1
|
Wijerathne A, Sawyer A, Daya R, Paolucci C. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. JACS AU 2024; 4:197-215. [PMID: 38274255 PMCID: PMC10806779 DOI: 10.1021/jacsau.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
A key challenge for metal-exchanged zeolites is the determination of metal cation speciation and nuclearity under synthesis and reaction conditions. Copper-exchanged zeolites, which are widely used in automotive emissions control and potential catalysts for partial methane oxidation, have in particular evidenced a wide variety of Cu structures that are observed to change with exposure conditions, zeolite composition, and topology. Here, we develop predictive models for Cu cation speciation and nuclearity in CHA, MOR, BEA, AFX, and FER zeolite topologies using interatomic potentials, quantum chemical calculations, and Monte Carlo simulations to interrogate this vast configurational and compositional space. Model predictions are used to rationalize experimentally observed differences between Cu-zeolites in a wide-body of literature, including nuclearity populations, structural variations, and methanol per Cu yields. Our results show that both topological features and commonly observed Al-siting biases in MOR zeolites increase the population of binuclear Cu sites, explaining the small population of mononuclear Cu sites observed in these materials relative to other zeolites such as CHA and BEA. Finally, we used a machine learning classification model to determine the preference to form mononuclear or binuclear Cu sites at different Al configurations in 200 zeolites in the international zeolite database. Model results reveal several zeolite topologies at extreme ends of the mononuclear vs binuclear spectrum, highlighting synthetic options for realization of zeolites with strong Cu nuclearity preferences.
Collapse
Affiliation(s)
- Asanka Wijerathne
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Allison Sawyer
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rohil Daya
- Cummins
Inc, Columbus, Indiana 47201, United States
| | - Christopher Paolucci
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
2
|
Nasello ND, Usberti N, Iacobone U, Gramigni F, Hu W, Liu S, Nova I, Gao X, Tronconi E. Dual-Site RHC and OHC Transient Kinetics Predict Low-T Standard SCR Steady-State Rates over a Cu-CHA Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| |
Collapse
|
3
|
Li P, Xin Y, Zhang H, Yang F, Tang A, Han D, Jia J, Wang J, Li Z, Zhang Z. Recent progress in performance optimization of Cu-SSZ-13 catalyst for selective catalytic reduction of NO x. Front Chem 2022; 10:1033255. [PMID: 36324517 PMCID: PMC9621587 DOI: 10.3389/fchem.2022.1033255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 11/14/2022] Open
Abstract
Nitrogen oxides (NO x ), which are the major gaseous pollutants emitted by mobile sources, especially diesel engines, contribute to many environmental issues and harm human health. Selective catalytic reduction of NO x with NH3 (NH3-SCR) is proved to be one of the most efficient techniques for reducing NO x emission. Recently, Cu-SSZ-13 catalyst has been recognized as a promising candidate for NH3-SCR catalyst for reducing diesel engine NO x emissions due to its wide active temperature window and excellent hydrothermal stability. Despite being commercialized as an advanced selective catalytic reduction catalyst, Cu-SSZ-13 catalyst still confronts the challenges of low-temperature activity and hydrothermal aging to meet the increasing demands on catalytic performance and lifetime. Therefore, numerous studies have been dedicated to the improvement of NH3-SCR performance for Cu-SSZ-13 catalyst. In this review, the recent progress in NH3-SCR performance optimization of Cu-SSZ-13 catalysts is summarized following three aspects: 1) modifying the Cu active sites; 2) introducing the heteroatoms or metal oxides; 3) regulating the morphology. Meanwhile, future perspectives and opportunities of Cu-SSZ-13 catalysts in reducing diesel engine NO x emissions are discussed.
Collapse
Affiliation(s)
- Pan Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Ying Xin
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Hanxue Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Fuzhen Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Ahui Tang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Dongxu Han
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Junxiu Jia
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin, China
| | - Zhaoliang Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| |
Collapse
|
4
|
Jabłońska M. Review of the application of Cu-containing SSZ-13 in NH 3-SCR-DeNO x and NH 3-SCO. RSC Adv 2022; 12:25240-25261. [PMID: 36199328 PMCID: PMC9450943 DOI: 10.1039/d2ra04301g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
The reduction of NO x emissions has become one of the most important subjects in environmental protection. Cu-containing SSZ-13 is currently the state-of-the-art catalyst for the selective catalytic reduction of NO x with ammonia (NH3-SCR-DeNO x ). Although the current-generation catalysts reveal enhanced activity and remarkable hydrothermal stability, still open challenges appear. Thus, this review focuses on the progress of Cu-containing SSZ-13 regarding preparation methods, hydrothermal resistance and poisoning as well as reaction mechanisms in NH3-SCR-DeNO x . Remarkably, the paper reviews also the progress of Cu-containing SSZ-13 in the selective ammonia oxidation into nitrogen and water vapor (NH3-SCO). The dynamics in the NH3-SCR-DeNO x and NH3-SCO fields make this review timely.
Collapse
Affiliation(s)
- Magdalena Jabłońska
- Institute of Chemical Technology, Universität Leipzig Linnéstr. 3 04103 Leipzig Germany
| |
Collapse
|
5
|
Khurana I, Albarracin-Caballero JD, Shih AJ. Identification and quantification of multinuclear Cu active sites derived from monomeric Cu moieties for dry NO oxidation over Cu-SSZ-13. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Porous washcoat structure in CeO
2
modified Cu‐SSZ‐13 monolith catalyst for NH
3
‐SCR with improved catalytic performance. AIChE J 2022. [DOI: 10.1002/aic.17834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
A comparative study of the thermal and hydrothermal aging effect on Cu-SSZ-13 for the selective catalytic reduction of NO with NH3. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ohyama J, Tsuchimura Y, Hirayama A, Iwai H, Yoshida H, Machida M, Nishimura S, Kato K, Takahashi K. Relationships among the Catalytic Performance, Redox Activity, and Structure of Cu-CHA Catalysts for the Direct Oxidation of Methane to Methanol Investigated Using In Situ XAFS and UV–Vis Spectroscopies. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Yuka Tsuchimura
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Airi Hirayama
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroki Iwai
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroshi Yoshida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masato Machida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi 923-1292, Japan
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keisuke Takahashi
- Department of Chemistry, Hokkaido University, N-15 W-8, Sapporo 060-0815, Japan
| |
Collapse
|
9
|
Saeidi N, Esrafili MD, Jahanbin Sardroodi J. Electrochemical reduction of NO catalyzed by boron-doped C 60 fullerene: a first-principles study. RSC Adv 2022; 12:3003-3012. [PMID: 35425312 PMCID: PMC8979198 DOI: 10.1039/d1ra07403b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/08/2022] [Indexed: 11/21/2022] Open
Abstract
The electrochemical reduction of nitrogen monoxide (NO) is one of the most promising approaches for converting this harmful gas into useful chemicals. Using density functional theory calculations, the work examines the potential of a single B atom doped C60 fullerene (C59B) for catalytic reduction of NO molecules. The results demonstrate that the NO may be strongly activated over the B atom of C59B, and that the subsequent reduction process can result in the formation of NH3 and N2O molecules at low and high coverages, respectively. Based on the Gibbs free energy diagram, it is inferred that the C59B has excellent catalytic activity for NO reduction at ambient conditions with no potential-limiting. At normal temperature, the efficient interaction between the *NOH and NO species might lead to the spontaneous formation of the N2O molecule. Thus, the findings of this study provide new insights into NO electrochemical reduction on heteroatom doped fullerenes, as well as a unique strategy for fabricating low-cost NO reduction electrocatalysts with high efficiency.
