1
|
Wang X, Wang N, Liu K, Yang M, Zhang R, Khan S, Pang J, Duan J, Hou B, Sand W. Synergistic Zn-Cd Bimetallic Engineering in ZIFs for High-Chloride 2e - ORR to H 2O 2 in Simulated Neutral Seawater. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1786. [PMID: 40333449 PMCID: PMC12028355 DOI: 10.3390/ma18081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
Marine biofouling causes significant economic losses, and conventional antifouling methods are often associated with environmental pollution. Hydrogen peroxide (H2O2), as a clean energy source, has gained increasing attention in recent years. Meanwhile, electrocatalytic 2e- oxygen reduction reaction (ORR) for H2O2 production has received growing interest. However, the majority of current studies are conducted on acidic or alkaline electrolytes, and research on 2e- ORR in neutral NaCl solutions remains rare. Here, a bimetallic Zn-Cd zeolitic imidazolate framework (ZnCd-ZIF) is rationally designed to achieve chloride-resistant 2e- ORR catalysis under simulated seawater conditions (pH 7.5, 3.5% Cl-). Experimental results demonstrate that the ZnCd-ZIF catalyst exhibits an exceptional H2O2 selectivity of 70% at 0.3 VRHE, surpassing monometallic Zn-ZIF (60%) and Cd-ZIF (50%). Notably, H2O2 production reaches 120 mmol g-1 in a Cl--containing neutral electrolyte, exhibiting strong resistance to structural corrosion and Cl- poisoning. This work not only pioneers an effective strategy for designing ORR catalysts adapted to marine environments but also advances the practical implementation of seawater-based electrochemical H2O2 synthesis.
Collapse
Affiliation(s)
- Xu Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China (M.Y.)
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Nan Wang
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Kunpeng Liu
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Meinan Yang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China (M.Y.)
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Ruiyong Zhang
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Sikandar Khan
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal 18000, Pakistan
| | - Jinhui Pang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China (M.Y.)
| | - Jizhou Duan
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Baorong Hou
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Wolfgang Sand
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| |
Collapse
|
2
|
Mehta S, Elmerhi N, Kaur S, Mohammed AK, Nagaiah TC, Shetty D. Modulating Core Polarity in Metal-free Covalent Organic Frameworks for Selective Electrocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2025; 64:e202417403. [PMID: 39472302 PMCID: PMC11773118 DOI: 10.1002/anie.202417403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/24/2024]
Abstract
Tuning the charge density at the active site to balance the adsorption ability and reactivity of oxygen is extremely significant for driving a two-electron oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2O2). Herein, we have highlighted the influence of intermolecular polarity in covalent organic frameworks (COFs) on the efficiency and selectivity of electrochemical H2O2 production. Different C3 symmetric building blocks have been utilized to regulate the charge density at the active sites. The benzene-cored COF, which exhibits reduced polarity than the triazine-cored COF, displayed enhanced performance in H2O2 production, achieving 93.1 % selectivity for H2O2 at 0.4 V with almost two-electron transfer and a faradaic efficiency of 90.5 %. In-situ electrochemical Raman spectroscopy and scanning electrochemical microscopy (SECM) were employed to confirm H2O2 generation and analyze spatial reactivity patterns. These techniques provided detailed insights into localized catalytic behavior, emphasizing the influence of core polarity.
