1
|
Cheng L, Lu J, Xiang Q, Cao XM. Revisiting Heterolytic Cleavage Mechanism of Methane C-H Bond Activation over Metal Oxide Surfaces. J Phys Chem Lett 2025; 16:2460-2467. [PMID: 40016237 DOI: 10.1021/acs.jpclett.5c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The understanding of C-H bond activation could facilitate the design of improved catalysts for the conversion of methane to valuable products. However, its mechanism remains controversial, particularly with regard to metal oxides. This study aims to shed light on this issue by systematically investigating methane C-H bond activation across various pristine metal oxide surfaces and revisiting the prevailing heterolytic cleavage mechanism. It is found that the so-called "heterolytic cleavage mechanism" for methane activation could be classified into two distinct mechanisms on bare metal oxide surfaces: the real heterolytic cleavage mechanism over flat nonreducible alkali and alkaline-earth metal oxide surfaces (N-MOSs) and a ligand-to-metal charge transfer (LMCT)-enabled hydrogen atom transfer (HAT) mechanism over reducible metal oxide surfaces (R-MOSs). The dominant mechanism is determined by the Coulomb interaction between methane and the surface at the transition state and the energy of LMCT (ELMCT). Strong Coulomb interactions favor the heterolytic cleavage mechanism on bare N-MOSs, while the opposite favors the LMCT-enabled HAT mechanism on R-MOSs. Nevertheless, the heterolytic cleavage mechanism might have difficulty occurring under the reaction conditions of methane oxidation since the strong chemisorption of dioxygen over alkali and alkaline metal oxide surfaces would render the methane far from the surface, significantly weakening the Coulomb interaction. Doping can manipulate the electronic structure of lattice oxygen, potentially reducing ELMCT and even bypassing LMCT to directly generate reactive oxygen radicals, thus accelerating C-H activation. Additionally, these distinct mechanisms can influence subsequent steps, such as C-O coupling. C-H bond activation through the LMCT-enabled mechanism would be a prerequisite to trigger C-O coupling. This study provides valuable insights into the design of targeted catalysts with desired activity and selectivity for efficient and controlled methane conversion.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaye Lu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Xiang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Ming Cao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Meng L, Jia Y, Wu S. Efficient photothermal catalytic methane dry reforming over rich oxygen vacancy catalysts. Chem Commun (Camb) 2025; 61:2301-2304. [PMID: 39803960 DOI: 10.1039/d4cc05818f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The catalysts of Ni nanoparticles supported on ZrO2, La2O3 and La2Zr2O7 were prepared and employed in photothermal catalytic DRM. High yield of H2 and CO (76.2 and 99.1 mmol g-1 min-1) and excellent durability (50 h) were achieved merely under focused light irradiation. 10Ni/La2O3 exhibited better resistance to carbon deposition compared to 10Ni/ZrO2 and 10Ni/La2Zr2O7. Structural characterization and experimental data indicated that La2O3 has abundant oxygen vacancies, which can adsorb and activate CO2 to produce reactive oxygen species. Oxygen species transfer to nickel nanoparticles through the strong Ni-La2O3 interface to accelerate carbon oxidation. The experimental results indicated that light illumination can not only drive DRM reactions through photothermal conversion, but also improve catalytic activity by reducing the activation energy of reaction molecules and stability by increasing the oxygen vacancies.
Collapse
Affiliation(s)
- Lingxin Meng
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yuteng Jia
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Shaowen Wu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
3
|
Hamamoto N, Kawahara T, Hagiwara R, Matsuo K, Matsukawa K, Hinuma Y, Toyao T, Shimizu KI, Kamachi T. Effect of the surface morphology of alkaline-earth metal oxides on the oxidative coupling of methane. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 26:2435801. [PMID: 39777121 PMCID: PMC11703441 DOI: 10.1080/14686996.2024.2435801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
Alkaline-earth metal oxides with the rocksalt structure, which are simple ionic solids, have attracted attention in attempts to gain fundamental insights into the properties of metal oxides. The surfaces of alkaline-earth metal oxides are considered promising catalysts for the oxidative coupling of methane (OCM); however, the development of such catalysts remains a central research topic. In this paper, we performed first-principles calculations to investigate the ability of four alkaline-earth metal oxides (MgO, CaO, SrO, and BaO) to catalyze the OCM. We adopted five types of surfaces of rocksalt phases as research targets: the (100), (110), stepped (100), oxygen-terminated octopolar (111), and metal-terminated octopolar (111) surfaces. We found that the formation energy of surface O vacancies is a good descriptor for the adsorption energy of a H atom and a methyl radical. The energies related to the OCM mechanism show that, compared with the most stable surface, the minor surfaces better promote the C - H bond cleavage of methane. However, as the trade-off for this advantage, the minor surfaces exhibit increased affinity for the methyl radical. On the basis of this trade-off relationship between properties, we identified several surfaces that we expect to be promising OCM catalysts. Our investigation of the temperature dependence of the Gibbs free energy indicated that, at higher temperatures, the step (100) surface exhibits properties that might benefit the OCM mechanism.
Collapse
Affiliation(s)
- Nobutsugu Hamamoto
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| | - Takakazu Kawahara
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Ryoto Hagiwara
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Kohei Matsuo
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Kodai Matsukawa
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Kamachi
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Fukuoka, Japan
| |
Collapse
|
4
|
Rahman MS, Paudyal N, Hill LD, Zhou J, Xu Y. The Structure, Oxidation States, and Energetics of Co Nanoparticles on CeO 2(111): An STM and DFT Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18430-18441. [PMID: 39502805 PMCID: PMC11533201 DOI: 10.1021/acs.jpcc.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/08/2024]
Abstract
Co nanoparticles (NPs) dispersed on ceria have been widely studied as active catalytic materials for many industrially relevant reactions. The detailed nature of such particles and the factors affecting their interaction with ceria remain to be better understood. In this study, a very low coverage (∼0.02 ML) of Co is deposited on a model CeO2(111) thin-film surface and is examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The Co NPs that nucleate on terrace sites grow with coverage in this range to a maximum size of ca. 40 Co atoms, with an average diameter and height of 16.1 and 1.1 Å, respectively. Global minimization of the structures of Co NPs consisting of up to 23 Co atoms on CeO2(111) is performed based on the minima hopping algorithm and density functional theory (DFT) calculations, and the energetic and chemical properties of the resulting NPs are analyzed. While the theoretical findings are consistent with the STM observations on the strong Co-ceria interactions and the prevalence of oxidic Co species, some notable discrepancies are identified, including inconsistent aspect ratios and the existence of a low oxidation state Coδ+ species. The combined experimental and theoretical findings provide new insights into Co NPs formed on ceria and identify areas requiring further investigation.