Collapse
Affiliation(s)
- Nasibeh Saeidi
- Department of Chemistry, Azarbaijan Shahid Madani University Tabriz Iran
| | - Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh P. O. Box 55136-553 Maragheh Iran
| | | |
Collapse
|
10
|
Tang Y, Li Y, Feng Tao F. Activation and catalytic transformation of methane under mild conditions. Chem Soc Rev 2021; 51:376-423. [PMID: 34904592 DOI: 10.1039/d1cs00783a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last few decades, worldwide scientists have been motivated by the promising production of chemicals from the widely existing methane (CH4) under mild conditions for both chemical synthesis with low energy consumption and climate remediation. To achieve this goal, a whole library of catalytic chemistries of transforming CH4 to various products under mild conditions is required to be developed. Worldwide scientists have made significant efforts to reach this goal. These significant efforts have demonstrated the feasibility of oxidation of CH4 to value-added intermediate compounds including but not limited to CH3OH, HCHO, HCOOH, and CH3COOH under mild conditions. The fundamental understanding of these chemical and catalytic transformations of CH4 under mild conditions have been achieved to some extent, although currently neither a catalyst nor a catalytic process can be used for chemical production under mild conditions at a large scale. In the academic community, over ten different reactions have been developed for converting CH4 to different types of oxygenates under mild conditions in terms of a relatively low activation or catalysis temperature. However, there is still a lack of a molecular-level understanding of the activation and catalysis processes performed in extremely complex reaction environments under mild conditions. This article reviewed the fundamental understanding of these activation and catalysis achieved so far. Different oxidative activations of CH4 or catalytic transformations toward chemical production under mild conditions were reviewed in parallel, by which the trend of developing catalysts for a specific reaction was identified and insights into the design of these catalysts were gained. As a whole, this review focused on discussing profound insights gained through endeavors of scientists in this field. It aimed to present a relatively complete picture for the activation and catalytic transformations of CH4 to chemicals under mild conditions. Finally, suggestions of potential explorations for the production of chemicals from CH4 under mild conditions were made. The facing challenges to achieve high yield of ideal products were highlighted and possible solutions to tackle them were briefly proposed.
Collapse
Affiliation(s)
- Yu Tang
- Institute of Molecular Catalysis and In situ/operando Studies, College of Chemistry, Fuzhou University, Fujian, 350000, China.
| | - Yuting Li
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| |
Collapse
|
11
|
Kaushik M, Shrivastav G, Khan TS, Haider MA, Bhatia D. The Operating Cycle of NO Adsorption and Desorption in Pd-Chabazite for Passive NO x Adsorbers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13799-13809. [PMID: 34766776 DOI: 10.1021/acs.langmuir.1c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pd-doped chabazite (Pd/CHA) offers unique opportunities to adsorb and desorb NOx in the target temperature range for application as a passive NOx adsorber (PNA). The ability of Pd/CHA to trap NOx emissions at low temperatures (<200 °C) is facilitated by the binding of NOx species at various Pd sites available in the CHA framework. Density functional theory (DFT) simulations are performed to understand Pd speciation in CHA and the interaction of NO with Pd/CHA to explain the mechanisms of NO adsorption, oxidation, and desorption processes. The calculations are used to elucidate the important role of Pd1+ cationic species, anchored at 6MR-3NN, in providing a strong (Eb = -272 kJ/mol) NO adsorption site in Pd/CHA. For NO release, the redox transformation of Pd species comes into play and Pd1+ species are suggested to transform into cationic Pd2+, [PdOH]+, or [Pd-O-Pd]2+ species, all of which show significantly reduced NO binding (-116, -153, and -117 kJ/mol, respectively) as compared to Pd1+. This enables NO desorption at the operating temperature of a downstream catalyst for subsequent catalytic reduction.
Collapse
Affiliation(s)
- Marvi Kaushik
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gourav Shrivastav
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Tuhin S Khan
- Light Stock Processing Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - M Ali Haider
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Divesh Bhatia
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Bols ML, Devos J, Rhoda HM, Plessers D, Solomon EI, Schoonheydt RA, Sels BF, Dusselier M. Selective Formation of α-Fe(II) Sites on Fe-Zeolites through One-Pot Synthesis. J Am Chem Soc 2021; 143:16243-16255. [PMID: 34570975 DOI: 10.1021/jacs.1c07590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Fe(II) active sites in iron zeolites catalyze N2O decomposition and form highly reactive α-O that selectively oxidizes unreactive hydrocarbons, such as methane. How these α-Fe(II) sites are formed remains unclear. Here different methods of iron introduction into zeolites are compared to derive the limiting factors of Fe speciation to α-Fe(II). Postsynthetic iron introduction procedures on small pore zeolites suffer from limited iron diffusion and dispersion leading to iron oxides. In contrast, by introducing Fe(III) in the hydrothermal synthesis mixture of the zeolite (one-pot synthesis) and the right treatment, crystalline CHA can be prepared with >1.6 wt % Fe, of which >70% is α-Fe(II). The effect of iron on the crystallization is investigated, and the intermediate Fe species are tracked using UV-vis-NIR, FT-IR, and Mössbauer spectroscopy. These data are supplemented with online mass spectrometry in each step, with reactivity tests in α-O formation and with methanol yields in stoichiometric methane activation at room temperature and pressure. We recover up to 134 μmol methanol per gram in a single cycle through H2O/CH3CN extraction and 183 μmol/g through steam desorption, a record yield for iron zeolites. A general scheme is proposed for iron speciation in zeolites through the steps of drying, calcination, and activation. The formation of two cohorts of α-Fe(II) is discovered, one before and one after high temperature activation. We propose the latter cohort depends on the reshuffling of aluminum in the zeolite lattice to accommodate thermodynamically favored α-Fe(II).