Collapse
Affiliation(s)
- Shivangi Mehta
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Nada Elmerhi
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
- Center for Catalysis & Separations (CeCaS)Khalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Sukhjot Kaur
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Abdul Khayum Mohammed
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Tharamani C. Nagaiah
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Dinesh Shetty
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
- Center for Catalysis & Separations (CeCaS)Khalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| |
Collapse
|
3
|
de Oliveira Santiago Santos G, Athie Goulart L, Sánchez-Montes I, Santos da Silva R, de Vasconcelos Lanza MR. Electrochemically enhanced iron oxide-modified carbon cathode toward improved heterogeneous electro-Fenton reaction for the degradation of norfloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118736-118753. [PMID: 37917268 DOI: 10.1007/s11356-023-30536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
In this work, different iron-based cathode materials were prepared using two different approaches: a novel one-step approach, which involved the incorporation of iron oxide with Printex® L6 carbon/PTFE (PL6C/PTFE) on bare carbon felt (CF) and a two-step approach, where iron oxide is deposited onto CF previously modified with PL6C/PTFE. The results obtained from the physical characterization indicated that the presence of iron oxide homogeneously dispersed on the felt fibers with the CF 3-D network kept intact in the one-step approach; whereas the formation of iron oxide aggregates between the felt fibers for material obtained using the two-step approach. Among the iron oxide-based cathodes investigated, the iron-incorporated electrode exhibited the greatest efficiency in terms of the removal and mineralization of norfloxacin (NOR) under neutral pH (complete NOR removal in less than 30 min with around 50% mineralization after 90 min). The findings of this study show that the low cost and simple-to-prepare iron-modified carbon-based materials in HEF process led to the enhanced degradation of organic contaminants in aqueous solutions.
Collapse
Affiliation(s)
| | - Lorena Athie Goulart
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Isaac Sánchez-Montes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | | | | |
Collapse
|
4
|
Alnaji N, Wasfi A, Awwad F. The design of a point of care FET biosensor to detect and screen COVID-19. Sci Rep 2023; 13:4485. [PMID: 36934198 PMCID: PMC10024292 DOI: 10.1038/s41598-023-31679-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Graphene field effect transistor (FET) biosensors have attracted huge attention in the point-of-care and accurate detection. With the recent spread of the new emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for rapid, and accurate detection & screening tools is arising. Employing these easy-to-handle sensors can offer cheap, rapid, and accurate detection. Herein, we propose the design of a reduced graphene oxide (rGO) FET biosensor for the detection of SARS-CoV-2. The main objective of this work is to detect the SARS-CoV-2 spike protein antigen on spot selectively and rapidly. The sensor consists of rGO channel, a pair of golden electrodes, and a gate underneath the channel. The channel is functionalized with COVID-19 spike protein antibodies to achieve selectivity, and with metal nanoparticles (MNPs) such as copper and silver to enhance the bio-sensing performance. The designed sensor successfully detects the SARS-CoV-2 spike protein and shows singular electrical behavior for detection. The semi-empirical modeling approach combined with none-equilibrium Green's function were used to study the electronic transport properties of the rGO-FET biosensor before and after the addition of the target molecules. The sensor's selectivity is also tested against other viruses. This study provides a promising guide for future practical fabrication.
Collapse
Affiliation(s)
- Nisreen Alnaji
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
One-Step Synthesis of Aminobenzoic Acid Functionalized Graphene Oxide by Electrochemical Exfoliation of Graphite for Oxygen Reduction to Hydrogen Peroxide and Supercapacitors. Molecules 2022; 27:molecules27217629. [DOI: 10.3390/molecules27217629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Graphene-based materials have attracted considerable attention as promising electrocatalysts for the oxygen reduction reaction (ORR) and as electrode materials for supercapacitors. In this work, electrochemical exfoliation of graphite in the presence of 4-aminebenzoic acid (4-ABA) is used as a one-step method to prepare graphene oxide materials (EGO) functionalized with aminobenzoic acid (EGO-ABA). The EGO and EGO-ABAs materials were characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and scanning electron microscopy. It was found that the EGO-ABA materials have smaller flake size and higher density of oxygenated functional groups compared to bare EGO. The electrochemical studies showed that the EGO-ABA catalysts have higher activity for the ORR to H2O2 in alkaline medium compared to EGO due to their higher density of oxygenated functional groups. However, bare EGO has a higher selectivity for the 2-electron process (81%) compared to the EGO-ABA (between 64 and 72%) which was related to a lower content of carbonyl groups. The specific capacitance of the EGO-ABA materials was higher than that of EGO, with an increase by a factor of 3 for the materials prepared from exfoliation in 5 mM 4-ABA/0.1 M H2SO4. This electrode material also showed a remarkable cycling capability with a loss of only 19.4% after 5000 cycles at 50 mVs−1.