Collapse
Affiliation(s)
- Md. Saeedur Rahman
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Nishan Paudyal
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Linze Du Hill
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jing Zhou
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Ye Xu
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Piliai L, Castro-Latorre P, Pchálek F, Oveysipoor S, Kosto Y, Khalakhan I, Skála T, Neyman KM, Alemany P, Vorochta M, Bruix A, Matvija P, Matolínová I. Electronic and Structural Properties of Thin Iron Oxide Films on CeO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46858-46871. [PMID: 39167683 PMCID: PMC11378155 DOI: 10.1021/acsami.4c05542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Modification of CeO2 (ceria) with 3d transition metals, particularly iron, has been proven to significantly enhance its catalytic efficiency in oxidation or combustion reactions. Although this phenomenon is widely reported, the nature of the iron-ceria interaction responsible for this improvement remains debated. To address this issue, we prepared well-defined model FeOx/CeO2(111) catalytic systems and studied their structure and interfacial electronic properties using photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction, coupled with density functional theory (DFT) calculations. Our results show that under ultrahigh vacuum conditions, Fe deposition leads to the formation of small FeOx clusters on the ceria surface. Subsequent annealing results in the growth of large amorphous FeOx particles and a 2D FeOx layer. Annealing in an oxygen-rich atmosphere further oxidizes iron up to the Fe3+ state and improves the crystallinity of both the 2D layer and the 3D particles. Our DFT calculations indicate that the 2D FeOx layer interacts strongly with the ceria surface, exhibiting structural corrugations and transferred electrons between Fe2+/Fe3+ and Ce4+/Ce3+ redox pairs. The novel 2D FeOx/CeO2(111) phase may explain the enhancement of the catalytic properties of CeO2 by iron. Moreover, the corrugated 2D FeOx layer can serve as a template for the ordered nucleation of other catalytically active metals, in which the redox properties of the 2D FeOx/CeO2(111) system are exploited to modulate the charge of the supported metals.
Collapse
Affiliation(s)
- Lesia Piliai
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Pablo Castro-Latorre
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - František Pchálek
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Shiva Oveysipoor
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Yuliia Kosto
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Strasse 1, Cottbus 03046, Germany
| | - Ivan Khalakhan
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Tomáš Skála
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona 08010, Spain
| | - Pere Alemany
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Michael Vorochta
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Albert Bruix
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Peter Matvija
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Iva Matolínová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| |
Collapse
|
6
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|
7
|
Peraça CST, Bittencourt AFB, Bezerra RC, Da Silva JLF. Atomistic insights from DFT calculations into the catalytic properties on ceria-lanthanum clusters for methane activation. J Chem Phys 2024; 160:244108. [PMID: 38920399 DOI: 10.1063/5.0198986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Improving the catalytic performance of materials based on cerium oxide (CeO2) for the activation of methane (CH4) can be achieved through the following strategies: mixture of CeO2 with different oxides (e.g., CeO2-La2O3) and the use of particles with different sizes. In this study, we present a theoretical investigation of the initial CH4 dehydrogenation on (La2Ce2O7)n clusters, where n = 2, 4, and 6. Our framework relies on density functional theory calculations combined with the unity bond index-quadratic exponential potential approximation. Our results indicate that chemical species arising from the first dehydrogenation of CH4, that is, CH3 and H, bind through the formation of C-O and H-O bonds with the clusters, respectively. The coordination of the adsorption site and the chemical environment plays a crucial role in the magnitude of the adsorption energy; for example, species adsorb more strongly in the low-coordinated topO sites located close to the La atoms. Thus, it affects the activation energy barrier, which tends to be lower in configurations where the adsorption of the chemical species is stronger. During CH4 dehydrogenation, the CH3 radical can be present in a planar or tetrahedral configuration. Its conformation changes as a function of the charge transference between the molecule and the cluster, which depends on the CH3-cluster distance. Finally, we analyze the effects of the Hubbard effective parameter (Ueff) on adsorption properties, as the magnitude of localization of Ce f-states affects the hybridization of the interaction between the molecule and the clusters and hence the magnitude of the adsorption energies. We obtained a linear decrease in the adsorption energies by increasing the Ueff parameter; however, the activation energy is only slightly affected.
Collapse
Affiliation(s)
- Carina S T Peraça
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Albert F B Bittencourt
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Raquel C Bezerra
- Secretaria de Estado de Educação e Qualidade do Ensino (SEDUC) do Estado do Amazonas, Escola Áurea Pinheiro Braga Av. Perimentral, s/n, Lot. Cidade do Leste, Gilberto Mestrinho, 69089-340 Manaus, AM, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
8
|
Xu N, Xu L, Wang Y, Liu W, Xu W, Hu X, Han ZK. Unraveling the formation of oxygen vacancies on the surface of transition metal-doped ceria utilizing artificial intelligence. NANOSCALE 2024; 16:9853-9860. [PMID: 38712569 DOI: 10.1039/d3nr05950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ceria has been extensively utilized in different fields, with surface oxygen vacancies playing a central role. However, versatile oxygen vacancy regulation is still in its infancy. In this work, we propose an effective strategy to manipulate the oxygen vacancy formation energy via transition metal doping by combining first-principles calculations and analytical learning. We elucidate the underlying mechanism driving the formation of oxygen vacancies using combined symbolic regression and data analytics techniques. The results show that the Fermi level of the system and the electronegativity of the dopants are the paramount parameters (features) influencing the formation of oxygen vacancies. These insights not only enhance our understanding of the oxygen vacancy formation mechanism in ceria-based materials to improve their functionality but also potentially lay the groundwork for future strategies in the rational design of other transition metal oxide-based catalysts.
Collapse
Affiliation(s)
- Ning Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Yue Wang
- Department of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiaojuan Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
9
|
Chen PW, Maiti D, Liu RF, Grabow LC, Harold MP. Tailored Platinum Group Metal/Spinel Oxide Catalysts for Dynamically Enhanced Methane Oxidation. ACS ENGINEERING AU 2024; 4:193-203. [PMID: 38646517 PMCID: PMC11027098 DOI: 10.1021/acsengineeringau.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 04/23/2024]
Abstract
A combined experimental and molecular modeling study identifies a family of spinel oxides that in combination with PGM (platinum group metals) provide enhanced methane oxidation activity. With a reduction in greenhouse gas (GHG) emissions urgently needed, there is renewed interest in the use of natural gas vehicles (NGVs) and engines (NGEs) for transportation, commerce, and industrial applications. NGVs and NGEs emit less CO2 than their petroleum-derived counterparts but may emit uncombusted methane, an even more potent GHG. For stoichiometric engines, methane oxidation catalysts containing PGM and spinel oxide in layered architectures offer increased methane oxidation activity and lower light-off temperatures (T50). The reducible spinel oxide has direct and indirect roles that are effectively described by the bulk oxygen vacancy formation energy (Evac). We apply density functional theory (DFT) to identify several earth-abundant, cobalt-rich spinel oxides with favorable Evac, shown to correlate with dynamic oxygen storage capacity (DOSC) and CO and H2 oxidation activity. We experimentally rank-order the DFT-identified spinel oxides in combination with Pt+Pd for their methane oxidation activity measurements, under both time-invariant and modulated feed conditions. We show good agreement between the activity and the DFT-computed reducibility of the spinel oxide. The findings suggest spinel reducibility is a key factor in achieving enhanced low-temperature methane conversion, enabled through a balance of methane activation on the PGM sites and subsequent oxidation of the intermediates and byproducts on spinel oxides. In agreement with its computationally predicted Evac, NiCo2O4 was confirmed to have the highest DOSC and lowest T50 among the tested spinel samples.