Collapse
Affiliation(s)
- Max L Bols
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Julien Devos
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Hannah M Rhoda
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Bert F Sels
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Michiel Dusselier
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| |
Collapse
|
13
|
Shih AJ, González JM, Khurana I, Ramírez LP, Peña L. A, Kumar A, Villa AL. Influence of ZCuOH, Z 2Cu, and Extraframework Cu xO y Species in Cu-SSZ-13 on N 2O Formation during the Selective Catalytic Reduction of NO x with NH 3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Arthur J. Shih
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Juan M. González
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Environmental Catalysis Research Group, Chemical Engineering Department, Engineering Faculty, Universidad de Antioquia, Calle 70, No. 52-21, Medellín 050010, Colombia
| | - Ishant Khurana
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Lucía Pérez Ramírez
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Andres Peña L.
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Ashok Kumar
- Cummins Inc., 1900 McKinley Avenue, MC 50183, Columbus, Indiana 47201, United States
| | - Aída Luz Villa
- Environmental Catalysis Research Group, Chemical Engineering Department, Engineering Faculty, Universidad de Antioquia, Calle 70, No. 52-21, Medellín 050010, Colombia
| |
Collapse
|
14
|
Gramigni F, Nasello ND, Usberti N, Iacobone U, Selleri T, Hu W, Liu S, Gao X, Nova I, Tronconi E. Transient Kinetic Analysis of Low-Temperature NH 3-SCR over Cu-CHA Catalysts Reveals a Quadratic Dependence of Cu Reduction Rates on Cu II. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Tommaso Selleri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| |
Collapse
|
15
|
Xie P, Pu T, Aranovich G, Guo J, Donohue M, Kulkarni A, Wang C. Bridging adsorption analytics and catalytic kinetics for metal-exchanged zeolites. Nat Catal 2021. [DOI: 10.1038/s41929-020-00555-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
González JM, Villa AL. High Temperature SCR Over Cu-SSZ-13 and Cu-SSZ-13 + Fe-SSZ-13: Activity of Cu2+ and [CuOH]1+ Sites and the Apparent Promoting Effect of Adding Fe into Cu-SSZ-13 Catalyst. Catal Letters 2021. [DOI: 10.1007/s10562-021-03550-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Lee H, Song I, Jeon SW, Kim DH. Control of the Cu ion species in Cu-SSZ-13 via the introduction of Co 2+ co-cations to improve the NH 3-SCR activity. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00623a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cobalt co-cations were introduced to block the 2Al sites of SSZ-13 zeolite before the impregnation of Cu ions. Blocking the 2Al sites promotes the formation of highly mobile Cu ion species, which improves the NH3-SCR activity of the catalyst.
Collapse
Affiliation(s)
- Hwangho Lee
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Inhak Song
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Se Won Jeon
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
18
|
Zhang T, Qiu Y, Liu G, Chen J, Peng Y, Liu B, Li J. Nature of active Fe species and reaction mechanism over high-efficiency Fe/CHA catalysts in catalytic decomposition of N2O. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
New Insight into the In Situ SO2 Poisoning Mechanism over Cu-SSZ-13 for the Selective Catalytic Reduction of NOx with NH3. Catalysts 2020. [DOI: 10.3390/catal10121391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To reveal the nature of SO2 poisoning over Cu-SSZ-13 catalyst under actual exhaust conditions, the catalyst was pretreated at 200 and 500 °C in a flow containing NH3, NO, O2, SO2, and H2O. Brunner−Emmet−Teller (BET), X-ray diffraction(XRD), thermo gravimetric analyzer (TGA), ultraviolet Raman spectroscopy (UV Raman), temperature-programmed reduction with H2 (H2-TPR), temperature-programmed desorption of NO+O2 (NO+O2-TPD), NH3-TPD, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and an activity test were utilized to monitor the changes of Cu-SSZ-13 before and after in situ SO2 poisoning. According to the characterization results, the types and generated amount of sulfated species were directly related to poisoning temperature. Three sulfate species, including (NH4)2SO4, CuSO4, and Al2(SO4)3, were found to form on CZ-S-200, while only the latter two sulfate species were observed over CZ-S-500. Furthermore, SO2 poisoning had a negative effect on low-temperature selective catalytic reduction (SCR) activity, which was mainly due to the sulfation of active sites, including Z2Cu, ZCuOH, and Si-O(H)-Al. In contrast, SO2 poisoning had a positive effect on high-temperature SCR activity, owing to the inhibition of the NH3 oxidation reaction. The above findings may be a useful guideline to design excellent SO2-resistant Cu-based zeolite catalysts.
Collapse
|
20
|
Fe-Exchanged Small-Pore Zeolites as Ammonia Selective Catalytic Reduction (NH3-SCR) Catalysts. Catalysts 2020. [DOI: 10.3390/catal10111324] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cu-exchanged small-pore zeolites have been extensively studied in the past decade as state-of-the-art selective catalytic reduction (SCR) catalysts for diesel engine exhaust NOx abatement for the transportation industry. During this time, Fe-exchanged small-pore zeolites, e.g., Fe/SSZ-13, Fe/SAPO-34, Fe/SSZ-39 and high-silica Fe/LTA, have also been investigated but much less extensively. In comparison to their Cu-exchanged counterparts, such Fe/zeolite catalysts display inferior low-temperature activities, but improved stability and high-temperature SCR selectivities. Such characteristics entitle these catalysts to be considered as key components of highly efficient emission control systems to improve the overall catalyst performance. In this short review, recent studies on Fe-exchanged small-pore zeolite SCR catalysts are summarized, including (1) the synthesis of small-pore Fe/zeolites; (2) nature of the SCR active Fe species in these catalysts as determined by experimental and theoretical approaches, including Fe species transformation during hydrothermal aging; (3) SCR reactions and structure-function correlations; and (4) a few aspects on industrial applications.