Collapse
|
6
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
7
|
Wu Z, Wang T, Zou JJ, Li Y, Zhang C. Amorphous Nickel Oxides Supported on Carbon Nanosheets as High-Performance Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zekun Wu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Tianzuo Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yongdan Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Cuijuan Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
8
|
Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63946-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Gunasooriya GTKK, Kreider ME, Liu Y, Zamora Zeledón JA, Wang Z, Valle E, Yang AC, Gallo A, Sinclair R, Stevens MB, Jaramillo TF, Nørskov JK. First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction. ACS NANO 2022; 16:6334-6348. [PMID: 35377139 DOI: 10.1021/acsnano.2c00420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of inexpensive and abundant catalysts with high activity, selectivity, and stability for the oxygen reduction reaction (ORR) is imperative for the widespread implementation of fuel cell devices. Herein, we present a combined theoretical-experimental approach to discover and design first-row transition metal antimonates as excellent electrocatalytic materials for the ORR. Theoretically, we identify first-row transition metal antimonates─MSb2O6, where M = Mn, Fe, Co, and Ni─as nonprecious metal catalysts with good oxygen binding energetics, conductivity, thermodynamic phase stability, and aqueous stability. Among the considered antimonates, MnSb2O6 shows the highest theoretical ORR activity based on the 4e- ORR kinetic volcano. Experimentally, nanoparticulate transition metal antimonate catalysts are found to have a minimum of a 2.5-fold enhancement in intrinsic mass activity (on transition metal mass basis) relative to the corresponding transition metal oxide at 0.7 V vs RHE in 0.1 M KOH. MnSb2O6 is the most active catalyst under these conditions, with a 3.5-fold enhancement on a per Mn mass activity basis and 25-fold enhancement on a surface area basis over its antimony-free counterpart. Electrocatalytic and material stability are demonstrated over a 5 h chronopotentiometry experiment in the stability window identified by theoretical Pourbaix analysis. This study further highlights the stable and electrically conductive antimonate structure as a framework to tune the activity and selectivity of nonprecious metal oxide active sites for ORR catalysis.
Collapse
Affiliation(s)
| | - Melissa E Kreider
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yunzhi Liu
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Zhenbin Wang
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eduardo Valle
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - An-Chih Yang
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alessandro Gallo
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Michaela Burke Stevens
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jens K Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
11
|
Du B, Qiu L, Chen Y, Zhang Z. Rational Design of Self-Supported CuO x -Decorated Composite Films as an Efficient and Easy-Recycling Catalyst for Styrene Oxidation. ACS OMEGA 2021; 6:18157-18168. [PMID: 34308047 PMCID: PMC8296588 DOI: 10.1021/acsomega.1c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The applications of graphene-based materials in catalysis are limited by their strong tendency to aggregate, which may lead to a decrease in active sites. Herein, we propose a facile and controllable strategy to fabricate a series of heterogeneous catalysts with a unique nanostructure wherein CuO x -decorated reduced graphene oxide (rGO) sheets are incorporated into a solid matrix composed of poly(vinylpyrrolidone) (PVP) and carboxymethyl cellulose (CMC). The resultant materials are self-supported films and could be directly used as catalysts for the liquid-phase oxidation of styrene without the requirement for extra substrates. The employment of PVP-CMC (PC) as the support for CuO x -decorated rGO sheets successfully inhibits their aggregation. Benefiting from the dispersion of copper species, these films exhibit good catalytic activity and recyclability under mild reaction conditions. Especially, they can be conveniently removed from the reaction mixture by tweezers due to their structural stability. For catalyzing multiple reactions with high efficiency and facile recyclability, this study offers a universal strategy to design heterogeneous catalysts based on graphene materials and provides a promising platform.