Collapse
Affiliation(s)
- Pak Wing Chen
- William
A Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Debtanu Maiti
- William
A Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ru-Fen Liu
- CDTi
Advanced Materials, Inc., 1641 Fiske Place, Oxnard, California 93033, United States
| | - Lars C. Grabow
- William
A Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Texas
Center for Superconductivity at the University of Houston (TcSUH), Houston, Texas 77204, United States
| | - Michael P. Harold
- William
A Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Maeda R, Sampei H, Nakayama R, Higo T, Koshizuka Y, Bando Y, Komanoya T, Nakahara Y, Sekine Y. Effect of CeO 2 support structure on the catalytic performance of ammonia synthesis in an electric field at low temperatures. RSC Adv 2024; 14:9869-9877. [PMID: 38528930 PMCID: PMC10962022 DOI: 10.1039/d4ra01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Ammonia is an extremely important storage and transport medium for renewable energy, and technology is expected to produce it on demand and onsite using renewable energy. Applying a DC (direct current) to a solid catalyst layer with semiconducting properties makes ammonia synthesis highly efficient, even at low temperatures (approximately 400 K). In this process, oxide supports with semiconducting properties play important roles as metal supports and conduction fields for electrons and protons. The influence of the degree of particle aggregation on the support properties and ammonia synthesis using an electric field was evaluated for CeO2, which is the best material for this purpose because of its semiconducting properties. The results showed that controlling the aggregation structure of the crystalline particles could significantly influence the surface conductivity of protons and electrons; thus, the activity could be largely controlled. The Ru-CeO2 interaction could also be controlled by changing the crystallinity, which suppressed the aggregation of the supported Ru and significantly improved the ammonia synthesis activity using an electric field at low temperatures.
Collapse
Affiliation(s)
- Ryuku Maeda
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku 169-8555 Tokyo Japan
| | - Hiroshi Sampei
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku 169-8555 Tokyo Japan
| | - Reika Nakayama
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku 169-8555 Tokyo Japan
| | - Takuma Higo
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku 169-8555 Tokyo Japan
| | - Yoshiki Koshizuka
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku 169-8555 Tokyo Japan
| | - Yoshiro Bando
- Mitsui Mining and Smelting Co. Ltd 1333-2, Haraichi, Ageo 362-0021 Saitama Japan
| | - Tasuku Komanoya
- Mitsui Mining and Smelting Co. Ltd 1333-2, Haraichi, Ageo 362-0021 Saitama Japan
| | - Yunosuke Nakahara
- Mitsui Mining and Smelting Co. Ltd 1333-2, Haraichi, Ageo 362-0021 Saitama Japan
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku 169-8555 Tokyo Japan
| |
Collapse
|
11
|
Yan H, Liu T, Lv Y, Xu X, Xu J, Fang X, Wang X. Doping SnO 2 with metal ions of varying valence states: discerning the importance of active surface oxygen species vs. acid sites for C 3H 8 and CO oxidation. Phys Chem Chem Phys 2024; 26:3950-3962. [PMID: 38250964 DOI: 10.1039/d3cp05840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To elucidate the valence state effect of doping cations, Li+, Mg2+, Cr3+, Zr4+ and Nb5+ with radii similar to Sn4+ (CN = 6) were chosen to dope tetragonal SnO2. Cr3+, Zr4+ and Nb5+ can enter the SnO2 lattice to produce solid solutions, thus creating more surface defects. However, Li+ and Mg2+ can only stay on the SnO2 surface as nitrates, thus suppressing the surface defects. The rich surface defects facilitate the generation of active O2-/Oδ- and acid sites on the solid solution catalysts, hence improving the reactivity. On the solid solution catalysts active for propane combustion, several reactive intermediates can be formed, but are negligible on those with low activity. It is confirmed that for propane combustion, surface acid sites play a more vital role than active oxygen sites. Nevertheless, for CO oxidation, the active oxygen sites play a more vital role than the acid sites.
Collapse
Affiliation(s)
- Haiming Yan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Teng Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Yu Lv
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Xianglan Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Junwei Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Xiuzhong Fang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Xiang Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| |
Collapse
|
12
|
Denison SB, Jin P, Dias Da Silva P, Chu C, Moorthy B, Senftle TP, Zygourakis K, Alvarez PJJ. Pyro-Catalytic Degradation of Pyrene by Bentonite-Supported Transition Metals: Mechanistic Insights and Trade-Offs with Low Pyrolysis Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14373-14383. [PMID: 37683087 DOI: 10.1021/acs.est.3c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Transition metal catalysts can significantly enhance the pyrolytic remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Significantly higher pyrene removal efficiency was observed after the pyrolytic treatment of Fe-enriched bentonite (1.8% wt ion-exchanged content) relative to natural bentonite or soil (i.e., 93% vs 48% and 4%) at the unprecedentedly low temperature of 150 °C with only 15 min treatment time. DFT calculations showed that bentonite surfaces with Fe3+ or Cu2+ adsorb pyrene stronger than surfaces with Zn2+ or Na+. Enhanced pyrene adsorption results from increased charge transfer from its aromatic π-bonds to the cation site, which destabilizes pyrene allowing for faster degradation at lower temperatures. UV-Vis and GC-MS analyses revealed pyrene decomposition products in extracts of samples treated at 150 °C, including small aromatic compounds. As the pyrolysis temperature increased above 200 °C, product distribution shifted from extractable compounds to char coating the residue particles. No extractable byproducts were detected after treatment at 400 °C, indicating that char was the final product of pyrene decomposition. Tests with human lung cells showed that extracts of samples pyrolyzed at 150 °C were toxic; thus, high removal efficiency by pyrolytic treatment does not guarantee detoxification. No cytotoxicity was observed for extracts from Fe-bentonite samples treated at 300 °C, inferring that char is an appropriate treatment end point. Overall, we demonstrate that transition metals in clay can catalyze pyrolytic reactions at relatively low temperatures to decrease the energy and contact times required to meet cleanup standards. However, mitigating residual toxicity may require higher pyrolysis temperatures.