Collapse
|
21
|
Jiang H, Guan B, Peng X, Wei Y, Zhan R, Lin H, Huang Z. Effect of sulfur poisoning on the performance and active sites of Cu/SSZ-13 catalyst. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Chen J, Peng G, Liang T, Zhang W, Zheng W, Zhao H, Guo L, Wu X. Catalytic Performances of Cu/MCM-22 Zeolites with Different Cu Loadings in NH 3-SCR. NANOMATERIALS 2020; 10:nano10112170. [PMID: 33143192 PMCID: PMC7694057 DOI: 10.3390/nano10112170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
The NH3-SCR activities and hydrothermal stabilities of five xCu/MCM-22 zeolites with different Cu loadings (x = 2–10 wt%) prepared by incipient wetness impregnation method were systematically investigated. The physicochemical properties of xCu/MCM-22 zeolites were analyzed by XRD, nitrogen physisorption, ICP-AES, SEM, NH3-TPD, UV-vis, H2-TPR and XPS experiments. The Cu species existing in xCu/MCM-22 are mainly isolated Cu2+, CuOx and unreducible copper species. The concentrations of both isolated Cu2+ and CuOx species in xCu/MCM-22 increase with Cu contents, but the increment of CuOx species is more distinct, especially in high Cu loadings (>4 wt%). NH3-SCR experimental results demonstrated that the activity of xCu/MCM-22 is sensitive to Cu content at low Cu loadings (≤4 wt%). When the Cu loading exceeds 4 wt%, the NH3-SCR activity of xCu/MCM-22 is irrelevant to Cu content due to the severe pore blockage effects caused by aggregated CuOx species. Among the five xCu/MCM-22 zeolites, 4Cu/MCM-22 with moderate Cu content has the best NH3-SCR performance, which displays higher than 80% NOx conversions in a wide temperature window (160–430 °C). Furthermore, the hydrothermal aging experiments (xCu/MCM-22 was treated at 750 °C for 10 h under 10% water vapor atmosphere) illustrated that all the xCu/MCM-22 zeolites exhibit high hydrothermal stability in NH3-SCR reactions.
Collapse
Affiliation(s)
- Jialing Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
- Correspondence: (J.C.); (L.G.); (X.W.)
| | - Gang Peng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
| | - Tingyu Liang
- Key Laboratory for Green Chemical Process of Ministry of Education, and Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China;
| | - Wenbo Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
| | - Wei Zheng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
| | - Haoran Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
| | - Li Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
- Correspondence: (J.C.); (L.G.); (X.W.)
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
- Correspondence: (J.C.); (L.G.); (X.W.)
| |
Collapse
|
23
|
Paolucci C, Di Iorio JR, Schneider WF, Gounder R. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Acc Chem Res 2020; 53:1881-1892. [PMID: 32786332 DOI: 10.1021/acs.accounts.0c00328] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ConspectusCopper-exchanged chabazite (Cu-CHA) zeolites are catalysts used in diesel emissions control for the abatement of nitrogen oxides (NOx) via selective catalytic reduction (SCR) reactions with ammonia as the reductant. The discovery of these materials in the early 2010s enabled a step-change improvement in diesel emissions aftertreatment technology. Key advantages of Cu-CHA zeolites over prior materials include their effectiveness at the lower temperatures characteristic of diesel exhaust, their durability under high-temperature hydrothermal conditions, and their resistance to poisoning from residual hydrocarbons present in exhaust. Fundamental catalysis research has since uncovered mechanistic and kinetic features that underpin the ability of Cu-CHA to selectively reduce NOx under strongly oxidizing conditions and to achieve improved NOx conversion relative to other zeolite frameworks, particularly at low exhaust temperatures and with ammonia instead of other reductants.One critical mechanistic feature is the NH3 solvation of exchanged Cu ions at low temperatures (<523 K) to create cationic Cu-amine coordination complexes that are ionically tethered to anionic Al framework sites. This ionic tethering confers regulated mobility that facilitates interconversion between mononuclear and binuclear Cu complexes, which is necessary to propagate SCR through a Cu2+/Cu+ redox cycle during catalytic turnover. This dynamic catalytic mechanism, wherein single and dual metal sites interconvert to mediate different half-reactions of the redox cycle, combines features canonically associated with homogeneous and heterogeneous reaction mechanisms.In this Account, we describe how a unified experimental and theoretical interrogation of Cu-CHA catalysts in operando provided quantitative evidence of regulated Cu ion mobility and its role in the SCR mechanism. This approach relied on new synthetic methods to prepare model Cu-CHA zeolites with varied active-site structures and spatial densities in order to verify that the kinetic and mechanistic models describe the catalytic behavior of a family of materials of diverse composition, and on new computational approaches to capture the active-site structure and dynamics under conditions representative of catalysis. Ex situ interrogation revealed that the Cu structure depends on the conditions for the zeolite synthesis, which influence the framework Al substitution patterns, and that statistical and electronic structure models can enumerate Cu site populations for a known Al distribution. This recognition unifies seemingly disparate spectroscopic observations and inferences regarding Cu ion structure and responses to different external conditions. SCR rates depend strongly on the Cu spatial density and zeolite composition in kinetic regimes where Cu+ oxidation with O2 becomes rate-limiting, as occurs at lower temperatures and under fuel-rich conditions. Transient experiments, ab initio molecular dynamics simulations, and statistical models relate these sensitivities to the mobility constraints imposed by the CHA framework on NH3-solvated Cu ions, which regulate the pore volume accessible to these ions and their ability to pair and complete the catalytic cycle. This highlights the key characteristics of the CHA framework that enable superior performance under low-temperature SCR reaction conditions.This work illustrates the power of precise control over a catalytic material, simultaneous kinetic and spectroscopic interrogation over a wide range of reaction conditions, and computational strategies tailored to capture those reaction conditions to reveal in microscopic detail the mechanistic features of a complex and widely practiced catalysis. In doing so, it highlights the key role of ion mobility in catalysis and thus potentially a more general phenomenon of reactant solvation and active site mobilization in reactions catalyzed by exchanged metal ions in zeolites.