Collapse
|
12
|
Khan SU, Hussain S, Perini JAL, Khan H, Khan S, Zanoni MVB. Self-doping of Nb 2O 5NC by cathodic polarization for enhanced conductivity properties and photoelectrocatalytic performance. CHEMOSPHERE 2021; 272:129880. [PMID: 33601209 DOI: 10.1016/j.chemosphere.2021.129880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
A simple novel electrochemical reduction approach was developed for the self-doping of Nb4+ in niobium oxide nanochannels (Nb2O5NC), changing the conductivity, optical properties, and photocatalytic properties of the material. Nb2O5NC was synthesized using different electrolytes: 0.4 wt% HF in 1 M H2SO4 (EI), 0.4 M NH4F in glycerol (EII), and 0.25 g NH4F with 4 vol% water in glycol at 50 °C (EIII). Field emission scanning electron microscopy (FEG-SEM) analysis showed well-organized arrays of Nb2O5 nanochannels produced on Nb foil, with varying tube diameters in the order EII < EI < EIII and film thickness in the order EI < EII < EIII, which drastically affected the photocurrent vs. potential curves. In order to self-dope the Nb2O5, the samples were electrochemically reduced in 0.1 M KH2PO4 buffer solution (pH 10) for 5 min, at -2.5 V vs. Ag/AgCl, resulting in the doped samples denoted P-EI, P-EII, and P-EIII. The results showed that reduction of Nb5+ to Nb4+ occurred for all the Nb2O5NC samples, leading to decreased surface charge transfer resistance between the Nb2O5NC and the electrolyte, as well as increases of the charge carrier density and photocurrent for all the self-doped samples, compared to undoped samples. Sample P-EI was also tested for the degradation of reactive red 120 (RR120) dye, achieving efficient photoelectrocatalytic degradation of a 10 mg L-1 dye solution. These results reveal that the self-doping approach can enhance the photoelectrocatalytic properties of Nb2O5 photoanode, offering an alternative way for the removal of reactive dyes.
Collapse
Affiliation(s)
- Saad Ullah Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, KP, Pakistan; São Paulo State University (UNESP), Institute of Chemistry, Rua Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation, and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-060, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, KP, Pakistan
| | - João Angelo Lima Perini
- São Paulo State University (UNESP), Institute of Chemistry, Rua Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation, and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-060, Brazil.
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, KP, Pakistan
| | - Sabir Khan
- São Paulo State University (UNESP), Institute of Chemistry, Rua Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation, and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-060, Brazil
| | - Maria Valnice Boldrin Zanoni
- São Paulo State University (UNESP), Institute of Chemistry, Rua Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation, and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-060, Brazil
| |
Collapse
|
13
|
|
14
|
Feng Y, Li W, An J, Zhao Q, Wang X, Liu J, He W, Li N. Graphene family for hydrogen peroxide production in electrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144491. [PMID: 33736245 DOI: 10.1016/j.scitotenv.2020.144491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The development of carbon-based materials to catalyze two-electron (2e-) pathway of oxygen reduction reaction (ORR) offers great potential for hydrogen peroxide (H2O2) production. As a class of novel two-dimensional (2D) carbon materials, graphene and its derivatives have raised increasing attention as excellent noble-metal-free catalysts in 2e ORR due to their unique structure, physical and chemical properties. This review focuses on the synthesis of main graphene family members and graphene based electrodes, as well as their applications for H2O2 generation in electrochemical systems. We describe the functions of the graphene family in electrochemical systems, such as accelerating electron transfer and increasing oxygen transfer for cathodes in electrochemical systems, aiming to reveal the enhancement mechanisms of graphene and its derivatives on H2O2 production. Furthermore, the challenges and prospects for graphene family used as catalyst for H2O2 production in the future are also proposed.