Collapse
Affiliation(s)
- Sara B Denison
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Peixuan Jin
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Priscilla Dias Da Silva
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Chun Chu
- Neonatology Research Program, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Bhagavatula Moorthy
- Neonatology Research Program, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Kyriacos Zygourakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Hamdani IR, Ahmad A, Chulliyil HM, Srinivasakannan C, Shoaibi AA, Hossain MM. Thermocatalytic Decomposition of Methane: A Review on Carbon-Based Catalysts. ACS OMEGA 2023; 8:28945-28967. [PMID: 37599913 PMCID: PMC10433352 DOI: 10.1021/acsomega.3c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
The global initiatives on sustainable and green energy resources as well as large methane reserves have encouraged more research to convert methane to hydrogen. Catalytic decomposition of methane (CDM) is one optimistic route to generate clean hydrogen and value-added carbon without the emission of harmful greenhouse gases, typically known as blue hydrogen. This Review begins with an attempt to understand fundamentals of a CDM process in terms of thermodynamics and the prerequisite characteristics of the catalyst materials. In-depth understanding of rate-determining steps of the heterogeneous catalytic reaction taking place over the catalyst surfaces is crucial for the development of novel catalysts and process conditions for a successful CDM process. The design of state-of-the-art catalysts through both computational and experimental optimizations is the need of hour, as it largely governs the economy of the process. Recent mono- and bimetallic supported and unsupported materials used in CDM process have been highlighted and classified based on their performances under specific reaction conditions, with an understanding of their advantages and limitations. Metal oxides and zeolites have shown interesting performance as support materials for Fe- and Ni-based catalysts, especially in the presence of promoters, by developing strong metal-support interactions or by enhancing the carbon diffusion rates. Carbonaceous catalysts exhibit lower conversions without metal active species and largely result in the formation of amorphous carbon. However, the stability of carbon catalysts is better than that of metal oxides at higher temperatures, and the overall performance depends on the operating conditions, catalyst properties, and reactor configurations. Although efforts to summarize the state-of-art have been reported in literature, they lack systematic analysis on the development of stable and commercially appealing CDM technology. In this work, carbon catalysts are seen as promising futuristic pathways for sustained H2 production and high yields of value-added carbon nanomaterials. The influence of the carbon source, particle size, surface area, and active sites on the activity of carbon materials as catalysts and support templates has been demonstrated. Additionally, the catalyst deactivation process has been discussed, and different regeneration techniques have been evaluated. Recent studies on theoretical models towards better performance have been summarized, and future prospects for novel CDM catalyst development have been recommended.
Collapse
Affiliation(s)
- Iqra R. Hamdani
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Adeel Ahmad
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Haleema M. Chulliyil
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Chandrasekar Srinivasakannan
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed A. Shoaibi
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mohammad M. Hossain
- Department
of Chemical Engineering, King Fahad University
of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Chen X, Shi X, Chen P, Liu B, Liu M, Chen L, Ye D, Tu X, Fan W, Wu J. Unlocking High-Efficiency Methane Oxidation with Bimetallic Pd-Ce Catalysts under Zeolite Confinement. ACS ENVIRONMENTAL AU 2023; 3:223-232. [PMID: 37483303 PMCID: PMC10360205 DOI: 10.1021/acsenvironau.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/25/2023]
Abstract
Catalytic complete oxidation is an efficient approach to reducing methane emissions, a significant contributor to global warming. This approach requires active catalysts that are highly resistant to sintering and water vapor. In this work, we demonstrate that Pd nanoparticles confined within silicalite-1 zeolites (Pd@S-1), fabricated using a facile in situ encapsulation strategy, are highly active and stable in catalyzing methane oxidation and are superior to those supported on the S-1 surface due to a confinement effect. The activity of the confined Pd catalysts was further improved by co-confining a suitable amount of Ce within the S-1 zeolite (PdCe0.4@S-1), which is attributed to confinement-reinforced Pd-Ce interactions that promote the formation of oxygen vacancies and highly reactive oxygen species. Furthermore, the introduction of Ce improves the hydrophobicity of the S-1 zeolite and, by forming Pd-Ce mixed oxides, inhibits the transformation of the active PdO phase to inactive Pd(OH)2 species. Overall, the bimetallic PdCe0.4@S-1 catalyst delivers exceptional outstanding activity and durability in complete methane oxidation, even in the presence of water vapor. This study may provide new prospects for the rational design of high-performance and durable Pd catalysts for complete methane oxidation.
Collapse
Affiliation(s)
- Xiaomai Chen
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuefeng Shi
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bowen Liu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Meiyin Liu
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Longwen Chen
- College
of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Daiqi Ye
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Wei Fan
- Department
of Chemical Engineering, University of Massachusetts—Amherst, Amherst, Massachusetts 01003, United States
| | - Junliang Wu
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Hydroperoxyl-mediated C-H bond activation on Cr single atom catalyst: An alternative to the Fenton mechanism. J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Carlotto S. Al- and Mg-doped SrTiO3 perovskite steps: The catalytic performance for oxidative coupling of methane. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
17
|
Tang Z, Zhang T, Luo D, Wang Y, Hu Z, Yang RT. Catalytic Combustion of Methane: From Mechanism and Materials Properties to Catalytic Performance. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyu Tang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Tao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Decun Luo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Yongjie Wang
- School of Science, Harbin Institute of Technology, Shenzhen518055, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan48109-2136, United States
| |
Collapse
|
18
|
Electrochemical behaviors of copper/manganese-doped ceria cermet as a fuel electrode for high-temperature solid oxide cells. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Razmgar K, Altarawneh M, Oluwoye I, Altarawneh N, Senanayake G. Thermodynamic stability of niobium-doped ceria surfaces. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Pushkar AP, Varghese JJ. Impact of surface-active site heterogeneity and surface hydroxylation in Ni doped ceria catalysts on oxidative dehydrogenation of propane. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Siang T, Jalil A, Liew S, Owgi A, Rahman A. A review on state-of-the-art catalysts for methane partial oxidation to syngas production. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2072450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- T.J. Siang
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - A.A. Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Johor, Malaysia
| | - S.Y. Liew
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - A.H.K. Owgi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - A.F.A. Rahman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
22
|
Promotional Effect of Pt-Doping on the Catalytic Performance of Pt−CeO2 Catalyst for CO Oxidation. Catalysts 2022. [DOI: 10.3390/catal12050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Growing interest in the development of a hydrogen economy means that CO oxidation is increasingly important for upgrading H2-rich fuel gas streams for fuel cells. CeO2-supported catalysts are the most promising candidates for the catalytic oxidation of CO because of their high activity. In the present work, DFT+U calculations were performed to investigate the stability and CO oxidation reactivity of Ptn (n = 1−4) clusters supported on CeO2(111) (Pt/CeO2) and Pt-doped CeO2(111) (Pt/(Pt−Ce)O2) surfaces. The Pt clusters showed similar nucleation behavior on both CeO2 and (Pt−Ce)O2 surfaces. Further, the formation of oxygen vacancies (Ov) was facilitated because of surface charge depletion caused by the dopant Pt. Our DFT results suggest that the interfacial OV plays an important role in the CO oxidation reaction cycle, and the calculated energy barrier for the CO oxidation reaction on the Pt/(Pt−Ce)O2 surface is approximately 0.43 eV lower than that on the surface of the undoped catalyst, suggesting enhanced CO oxidation reactivity. Therefore, the chemical modification of the CeO2 support via doping is an effective strategy for improving the catalytic performance of Pt/CeO2.