Collapse
Affiliation(s)
- Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - John R. Di Iorio
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Wang C, Yan W, Wang Z, Chen Z, Wang J, Wang J, Wang J, Shen M, Kang X. The role of alkali metal ions on hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Harris JW, Verma AA, Arvay JW, Shih AJ, Delgass WN, Ribeiro FH. Consequences of product inhibition in the quantification of kinetic parameters. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Krishna SH, Jones CB, Miller JT, Ribeiro FH, Gounder R. Combining Kinetics and Operando Spectroscopy to Interrogate the Mechanism and Active Site Requirements of NO x Selective Catalytic Reduction with NH 3 on Cu-Zeolites. J Phys Chem Lett 2020; 11:5029-5036. [PMID: 32496798 DOI: 10.1021/acs.jpclett.0c00903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
NOx selective catalytic reduction (SCR) with NH3 on Cu-zeolites is a commercial emissions control technology for diesel and lean-burn engines. Mitigating low-temperature emissions remains an outstanding challenge, motivating an improved understanding of the reaction mechanism, active site requirements, and rate-determining processes at low temperatures (<523 K). In this Perspective, we discuss how operando spectroscopy provides crucial information about how the structures, coordination environments, and oxidation states of Cu active sites depend on reaction conditions and sample composition; when combined with kinetic measurements, such operando data provide insights into the Cu site and spatial density requirements for reduction and oxidation steps relevant to the Cu(II)/Cu(I) SCR redox cycle. Isolated Cu ions coordinated to zeolite oxygen atoms ex situ become coordinated to NH3 in situ and dynamically interconvert between mononuclear and binuclear NH3-solvated Cu complexes to catalyze SCR turnovers. We conclude with future research directions that can benefit from combining quantitative kinetic measurements with operando spectroscopy.
Collapse
Affiliation(s)
- Siddarth H Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey T Miller
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Fabio H Ribeiro
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Rizzotto V, Chen D, Tabak BM, Yang JY, Ye D, Simon U, Chen P. Spectroscopic identification and catalytic relevance of NH 4+ intermediates in selective NO x reduction over Cu-SSZ-13 zeolites. CHEMOSPHERE 2020; 250:126272. [PMID: 32109703 DOI: 10.1016/j.chemosphere.2020.126272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 05/28/2023]
Abstract
Reduction of harmful nitrogen oxides (NOx) from diesel engine exhausts is one of the key challenges in environmental protection, and can be achieved by NH3-assisted selective catalytic reduction (NH3-SCR) using copper-exchanged chabazite zeolites (i.e. Cu-CHA, including Cu-SSZ-13 and Cu-SAPO-34) as catalysts. Understanding the redox chemistry of Cu-CHA in NH3-SCR catalysis is crucial for further improving the NOx reduction efficiency. Here, a series of Cu-SSZ-13 catalysts with different Cu ion exchange levels were prepared, thoroughly characterized by different techniques such as X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy and temperature-programmed desorption using NH3 as a probe molecule, etc., and tested in NH3-SCR reactions under steady-state conditions. In situ studies by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), supplemented with density-functional theory calculations, provided solid evidence for the formation of ammonium ion (NH4+) intermediates resulting from the reduction of Cu2+ to Cu+ by co-adsorbed NH3 and NO molecules on Cu-SSZ-13. Catalytic relevance of the NH4+ intermediates, as demonstrated by an increase of NO conversion over Cu-SSZ-13 pre-treated in NH3/NO atmosphere, can be attributed to the formation of closely coupled Cu+/NH4+ pairs promoting the Cu+ re-oxidation and, consequently, the overall NH3-SCR process. This study thus paves a new route for improving the NH3-SCR efficiency over Cu-CHA zeolite catalyst.
Collapse
Affiliation(s)
- Valentina Rizzotto
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Dongdong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China
| | - Björn Martin Tabak
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, 266237, Qingdao, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Peirong Chen
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China.
| |
Collapse
|
28
|
Villamaina R, Iacobone U, Nova I, Ruggeri MP, Collier J, Thompsett D, Tronconi E. Low‐T CO Oxidation over Cu−CHA Catalysts in Presence of NH
3
: Probing the Mobility of Cu
II
Ions and the Role of Multinuclear Cu
II
Species. ChemCatChem 2020. [DOI: 10.1002/cctc.202000734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Roberta Villamaina
- Laboratory of Catalysis and Catalytic Process Dipartimento di Energia Politecnico di Milano Via Giuseppe La Masa 34 20156 Milano Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Process Dipartimento di Energia Politecnico di Milano Via Giuseppe La Masa 34 20156 Milano Italy
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Process Dipartimento di Energia Politecnico di Milano Via Giuseppe La Masa 34 20156 Milano Italy
| | - Maria Pia Ruggeri
- Emission Control Department Johnson Matthey Technology Centre Blounts Court Road Sonning Common Reading RG4 9NH UK
| | - Jillian Collier
- Emission Control Department Johnson Matthey Technology Centre Blounts Court Road Sonning Common Reading RG4 9NH UK
| | - David Thompsett
- Emission Control Department Johnson Matthey Technology Centre Blounts Court Road Sonning Common Reading RG4 9NH UK
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Process Dipartimento di Energia Politecnico di Milano Via Giuseppe La Masa 34 20156 Milano Italy
| |
Collapse
|
29
|
Abstract
Nanosized SSZ-13 was synthesized hydrothermally by applying N,N,N-trimethyl-1-adamantammonium hydroxide (TMAdaOH) as a structure-directing agent. In the next step, the quantity of TMAdaOH in the initial synthesis mixture of SSZ-13 was reduced by half. Furthermore, we varied the sodium hydroxide concentration. After ion-exchange with copper ions (Cu2+ and Cu+), the Cu-SSZ-13 catalysts were characterized to explore their framework composition (XRD, solid-state NMR, ICP-OES), texture (N2-sorption, SEM) and acid/redox properties (FT-IR, TPR-H2, DR UV-Vis, EPR). Finally, the materials were tested in the selective catalytic reduction of NOx with ammonia (NH3-SCR). The main difference between the Cu-SSZ-13 catalysts was the number of Cu2+ in the double six-membered ring (6MRs). Such copper species contribute to a high NH3-SCR activity. Nevertheless, all materials show comparable activity in NH3-SCR up to 350 °C. Above 350 °C, NO conversion decreased for Cu-SSZ-13(2–4) due to side reaction of NH3 oxidation.
