chondrocytes. The promoter of KAT6B in CS patients was hypermethylated, and its expression was significantly reduced. Further mechanistic studies revealed that EZH2 mediated trimethylation of lysine 27 on histone H3 of the KAT6B promoter. Overexpression of KAT6B in CS-derived primary chondrocytes can significantly promote chondrocyte proliferation, which may be related to activation of the RUNX2/Wnt/β-catenin signaling pathway. Conclusion Epigenetic modification of KAT6B may be a cause of CS. If similar epigenetic modification abnormalities can be detected through maternal liquid biopsy screening, they may provide useful biomarkers for early screening and diagnosis of CS.
Collapse
Affiliation(s)
- Yuantao Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.
| | - Mingxing Tang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.
| | - Chaofeng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Ang Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Lige Xiao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Guanteng Yang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| |
Collapse
|
9
|
Wang XJ, Liu JW, Liu J. MiR-655-3p inhibits the progression of osteoporosis by targeting LSD1 and activating BMP-2/Smad signaling pathway. Hum Exp Toxicol 2020; 39:1390-1404. [PMID: 32431171 DOI: 10.1177/0960327120924080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is one of the most common chronic metabolic bone diseases in the seniors and postmenopausal women. Plenty of microRNAs (miRNAs) have been confirmed to be involved in OP progression. However, the role of miR-655-3p in osteogenic differentiation and bone formation was still unclear. In this study, we aimed to investigate the cellular function of miR-655-3p and its underlying mechanism in OP. We found that miR-655-3p expression was downregulated in both ovariectomized (OVX) mice bone tissues and MC3T3-E1 cells treated with simulated microgravity (MG). MiR-655-3p overexpression facilitated cell differentiation but suppressed cell apoptosis of MC3T3-E1 cells induced by simulated MG. Mechanistically, we confirmed that lysine-specific histone demethylase 1 (LSD1) is a downstream target gene of miR-655-3p. Furthermore, overexpression of miR-655-3p activated the bone morphogenetic protein 2 (BMP-2)/decapentaplegic homolog (Smad) signaling pathway by suppressing LSD1 expression. Moreover, LSD1 knockdown accelerated osteogenic differentiation and inhibited apoptosis in MC3T3-E1 cells under simulated MG. Additionally, the OVX mouse model was established to investigate the role of miR-655-3p/LSD1 axis in vivo. The results demonstrated that LSD1 could reverse the effects triggered by the injection of adeno-associated virus-miR-655-3p on OP development. Further investigations revealed that miR-655-3p boosted osteogenic differentiation through LSD1/BMP-2/Smad signaling pathway. In summary, these findings implied a potential value of miR-655-3p in OP therapy.
Collapse
Affiliation(s)
- X-J Wang
- Department of Orthopedics, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - J-W Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - J Liu
- Department of Orthopedics, Traditional Chinese Medicine Hospital Dianjiang Chongqing, Chongqing, China
| |
Collapse
|
10
|
Cho YD, Kim BS, Kim WJ, Kim HJ, Baek JH, Woo KM, Seol YJ, Ku Y, Ryoo HM. Histone acetylation together with DNA demethylation empowers higher plasticity in adipocytes to differentiate into osteoblasts. Gene 2020; 733:144274. [DOI: 10.1016/j.gene.2019.144274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
11
|
Wang A, Ren M, Song Y, Wang X, Wang Q, Yang Q, Liu H, Du Z, Zhang G, Wang J. MicroRNA Expression Profiling of Bone Marrow Mesenchymal Stem Cells in Steroid-Induced Osteonecrosis of the Femoral Head Associated with Osteogenesis. Med Sci Monit 2018; 24:1813-1825. [PMID: 29590087 PMCID: PMC5887684 DOI: 10.12659/msm.909655] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a common orthopedic disease associated with the application of glucocorticoid (GC). In this study, we detected the microRNAs (miRNAs) differentially expressed in bone marrow mesenchymal stem cells (BMSCs) from SONFH patients, and target gene predictions were performed, and the functions of the target genes was verified. MATERIAL AND METHODS BMSCs collected from patients with SONFH and femoral neck fracture (FNF) constituted the SONFH group (n=3) and FNF (control) group (n=3), respectively. MiRNA microarray analysis was utilized to detect the differentially expressed miRNAs, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the microarray results. The target genes and functions of the differentially expressed miRNAs were analyzed using a bioinformatics database. RESULTS The microarray results revealed that compared with the control group, 22 miRNAs were identified differentially expressed in the SONFH group, with 17 upregulated and 5 downregulated. Further qRT-PCR validation of differentially expressed miRNAs confirmed that hsa-miR-601, hsa-miR-452-3p, hsa-miR-647, and hsa-miR-516b-5p were significantly increased, whereas hsa-miR-122-3p was significantly decreased. During osteogenic differentiation, hsa-miR-601, hsa-miR-452-3p, hsa-miR-647, hsa-miR-516b-5p, and hsa-miR-127-5p were significantly downregulated, whereas hsa-miR-122-3p was significantly upregulated, and miRNAs showed a converse tendency during adipogenic differentiation. CONCLUSIONS Six miRNAs associated with osteogenic and adipogenic differentiation were identified differentially expressed in the BMSCs of SONFH patients; these miRNAs may serve as novel biomarkers or therapeutic targets for SONFH.
Collapse
Affiliation(s)
- Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ming Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yang Song
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xiaonan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Qingyu Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Qiwei Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Zhenwu Du
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Guizhen Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|