Collapse
|
23
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
24
|
Nakano N, Torimoto M, Sampei H, Yamashita R, Yamano R, Saegusa K, Motomura A, Nagakawa K, Tsuneki H, Ogo S, Sekine Y. Elucidation of the reaction mechanism on dry reforming of methane in an electric field by in situ DRIFTs. RSC Adv 2022; 12:9036-9043. [PMID: 35424901 PMCID: PMC8985195 DOI: 10.1039/d2ra00402j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 01/17/2023] Open
Abstract
With increasing expectations for carbon neutrality, dry reforming is anticipated for direct conversion of methane and carbon dioxide: the main components of biogas. We have found that dry reforming of methane in an electric field using a Pt/CeO2 catalyst proceeds with sufficient rapidity even at a low temperature of about 473 K. The effect of the electric field (EF) on dry reforming was investigated using kinetic analysis, in situ DRIFTs, XPS, and DFT calculation. In situ DRIFTs and XPS measurements indicated that the amount of carbonate, which is an adsorbed species of CO2, increased with the application of EF. XPS measurements also confirmed the reduction of CeO2 by the reaction of surface oxygen and CH4. The reaction between CH4 molecules and surface oxygen was promoted at the interface between Pt and CeO2.
Collapse
Affiliation(s)
- Naoya Nakano
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Maki Torimoto
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Hiroshi Sampei
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Reiji Yamashita
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Ryota Yamano
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Koki Saegusa
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Ayaka Motomura
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Kaho Nagakawa
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Hideaki Tsuneki
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Shuhei Ogo
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University Nankoku 783-8502 Japan
- Center for Advanced Marine Core Research, Kochi University Nankoku 783-8502 Japan
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
25
|
Ban T, Yu XY, Kang HZ, Zhang HX, Gao X, Huang ZQ, Chang CR. Design of Single-Atom and Frustrated-Lewis-Pair Dual Active Sites for Direct Conversion of CH4 and CO2 to Acetic Acid. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Su YQ, Qin YY, Wu T, Wu DY. Structure Sensitivity of Ceria-Supported Au Catalysts for CO Oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Alioui O, Badawi M, Erto A, Amin MA, Tirth V, Jeon BH, Islam S, Balsamo M, Virginie M, Ernst B, Benguerba Y. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: a review. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2021.2020518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Oualid Alioui
- Laboratoire de génie des procédés chimiques, LGPC, Université Ferhat ABBAS Sétif-1 19000 Sétif, Algeria
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Université de Lorraine, 54000 Nancy, France
| | - Alessandro Erto
- Dipartimento di Ingegneria Chimica, dei Materiali e Università degli Studi di Napoli, P.leTecchio, 80, 80125, Napoli, Italy
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Kingdom of Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha, Asir, Kingdom of Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha-61411, Asir, Kingdom of Saudi Arabia
| | - Marco Balsamo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli, Italy
| | - Mirella Virginie
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Uni. Artois, UMR 8181 –UCCS – Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, Université de Strasbourg, Strasbourg, France
| | - Yacine Benguerba
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
- Department of process engineering, Faculty of Technology, Ferhat ABBAS Sétif 1 University, 19000 Setif, Algeria
| |
Collapse
|
28
|
Taira K. Dry reforming reactions of CH4 over CeO2/MgO catalysts at high concentrations of H2S, and behavior of CO2 at the CeO2-MgO interface. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Jiang C, Chang X, Wang X, Zhao ZJ, Gong J. Enhanced C–H bond activation by tuning the local environment of surface lattice oxygen of MoO 3. Chem Sci 2022; 13:7468-7474. [PMID: 35872808 PMCID: PMC9241962 DOI: 10.1039/d2sc01658c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
The lattice oxygen on transition metal oxides serves as a critical active site in the dehydrogenation of alkanes, whose activity is determined by electronic properties and environmental structures. Hydrogen affinity has been used as a universal descriptor to predict C–H bond activation, while the understanding of the environmental structure is ambiguous due to its complexity. This paper describes a combined theoretical and experimental study to reveal the activity of lattice oxygen species with different local structures, taking Mo-based oxides and C–H bond activation of low-carbon alkanes as model catalytic systems. Our theoretical work suggests that oxygen species with convex curvature are more active than those with concave curvature. Theoretically, we propose an interpretative descriptor, the activation deformation energy, to quantify the surface reconstruction induced by adsorbates with various environmental structures. Experimentally, a Mo-based polyoxometalate with the convex curvature structure shows nearly five times the initial activity than single-crystal molybdenum oxide with the concave one. This work provides theoretical guidance for designing metal oxide catalysts with high activity. Tuning of the environmental structure near the lattice oxygen of molybdenum oxides can form a favorable spatial structure to enhance the intrinsic activity for C–H bond activation.![]()
Collapse
Affiliation(s)
- Chenggong Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xianhui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
30
|
Wexler RB, Gautam GS, Stechel EB, Carter EA. Factors Governing Oxygen Vacancy Formation in Oxide Perovskites. J Am Chem Soc 2021; 143:13212-13227. [PMID: 34428909 DOI: 10.1021/jacs.1c05570] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.
Collapse
Affiliation(s)
- Robert B Wexler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Gopalakrishnan Sai Gautam
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Ellen B Stechel
- ASU LightWorks and the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-5402, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States.,Office of the Chancellor and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Vernekar D, Dayyan M, Ratha S, Rode CV, Haider M, Khan TS, Jagadeesan D. Direct Oxidation of Cyclohexane to Adipic Acid by a WFeCoO(OH) Catalyst: Role of Brønsted Acidity and Oxygen Vacancies. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dnyanesh Vernekar
- Chemical Engineering and Process Development Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mohammad Dayyan
- Chemical Engineering and Process Development Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Satyajit Ratha
- School of Basic Sciences, Indian Institute of Technology Bhubaneshwar, Bhubaneswar 752050, Odisha, India
| | - Chandrashekhar V. Rode
- Chemical Engineering and Process Development Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - M.Ali Haider
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, Delhi, India
| | - Tuhin Suvra Khan
- Light Stock Processing Division, CSIR Indian Institute of Petroleum, Dehradun 248005, Uttarakhand, India
| | - Dinesh Jagadeesan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
- Environmental Sciences and Sustainable Engineering Center (ESSENCE), Indian Institute of Technology, Palakkad 678 557, Kerala, India
| |
Collapse
|
32
|
Salcedo A, Lustemberg PG, Rui N, Palomino RM, Liu Z, Nemsak S, Senanayake SD, Rodriguez JA, Ganduglia-Pirovano MV, Irigoyen B. Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO 2 Catalyst: Active Sites and the Role of Metal-Support Interactions. ACS Catal 2021; 11:8327-8337. [PMID: 34306812 PMCID: PMC8294006 DOI: 10.1021/acscatal.1c01604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Indexed: 11/28/2022]
Abstract
![]()
Methane steam reforming
(MSR) plays a key role in the production
of syngas and hydrogen from natural gas. The increasing interest in
the use of hydrogen for fuel cell applications demands development
of catalysts with high activity at reduced operating temperatures.
Ni-based catalysts are promising systems because of their high activity
and low cost, but coke formation generally poses a severe problem.
Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS)
indicate that CH4/H2O gas mixtures react with
Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these
species are easy to form and desorb at temperatures below 700 K when
the rate of the MSR process is accelerated. Density functional theory
(DFT) modeling of the reaction over ceria-supported small Ni nanoparticles
predicts relatively low activation barriers between 0.3 and 0.7 eV
for complete dehydrogenation of methane to carbon and the barrierless
activation of water at interfacial Ni sites. Hydroxyls resulting from
water activation allow for CO formation via a COH intermediate with
a barrier of about 0.9 eV, which is much lower than that through a
pathway involving lattice oxygen from ceria. Neither methane nor water
activation is a rate-determining step, and the OH-assisted CO formation
through the COH intermediate constitutes a low-barrier pathway that
prevents carbon accumulation. The interactions between Ni and the
ceria support and the low metal loading are crucial for the reaction
to proceed in a coke-free and efficient way. These results pave the
way for further advances in the design of stable and highly active
Ni-based catalysts for hydrogen production.
Collapse
Affiliation(s)
- Agustín Salcedo
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES, CONICET-UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Pablo G. Lustemberg
- Instituto de Catálisis y Petroleoquímica (ICP, CSIC), 28049 Madrid, Spain
- Instituto de Física Rosario (IFIR, CONICET-UNR), S2000EKF Rosario, Santa Fe, Argentina
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Robert M. Palomino
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zongyuan Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Slavomir Nemsak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | - Beatriz Irigoyen
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES, CONICET-UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
33
|
Polychronopoulou K, AlKhoori AA, Efstathiou AM, Jaoude MA, Damaskinos CM, Baker MA, Almutawa A, Anjum DH, Vasiliades MA, Belabbes A, Vega LF, Zedan AF, Hinder SJ. Design Aspects of Doped CeO 2 for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approach. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22391-22415. [PMID: 33834768 PMCID: PMC8153538 DOI: 10.1021/acsami.1c02934] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CO elimination through oxidation over highly active and cost-effective catalysts is a way forward for many processes of industrial and environmental importance. In this study, doped CeO2 with transition metals (TM = Cu, Co, Mn, Fe, Ni, Zr, and Zn) at a level of 20 at. % was tested for CO oxidation. The oxides were prepared using microwave-assisted sol-gel synthesis to improve catalyst's performance for the reaction of interest. The effect of heteroatoms on the physicochemical properties (structure, morphology, porosity, and reducibility) of the binary oxides M-Ce-O was meticulously investigated and correlated to their CO oxidation activity. It was found that the catalytic activity (per gram basis or TOF, s-1) follows the order Cu-Ce-O > Ce-Co-O > Ni-Ce-O > Mn-Ce-O > Fe-Ce-O > Ce-Zn-O > CeO2. Participation of mobile lattice oxygen species in the CO/O2 reaction does occur, the extent of which is heteroatom-dependent. For that, state-of-the-art transient isotopic 18O-labeled experiments involving 16O/18O exchange followed by step-gas CO/Ar or CO/O2/Ar switches were used to quantify the contribution of lattice oxygen to the reaction. SSITKA-DRIFTS studies probed the formation of carbonates while validating the Mars-van Krevelen (MvK) mechanism. Scanning transmission electron microscopy-high-angle annular dark field imaging coupled with energy-dispersive spectroscopy proved that the elemental composition of dopants in the individual nanoparticle of ceria is less than their composition at a larger scale, allowing the assessment of the doping efficacy. Despite the similar structural features of the catalysts, a clear difference in the Olattice mobility was also found as well as its participation (as expressed with the α descriptor) in the reaction, following the order αCu > αCo> αMn > αZn. Kinetic studies showed that it is rather the pre-exponential (entropic) factor and not the lowering of activation energy that justifies the order of activity of the solids. DFT calculations showed that the adsorption of CO on the Cu-doped CeO2 surface is more favorable (-16.63 eV), followed by Co, Mn, Zn (-14.46, -4.90, and -4.24 eV, respectively), and pure CeO2 (-0.63 eV). Also, copper compensates almost three times more charge (0.37e-) compared to Co and Mn, ca. 0.13e- and 0.10e-, respectively, corroborating for its tendency to be reduced. Surface analysis (X-ray photoelectron spectroscopy), apart from the oxidation state of the elements, revealed a heteroatom-ceria surface interaction (Oa species) of different extents and of different populations of Oa species.
Collapse
Affiliation(s)
- Kyriaki Polychronopoulou
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
| | - Ayesha A. AlKhoori
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
| | - Angelos M. Efstathiou
- Department
of Chemistry, Heterogeneous Catalysis Lab, University of Cyprus, 1 University Avenue, University Campus, 2109 Nicosia, Cyprus
| | - Maguy Abi Jaoude
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
- Department
of Chemistry, Khalifa University of Science
and Technology, Main
Campus, Abu Dhabi 127788, UAE
| | - C. M. Damaskinos
- Department
of Chemistry, Heterogeneous Catalysis Lab, University of Cyprus, 1 University Avenue, University Campus, 2109 Nicosia, Cyprus
| | - Mark A. Baker
- The
Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 4DL, U.K.
| | - Alia Almutawa
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
| | - Dalaver H. Anjum
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
- Department
of Physics, Khalifa University of Science
and Technology, Main
Campus, Abu Dhabi 127788, UAE
| | - Michalis A. Vasiliades
- Department
of Chemistry, Heterogeneous Catalysis Lab, University of Cyprus, 1 University Avenue, University Campus, 2109 Nicosia, Cyprus
| | - Abderrezak Belabbes
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
| | - Lourdes F. Vega
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Main Campus, Abu Dhabi 127788, UAE
- Research
and Innovation Center on CO2 and H2 (RICH),
and Chemical Engineering Department, Khalifa
University, Abu Dhabi 127788, UAE
| | - Abdallah Fathy Zedan
- National
Institute of Laser Enhanced Science, Cairo
University, Giza 12613, Egypt
| | - Steven J. Hinder
- The
Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 4DL, U.K.
| |
Collapse
|
34
|
Murakami K, Mizutani Y, Sampei H, Ishikawa A, Sekine Y. Manipulation of CO adsorption over Me 1/CeO 2 by heterocation doping: Key roles of single-atom adsorption energy. J Chem Phys 2021; 154:164705. [PMID: 33940849 DOI: 10.1063/5.0049582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The performance of metal atoms chemically bonded to oxide supports cannot be explained solely by the intrinsic properties of the metals such as the d-band center. Herein, we present an in-depth study of the correlation between metal-oxide interactions and the properties of the supported metal using CO adsorption on Me1 (Fe1, Co1, and Ni1) loaded over CeO2 (111) doped with divalent (Ca, Sr, and Ba), trivalent (Al, Ga, Sc, Y, and La), and quadrivalent (Hf and Zr) heterocations. CO adsorption over Me1 is strongly dependent on the binding energies of Me1. Two factors led to this trend. First, the extent of the Me1-surface oxygen (Me1-O) bond relaxation during CO adsorption played a key role. Second, the d-band center shifted drastically because of charge transfer to the oxides. The shift is related to the oxophilicity of metals. Adsorption energies of Me1 over oxides include the contributions of the factors described above. Therefore, we can predict the activities of Me1 using the strength of anchoring by oxide supports. Results show that smaller ionic radii of the doped heterocations were associated with more tightly bound Me1. This finding sheds light on the possibility of heterocation-doping manipulating the reactivity of the Me1 catalyst based on theoretical predictions.