Collapse
|
30
|
Ashraf MA, Liu Z, Peng WX, Najafi M. CH2 and SO Oxidation on Surfaces of Scandium-Doped Nanocages and Cobalt-Doped Nanocages: A DFT Investigation. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Di Iorio JR, Li S, Jones CB, Nimlos CT, Wang Y, Kunkes E, Vattipalli V, Prasad S, Moini A, Schneider WF, Gounder R. Cooperative and Competitive Occlusion of Organic and Inorganic Structure-Directing Agents within Chabazite Zeolites Influences Their Aluminum Arrangement. J Am Chem Soc 2020; 142:4807-4819. [PMID: 32053365 DOI: 10.1021/jacs.9b13817] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We combine experiment and theory to investigate the cooperation or competition between organic and inorganic structure-directing agents (SDAs) for occupancy within microporous voids of chabazite (CHA) zeolites and to rationalize the effects of SDA siting on biasing the framework Al arrangement (Al-O(-Si-O)x-Al, x = 1-3) among CHA zeolites of essentially fixed composition (Si/Al = 15). CHA zeolites crystallized using mixtures of TMAda+ and Na+ contain one TMAda+ occluded per cage and Na+ co-occluded in an amount linearly proportional to the number of 6-MR paired Al sites, quantified by Co2+ titration. In contrast, CHA zeolites crystallized using mixtures of TMAda+ and K+ provide evidence that three K+ cations, on average, displace one TMAda+ from occupying a cage and contain predominantly 6-MR isolated Al sites. Moreover, CHA crystallizes from synthesis media containing more than 10-fold higher inorganic-to-organic ratios with K+ than with Na+ before competing crystalline phases form, providing a route to decrease the amount of organic SDA needed to crystallize high-silica CHA. Density functional theory calculations show that differences in the ionic radii of Na+ and K+ determine their preferences for siting in different CHA rings, which influences their energy to co-occlude with TMAda+ and stabilize different Al configurations. Monte Carlo models confirm that energy differences resulting from Na+ or K+ co-occlusion promote the formation of 6-MR and 8-MR paired Al arrangements, respectively. These results highlight opportunities to exploit using mixtures of organic and inorganic SDAs during zeolite crystallization in order to more efficiently use organic SDAs and influence framework Al arrangements.
Collapse
Affiliation(s)
- John R Di Iorio
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Sichi Li
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Claire T Nimlos
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Yujia Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Eduard Kunkes
- BASF Corporation, 25 Middlesex-Essex Turnpike, Iselin, New Jersey 08830, United States
| | - Vivek Vattipalli
- BASF Corporation, 25 Middlesex-Essex Turnpike, Iselin, New Jersey 08830, United States
| | - Subramanian Prasad
- BASF Corporation, 25 Middlesex-Essex Turnpike, Iselin, New Jersey 08830, United States
| | - Ahmad Moini
- BASF Corporation, 25 Middlesex-Essex Turnpike, Iselin, New Jersey 08830, United States
| | - William F Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
32
|
The structure directing agent isomer used in SSZ-39 synthesis impacts the zeolite activity towards selective catalytic reduction of nitric oxides. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Newton MA, Knorpp AJ, Sushkevich VL, Palagin D, van Bokhoven JA. Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chem Soc Rev 2020; 49:1449-1486. [DOI: 10.1039/c7cs00709d] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this critical review we examine the current state of our knowledge in respect of the nature of the active sites in copper containing zeolites for the selective conversion of methane to methanol.
Collapse
Affiliation(s)
- Mark A. Newton
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Amy J. Knorpp
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| | - Dennis Palagin
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
- Laboratory for Catalysis and Sustainable Chemistry
| |
Collapse
|
34
|
Chen Z, Tan X, Wang J, Wang C, Wang J, Li W, Shen M. Why does there have to be a residual Na ion as a co-cation on Cu/SSZ-13? Catal Sci Technol 2020. [DOI: 10.1039/d0cy01142h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Only the residual Na+ ion as co-cation improves the hydrothermal stability and NH3-SCR activity of Cu/SSZ-13.
Collapse
Affiliation(s)
- Zexiang Chen
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xuguang Tan
- State Key Laboratory of Engine Reliability
- Weichai Power Co., Ltd
- Weifang 261061
- P.R. China
| | - Jun Wang
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Chen Wang
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- P. R. China
- School of Environmental and Safety Engineering
| | - Jianqiang Wang
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Wei Li
- General Motors Global Research and Development
- Chemical Sciences and Materials System Lab
- Warren
- USA
| | - Meiqing Shen
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
35
|
Liu K, Yan Z, Shan W, Shan Y, Shi X, He H. Quantitative determination of the Cu species, acid sites and NH3-SCR mechanism on Cu-SSZ-13 and H-SSZ-13 at low temperatures. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02352f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The NH3-SCR mechanism and the number of acid sites and various Cu species on Cu-SSZ-13 and H-SSZ-13 were quantitatively determined.
Collapse
Affiliation(s)
- Kuo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Zidi Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
- China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
36
|
Shi Y, Liu S, Liu Y, Huang W, Guan G, Zuo Z. Quasicatalytic and catalytic selective oxidation of methane to methanol over solid materials: a review on the roles of water. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2019. [DOI: 10.1080/01614940.2019.1674475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yayun Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Shizhong Liu
- Department of Chemistry, Stony Brook University, New York, NY, USA
| | - Yiming Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Wei Huang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Guoqing Guan
- Institute of Regional Innovation (IRI), Hirosaki University, Aomori, Japan
| | - Zhijun Zuo
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
37
|
Palagin D, Sushkevich VL, van Bokhoven JA. Water Molecules Facilitate Hydrogen Release in Anaerobic Oxidation of Methane to Methanol over Cu/Mordenite. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02702] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis Palagin
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
38
|
Razavi R, Najafi M. Theoretical investigation of the ORR on boron-silicon nanotubes (B-SiNTs) as acceptable catalysts in fuel cells. RSC Adv 2019; 9:31572-31582. [PMID: 35527966 PMCID: PMC9072725 DOI: 10.1039/c9ra05031k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/29/2019] [Indexed: 11/21/2022] Open
Abstract
Here, the potential of boron doped silicon nanotubes (7, 0) as ORR catalysts is examined. Acceptable paths for the ORR on studied catalysts are examined through DFT. The optimum mechanism of the ORR on the surface of B2-SiNT (7, 0) is shown. The ORR on the surface of B2-SiNTs (7, 0) can continue through LH and ER mechanisms. The calculated beginning voltage for the ORR on B2-SiNTs (7, 0) is 0.37 V and it is smaller than the beginning voltage (0.45 V) for platinum-based catalysts. In the acidic solution the beginning voltage for the oxygen reduction process can be evaluated to be 0.97 V, which corresponds to 0.37 V as a minimum overvoltage for the ORR. The B2-SiNTs (7, 0) are suggested as an ORR catalyst in acidic environments.
Collapse
Affiliation(s)
- Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft Jiroft Iran
| | - Meysam Najafi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
39
|
Urrutxua M, Pereda-Ayo B, De-La-Torre U, González-Velasco JR. Evaluation of Cu/SAPO-34 Catalysts Prepared by Solid-State and Liquid Ion-Exchange Methods for NO x Removal by NH 3-SCR. ACS OMEGA 2019; 4:14699-14713. [PMID: 31552309 PMCID: PMC6751541 DOI: 10.1021/acsomega.9b01118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
Cu/SAPO-34 catalysts are prepared using solid-state ion exchange (SSIE) and liquid ion exchange (LIE). SSIE is conducted by calcining a physical mixture of H-SAPO-34 zeolite and CuO nanoparticles at elevated temperatures (500-800 °C). The conventional LIE method is conducted by exchanging Na-SAPO-34 with Cu(COOCH3)2 aqueous solution with a final calcination step at 500 °C. Catalysts were fully characterized, focusing on Cu species identification. The NH3-SCR activity is evaluated for NO x removal. Cu/SAPO-34 catalysts synthesized by SSIE at 700 °C achieved an optimal reaction rate, which was correlated with a higher proportion of Cu2+ ions. The activation energies of Cu/SAPO-34 catalysts prepared by SSIE and LIE with varying copper loadings are 32-38 and 42-47 kJ mol-1, respectively. The SSIE catalysts achieve higher turnover frequency than LIE catalysts for a similar copper content, which decreases on increasing the copper loading. These results provide evidence that Cu ions exchanged into the Cu/SAPO-34 catalysts synthesized by SSIE present higher activity than those prepared by LIE for NO x removal by NH3-SCR.
Collapse
|
40
|
Ashraf MA, Liu Z, Li C, Peng WX, Najafi M. Examination of potential of B-CNT (6, 0), Al-CNT (6, 0) and Ga-CNT (6, 0) as novel catalysts to oxygen reduction reaction: A DFT study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Li Y, Yang B, Yan L, Gao W, Najafi M. Role of boron doped silicon nanocage (B-Si48) as catalyst for oxygen reduction reaction in fuel cells. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Sun M, Wang X, Shang X, Liu X, Najafi M. Investigation of performance of aluminum doped carbon nanotube (8, 0) as adequate catalyst to oxygen reduction reaction. J Mol Graph Model 2019; 92:123-130. [PMID: 31352206 DOI: 10.1016/j.jmgm.2019.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 07/19/2019] [Indexed: 11/17/2022]
Abstract
The discovery of novel nano-catalysts to oxygen reduction reaction with high performance due to various application of fuel cells is very important. In present study the potential of aluminum doped carbon nanotube (8, 0) to oxygen reduction reaction in acidic condition was examined through theoretical models. The possible paths to oxygen reduction reaction on Al2-CNT (8, 0) surfaces were investigated and optimal path was identified from thermodynamic standpoint. Results indicated that the Al2-CNT (8, 0) catalyzed the oxygen reduction reaction through the Eley-Rideal and Langmuir-Hinshelwood mechanisms. The Al2-CNT (8, 0) catalyst has much better methanol and CO tolerance than platinum-based catalysts. In this study, the overpotential value of oxygen reduction reaction on aluminum doped carbon nanotube (8, 0) surface (ca 0.38 V) is lower than corresponding values on platinum-based catalysts (ca 0.45 V). Finally, results demonstrated that the Al2-CNT (8, 0) can be proposed as efficiency catalyst to oxygen reduction reaction.
Collapse
Affiliation(s)
- Meng Sun
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, China.
| | - Xue Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, China
| | - Xiaomin Shang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, China
| | - Xiaoqiu Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, China
| | - Meysam Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, 67149-67346, Iran.
| |
Collapse
|
43
|
Niu H, Sun L, Xu Y, Najafi M. Theoretical investigation of oxidation of NO (NO + ½ O 2 → NO 2) on surfaces of nickel-doped nanocages (Ni-C 60 and Ni-B 30N 30). J Mol Graph Model 2019; 91:140-147. [PMID: 31229805 DOI: 10.1016/j.jmgm.2019.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
In present study, the NO oxidation on Ni-carbon nanocage and Ni-boron nitride nanocage surfaces was investigated. The Ni-C60 and Ni-B30N30 catalysts can oxidize the NO molecule by Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. In this study, the NO molecule was joined to Ni atom of the Ni-surface-O2* and Ni-surface-O* to generate the intermediates with low barrier energies. It can be concluded that the cis-Ni-surface-ONOO* complex in the ER pathway is more stable than four-elements-ring complex in LH pathway ca 0.06 and 0.08 eV, respectively. In the LH pathway, the studied catalysts were deactivated by irreversible absorption of NO2 molecules in Ni atoms of Ni-C60 and Ni-B30N30. In contrast, in the ER pathway two NO2 molecules were released in the normal temperature. In this study, the abilities of the Ni-C60 and Ni-B30N30 to oxidation of NO molecule was demonstrated. Finally, the systematic scheme to design of metal-doped nano-catalysts to oxidation of toxic gases was proposed.
Collapse
Affiliation(s)
- Hongbo Niu
- Department of Food and Biochemical Engineering, Yantai Vocational College, Yantai, 264670, China.
| | - Liwei Sun
- Department of Food and Biochemical Engineering, Yantai Vocational College, Yantai, 264670, China
| | - Yulan Xu
- Department of Food and Biochemical Engineering, Yantai Vocational College, Yantai, 264670, China
| | - Meysam Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, 67149-67346, Iran.
| |
Collapse
|
44
|
Co-Exchange of Mn: A Simple Method to Improve Both the Hydrothermal Stability and Activity of Cu–SSZ-13 NH3–SCR Catalysts. Catalysts 2019. [DOI: 10.3390/catal9050455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of Cu–Mn–SSZ-13 catalysts were obtained by co-exchange of Mn and Cu into SSZ-13 together (ion exchange under a mixed solution of Cu(NO3)2 and Mn(NO3)2) and compared with Cu–SSZ-13 catalysts on the selective catalytic reduction (SCR) of nitric oxide (NO) by ammonia. The effects of total ion exchange degree and the effect of Mn species on the structure and performance of catalysts before and after hydrothermal aging were studied. All fresh and aged catalysts were characterized with several methods including temperature-programmed desorption with NH3 (NH3-TPD), X-ray diffraction (XRD), 27Al and 29Si solid-state nuclear magnetic resonance (NMR), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and low-temperature N2 adsorption–desorption techniques. The results showed that the increase of the total ion exchange degree can reduce the content of residual Brønsted acid sites of catalysts, thus relieved the dealumination and the decrease of crystallinity of the catalyst during hydrothermal aging. The moderate addition of a Mn component in Cu–Mn–SSZ-13 catalysts significantly increased the activity of NO conversion at low temperature range. The selected Cu(0.2)Mn(0.1)–SSZ-13 catalyst achieved a high NO conversion of >90% in the wide and low temperature range of 175–525 °C and also exhibited good N2 selectivity and excellent hydrothermal stability, which was related to the inhibition of the Mn component on the aggregation of Cu species and the pore destruction of the catalyst during hydrothermal aging.