Collapse
Affiliation(s)
- Kota Murakami
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yuta Mizutani
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiroshi Sampei
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Atsushi Ishikawa
- National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yasushi Sekine
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
35
|
Doped samarium oxide xerogels for oxidative coupling of methane—Effects of high-valence dopants at very low concentrations. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Murakami K, Mizutani Y, Sampei H, Ishikawa A, Tanaka Y, Hayashi S, Doi S, Higo T, Tsuneki H, Nakai H, Sekine Y. Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO 2(111) surface. Phys Chem Chem Phys 2021; 23:4509-4516. [PMID: 33523062 DOI: 10.1039/d0cp05752e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2 matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2 matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e. surface protonics) and catalytic reaction involving surface protonics (NH3 synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.
Collapse
Affiliation(s)
- Kota Murakami
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rood SC, Pastor‐Algaba O, Tosca‐Princep A, Pinho B, Isaacs M, Torrente‐Murciano L, Eslava S. Synergistic Effect of Simultaneous Doping of Ceria Nanorods with Cu and Cr on CO Oxidation and NO Reduction. Chemistry 2021; 27:2165-2174. [PMID: 33210814 PMCID: PMC7898804 DOI: 10.1002/chem.202004623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/27/2022]
Abstract
Ceria particles play a key role in catalytic applications such as automotive three-way catalytic systems in which toxic CO and NO are oxidized and reduced to safe CO2 and N2 , respectively. In this work, we explore the incorporation of Cu and Cr metals as dopants in the crystal structure of ceria nanorods prepared by a single-step hydrothermal synthesis. XRD, Raman and XPS confirm the incorporation of Cu and Cr in the ceria crystal lattices, offering ceria nanorods with a higher concentration of oxygen vacancies. XPS also confirms the presence of Cr and Cu surface species. H2 -TPR and XPS analysis show that the simultaneous Cu and Cr co-doping results in a catalyst with a higher surface Cu concentration and a much-enhanced surface reducibility, in comparison with either undoped or singly doped (Cu or Cr) ceria nanorods. While single Cu doping enhances catalytic CO oxidation and Cr doping improves catalytic NO reduction, co-doping with both Cu and Cr enhances the benefits of both dopants in a synergistic manner employing roughly a quarter of dopant weight.
Collapse
Affiliation(s)
- Shawn C. Rood
- Centre for Sustainable Chemical TechnologiesDepartment of Chemical EngineeringUniversity of BathClaverton DownBathBA2 7AYUK
| | - Oriol Pastor‐Algaba
- Departament d'Enginyeria Química, Biològica i AmbientalUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Albert Tosca‐Princep
- Departament d'Enginyeria Química, Biològica i AmbientalUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Bruno Pinho
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Mark Isaacs
- Department of ChemistryUniversity College LondonLondonWC1H 0AJUK
| | - Laura Torrente‐Murciano
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Salvador Eslava
- Centre for Sustainable Chemical TechnologiesDepartment of Chemical EngineeringUniversity of BathClaverton DownBathBA2 7AYUK
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
38
|
Koleva IZ, Aleksandrov HA, Neyman KM, Vayssilov GN. Preferential location of zirconium dopants in cerium dioxide nanoparticles and the effects of doping on their reducibility: a DFT study. Phys Chem Chem Phys 2020; 22:26568-26582. [PMID: 33201159 DOI: 10.1039/d0cp05456a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural properties and reducibility of zirconium-doped cerium dioxide systems were studied using periodic plane-wave calculations based on density functional theory. A systematic analysis of the results for nanoparticles of two sizes, Ce40-nZrnO80 ∼ 1.5 nm large and Ce140-nZrnO280 ∼ 2.4 nm large, in comparison with slab model data for Ce1-xZrxO2(111) surface has been performed focusing on specific nanoscale effects. Several loadings of Zr dopants ranging from 0.7 to 50 atomic metal percent have been considered. Subsurface cationic sites of ceria are calculated to be energetically most favourable for doping Zr4+ ions in all models. The system stability with several zirconium ions is defined by the relative stability of the occupied individual Zr4+ positions when only one zirconium ion is present. Data for the Ce70Zr70O280 nanoparticle with an equal number of Ce4+ and Zr4+ cations reveal that atomic orderings of neither separated oxide (Janus-type) particles nor randomly intermixed ones are more stable than the distribution of Zr atoms occupying all cationic positions inside the nanoparticle to minimize the presence of surface zirconium. The basicity of surface oxygen centers in nanoparticles is predicted to be decreased when Zr dopants are located in surface positions. The presence of Zr4+ dopants in CeO2 systems can notably lower the oxygen vacancy formation energy and shows interesting peculiarities at higher Zr loadings. Among them is the higher stability of inner oxygen vacancies in Zr-containing nanoparticles and enhanced oxygen mobility beneficial for application in catalysis and as a solid electrolyte with oxygen ions as charge carriers. Similar to pure ceria, Zr-doped ceria nanoparticles exhibit notably higher reducibility than the corresponding extended systems.
Collapse
Affiliation(s)
- Iskra Z Koleva
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
39
|
Trottier RM, Millican SL, Musgrave CB. Modified Single Iteration Synchronous-Transit Approach to Bound Diffusion Barriers for Solid-State Reactions. J Chem Theory Comput 2020; 16:5912-5922. [PMID: 32786903 DOI: 10.1021/acs.jctc.0c00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we detail an approach to accelerate the computational screening of materials for properties dictated by the kinetics of solid-state diffusion through reliably and rapidly identifying upper and lower bounds to the transition state (TS) energy through our proposed modified single iteration synchronous-transit (MSIST) approach. While this sacrifices providing detailed information of the explicit TS structure, it requires only 30% of the force evaluations of a full nudged elastic band (NEB) TS search and reduces the computational demand to compute estimated diffusion barriers by ∼70% on average. In all 53 cases in which we explicitly compared our results to those of an NEB calculation, the upper and lower bounds identified using this approach bracketed the TS energy calculated with explicit NEB calculations. We use the applications of diffusion of Na+ in potential sodium-ion battery electrodes and oxygen vacancy diffusion in solid-oxide fuel cell electrodes and redox mediators for solar thermochemical hydrogen production to demonstrate the power of MSIST for analyzing the kinetics of bulk diffusion. For Na+ diffusion through 13 proposed electrode materials in which the average diffusion barrier was 0.28 eV, the average difference between the upper and lower bounds was 0.08 eV. An iterative application of this approach to the three materials with the largest difference between their upper and lower bounds further narrowed the average range of the bounded TS energies to 0.04 eV while still requiring fewer force evaluations than an NEB TS calculation. When applied in a high-throughput manner to study 514 diffusion pathways in 97 different materials, the average difference between the upper and lower bounds was 0.33 eV and the average barrier, as calculated by the average of all upper and lower bounds, was ∼1.7 eV. Because the MSIST approach produces explicit errors, i.e., the difference between the upper and lower bounds energies, even predicted barrier ranges with large errors can be reliably modeled with weighted regression techniques. MSIST enables the analysis of the kinetics of solid-state diffusion across larger sets of materials and can thus efficiently provide data to train statistically learned models of diffusion and to develop physical insights into the diffusion process.