Collapse
|
45
|
Liu M, Zhao Y, Zhao H, Li X, Ma Y, Yong X, Chen H, Li Y. The promotion effect of nickel and lanthanum on Cu-ZSM-5 catalyst in NO direct decomposition. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Shan Y, Shi X, Du J, Yan Z, Yu Y, He H. SSZ-13 Synthesized by Solvent-Free Method: A Potential Candidate for NH3-SCR Catalyst with High Activity and Hydrothermal Stability. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Du
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zidi Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
47
|
Li H, Paolucci C, Khurana I, Wilcox LN, Göltl F, Albarracin-Caballero JD, Shih AJ, Ribeiro FH, Gounder R, Schneider WF. Consequences of exchange-site heterogeneity and dynamics on the UV-visible spectrum of Cu-exchanged SSZ-13. Chem Sci 2019; 10:2373-2384. [PMID: 30881665 PMCID: PMC6385673 DOI: 10.1039/c8sc05056b] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022] Open
Abstract
The speciation and structure of Cu ions and complexes in chabazite (SSZ-13) zeolites, which are relevant catalysts for nitrogen oxide reduction and partial methane oxidation, depend on material composition and reaction environment. Ultraviolet-visible (UV-Vis) spectra of Cu-SSZ-13 zeolites synthesized to contain specific Cu site motifs, together with ab initio molecular dynamics and time-dependent density functional theory calculations, were used to test the ability to relate specific spectroscopic signatures to specific site motifs. Geometrically distinct arrangements of two framework Al atoms in six-membered rings are found to exchange Cu2+ ions that become spectroscopically indistinguishable after accounting for the finite-temperature fluctuations of the Cu coordination environment. Nominally homogeneous single Al exchange sites are found to exchange a heterogeneous mixture of [CuOH]+ monomers, O- and OH-bridged Cu dimers, and larger polynuclear complexes. The UV-Vis spectra of the latter are sensitive to framework Al proximity, to precise ligand environment, and to finite-temperature structural fluctuations, precluding the precise assignment of spectroscopic features to specific Cu structures. In all Cu-SSZ-13 samples, these dimers and larger complexes are reduced by CO to Cu+ sites at 523 K, leaving behind isolated [CuOH]+ sites with a characteristic spectroscopic identity. The various mononuclear and polynuclear Cu2+ species are distinguishable by their different responses to reducing environments, with implications for their relevance to catalytic redox reactions.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , 182 Fitzpatrick Hall , Notre Dame , IN 46556 , USA .
| | - Christopher Paolucci
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , 182 Fitzpatrick Hall , Notre Dame , IN 46556 , USA .
- Department of Chemical Engineering , University of Virginia , 102 Engineer's Way , Charlottesville , VA 22904 , USA
| | - Ishant Khurana
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA .
| | - Laura N Wilcox
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA .
| | - Florian Göltl
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , WI 53706 , USA
| | - Jonatan D Albarracin-Caballero
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA .
| | - Arthur J Shih
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA .
| | - Fabio H Ribeiro
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA .
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA .
| | - William F Schneider
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , 182 Fitzpatrick Hall , Notre Dame , IN 46556 , USA .
| |
Collapse
|
48
|
Fahami AR, Günter T, Doronkin DE, Casapu M, Zengel D, Vuong TH, Simon M, Breher F, Kucherov AV, Brückner A, Grunwaldt JD. The dynamic nature of Cu sites in Cu-SSZ-13 and the origin of the seagull NOx conversion profile during NH3-SCR. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00290h] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Systematic catalytic tests and in situ/operando spectroscopy uncovered structure–performance relationships determining the seagull profile of the NOx conversion for Cu-SSZ-13 catalysts.
Collapse
Affiliation(s)
- A. R. Fahami
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
- Dipartimento di Energia
| | - T. Günter
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - D. E. Doronkin
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
- Institute of Catalysis Research and Technology
| | - M. Casapu
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - D. Zengel
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - T. H. Vuong
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock (LIKAT)
- 18059 Rostock
- Germany
| | - M. Simon
- Institute of Inorganic Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - F. Breher
- Institute of Inorganic Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - A. V. Kucherov
- N.D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russia
| | - A. Brückner
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock (LIKAT)
- 18059 Rostock
- Germany
| | - J.-D. Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
- Institute of Catalysis Research and Technology
| |
Collapse
|
49
|
Mahyuddin MH, Shiota Y, Yoshizawa K. Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02414f] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A review of the recent progress in revealing the structures, formation, and reactivity of the active sites in Fe-, Co-, Ni- and Cu-exchanged zeolites as well as outlooks on future research challenges and opportunities is presented.
Collapse
Affiliation(s)
- Muhammad Haris Mahyuddin
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
50
|
Wang Y, Zhao H, Zheng J, Chen G, Yang J, Xu J. Easy synthesis of three-dimensionally ordered macroporous CuO-CeO 2
mixed oxide catalysts and their high activities for the catalytic combustion of soot. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yujie Wang
- School of Materials and Chemical Engineering; Chuzhou University; Chuzhou China
| | - Huawang Zhao
- School of Chemical Engineering; Tianjin University; Tianjin China
| | - Jiandong Zheng
- School of Materials and Chemical Engineering; Chuzhou University; Chuzhou China
| | - Gangling Chen
- School of Materials and Chemical Engineering; Chuzhou University; Chuzhou China
| | - Jing Yang
- School of Materials and Chemical Engineering; Chuzhou University; Chuzhou China
| | - Jie Xu
- School of Materials and Chemical Engineering; Chuzhou University; Chuzhou China
| |
Collapse
|