Collapse
Affiliation(s)
- Ryan M Trottier
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Samantha L Millican
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Charles B Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
40
|
Abstract
Hydrogen is ubiquitous in catalysis. It is involved in many important reactions such as water splitting, N2 reduction, CO2 reduction, and alkane activation. In this Perspective, we focus on the hydrogen atom and follow its electron as it interacts with a catalyst or behaves as part of a catalyst from a computational point of view. We present recent examples in both nanocluster and solid catalysts to elucidate the parameters governing the strength of the hydrogen-surface interactions based on site geometry and electronic structure. We further show the interesting behavior of hydride in nanometal and oxides for catalysis. The key take-home messages are: (1) the in-the-middle electronegativity and small size of hydrogen give it great versatility in interacting with active sites on nanoparticles and solid surfaces; (2) the strength of hydrogen binding to an active site on a surface is an important descriptor of the chemical and catalytic properties of the surface; (3) the energetics of the hydrogen binding is closely related to the electronic structure of the catalyst; (4) hydrides in nanoclusters and oxides and on surfaces offer unique reactivity for reduction reactions.
Collapse
Affiliation(s)
- Victor Fung
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Guoxiang Hu
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
41
|
Cai W, Dong J, Chen Q, Xu T, Zhai S, Liu X, Cui L, Zhang S. One-pot microwave-assisted synthesis of Cu-Ce0.8Zr0.2O2 with flower-like morphology: Enhanced stability for ethanol dry reforming. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Taira K, Sugiyama T, Einaga H, Nakao K, Suzuki K. Promoting effect of 2000 ppm H2S on the dry reforming reaction of CH4 over pure CeO2, and in situ observation of the behavior of sulfur during the reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Structure-activity relationship in Pd/CeO2 methane oxidation catalysts. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63510-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Zheng X, Li Y, Zheng Y, Shen L, Xiao Y, Cao Y, Zhang Y, Au C, Jiang L. Highly Efficient Porous FexCe1–xO2−δ with Three-Dimensional Hierarchical Nanoflower Morphology for H2S-Selective Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05486] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaohai Zheng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P.R.China
| | - Yanli Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R.China
| | - Yong Zheng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P.R.China
| | - Lijuan Shen
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P.R.China
| | - Yihong Xiao
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P.R.China
| | - Yanning Cao
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P.R.China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R.China
| | - Chaktong Au
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P.R.China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P.R.China
| |
Collapse
|
45
|
Murakami K, Ogo S, Ishikawa A, Takeno Y, Higo T, Tsuneki H, Nakai H, Sekine Y. Heteroatom doping effects on interaction of H 2O and CeO 2 (111) surfaces studied using density functional theory: Key roles of ionic radius and dispersion. J Chem Phys 2020; 152:014707. [PMID: 31914759 DOI: 10.1063/1.5138670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding heteroatom doping effects on the interaction between H2O and cerium oxide (ceria, CeO2) surfaces is crucially important for elucidating heterogeneous catalytic reactions of CeO2-based oxides. Surfaces of CeO2 (111) doped with quadrivalent (Ti, Zr), trivalent (Al, Ga, Sc, Y, La), or divalent (Ca, Sr, Ba) cations are investigated using density functional theory (DFT) calculations modified for onsite Coulomb interactions (DFT + U). Trivalent (except for Al) and divalent cation doping induces the formation of intrinsic oxygen vacancy (Ovac), which is backfilled easily by H2O. Partially OH-terminated surfaces are formed. Furthermore, dissociative adsorption of H2O is simulated on the OH terminated surfaces (for trivalent or divalent cation doped models) and pure surfaces (for Al and quadrivalent cation doped surfaces). The ionic radius is crucially important. In fact, H2O dissociates spontaneously on the small cations. Although a slight change is induced by doping as for the H2O adsorption energy at Ce sites, the H2O dissociative adsorption at Ce sites is well-assisted by dopants with a smaller ionic radius. In terms of the amount of promoted Ce sites, the arrangement of dopant sites is also fundamentally important.
Collapse
Affiliation(s)
- Kota Murakami
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Shuhei Ogo
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Atsushi Ishikawa
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuna Takeno
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takuma Higo
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hideaki Tsuneki
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Chemistry and Biochemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yasushi Sekine
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
46
|
Zhang W, Shi X, Shan Y, Liu J, Xu G, Du J, Yan Z, Yu Y, He H. Promotion effect of cerium doping on iron–titanium composite oxide catalysts for selective catalytic reduction of NOx with NH3. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02292a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Doping with a suitable amount of Ce enhances the SCR performance of FeTi catalysts.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Jingjing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Guangyan Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Jinpeng Du
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Zidi Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
47
|
Liu H, Fu L, He C. The kinetic study of the methane oxidation reaction catalyzed by transition metal oxides RuO/RhO/PdO. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1699923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hongxia Liu
- Department of Chemistry, Anshan Normal University, Anshan, People’s Republic of China
- College of Chemistry and Environment Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, People’s Republic of China
| | - Ling Fu
- College of Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, People’s Republic of China
| | - Chaozheng He
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an, Shanxi, People’s Republic of China
| |
Collapse
|
48
|
Jiang C, Akkullu MR, Li B, Davila JC, Janik MJ, Dooley KM. Rapid screening of ternary rare-earth – Transition metal catalysts for dry reforming of methane and characterization of final structures. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Huang ZQ, Zhang T, Chang CR, Li J. Dynamic Frustrated Lewis Pairs on Ceria for Direct Nonoxidative Coupling of Methane. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00838] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tianyu Zhang
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
50
|
Cholewinski M, Dixit M, Mpourmpakis G. Computational Study of Methane Activation on γ-Al 2O 3. ACS OMEGA 2018; 3:18242-18250. [PMID: 31458402 PMCID: PMC6644128 DOI: 10.1021/acsomega.8b02554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/12/2018] [Indexed: 06/10/2023]
Abstract
The C-H activation of methane remains a longstanding challenge in the chemical industry. Metal oxides are attractive catalysts for the C-H activation of methane due to their surface Lewis acid-base properties. In this work, we applied density functional theory calculations to investigate the C-H activation mechanism of methane on various sites of low-index facets of γ-Al2O3. The feasibility of C-H activation on different metal-oxygen (acid-base) site pairs was assessed through two potential mechanisms, namely, the radical and polar. The effect of surface hydroxylation on C-H activation was also investigated to examine the activity of γ-Al2O3 under realistic catalytic surface conditions (hydration). On the basis of our calculations, it was demonstrated that the C-H activation barriers for polar pathways are significantly lower than those of the radical pathways on γ-Al2O3. We showed that the electronic structure (s- and p-band center) for unoccupied and occupied bands can be used to probe site-dependent Lewis acidity and basicity and the associated catalytic behavior. We identified the dissociated H2 binding and final state energy as C-H activation energy descriptors for the preferred polar pathway. Finally, we developed structure-activity relationships for the C-H activation of methane on γ-Al2O3 that account for surface Lewis acid-base properties and can be utilized to accelerate the discovery of catalysts for methane (and shale gas) upgrade.
Collapse
|