Collapse
Affiliation(s)
- Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Wen Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
15
|
Liu C, Li H, Chen J, Yu Z, Ru Q, Li S, Henkelman G, Wei L, Chen Y. 3d Transition-Metal-Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007249. [PMID: 33690976 DOI: 10.1002/smll.202007249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Decentralized electrosynthesis of hydrogen peroxide (H2 O2 ) via oxygen reduction reaction (ORR) can enable applications in disinfection control, pulping and textile bleaching, wastewater treatment, and renewable energy storage. Transition metal oxides are usually not efficient catalysts because they are more selective to produce H2 O. Here, it is shown that divalent 3d transition metal cations (Mn, Fe, Co, Ni, and Cu) can control the catalytic activity and selectivity of columbite nanoparticles. They are synthesized using polyoxoniobate (K7 HNb6 O19 ·13H2 O) and divalent metal cations by a hydrothermal method. The optimal NiNb2 O6 holds an H2 O2 selectivity of 96% with the corresponding H2 O2 Faradaic efficiency of 92% in a wide potential window from 0.2 to 0.6 V in alkaline electrolyte, superior to other transition metal oxide catalysts. Ex situ X-ray photoelectron and operando Fourier-transformed infrared spectroscopic studies, together with density functional theory calculations, reveal that 3d transition metals shift the d-band center of catalytically active surface Nb atoms and change their interactions with ORR intermediates. In an application demonstration, NiNb2 O6 delivers H2 O2 productivity up to 1 molH2O2 gcat -1 h-1 in an H-shaped electrolyzer and can yield catholytes containing 300 × 10-3 m H2 O2 to efficiently decomposing several organic dyes. The low-cost 3d transition-metal-mediated columbite catalysts show excellent application potentials.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Hao Li
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Junsheng Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Qiang Ru
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| |
Collapse
|
16
|
Anantharaj S, Pitchaimuthu S, Noda S. A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Adv Colloid Interface Sci 2021; 287:102331. [PMID: 33321333 DOI: 10.1016/j.cis.2020.102331] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.
Collapse
|
17
|
Rousta M, Khalili D, Khalafi-Nezhad A, Ebrahimi E. CuO-decorated magnetite-reduced graphene oxide: a robust and promising heterogeneous catalyst for the oxidative amidation of methylarenes in water via benzylic sp 3 C–H activation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03982b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CuO-decorated magnetite-reduced graphene oxide: a heterogeneous catalyst for the oxidative amidation of methylarenes in water at room temperature.
Collapse
Affiliation(s)
- Marzieh Rousta
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Dariush Khalili
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Edris Ebrahimi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
18
|
Using black carbon modified with NbMo and NbPd oxide nanoparticles for the improvement of H2O2 electrosynthesis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Senthilnathan J, Selvaraj A, Younis SA, Kim KH, Yoshimura M. An upgraded electro-Fenton treatment of wastewater using nanoclay-embedded graphene composite prepared via exfoliation of pencil rods by submerged liquid plasma. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122788. [PMID: 32388098 DOI: 10.1016/j.jhazmat.2020.122788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this work, two types of electrochemical electrodes were synthesized using two types (i.e., 4 black (4B) and hard black (HB)) of pencil rods during submerged liquid plasma (SLP) process. At high potential (3 kV) electrons, the SLP process offered an effective exfoliation route for the disorientation of the graphite sp2 domain to produce two nanoclay-graphene composite electrodes with a few graphene layers (thickness = 4-9 layers) and high dispersibility (< 19% settlement: 4 h) in polar/non-polar solution (52-53.1% settlement: 4 h). Their performance was then evaluated towards the electro-Fenton (EF) degradation of lindane using a coated Fe3O4 plate (as Fenton catalyst). Accordingly, both 4B- and HB-ENcGe electrodes showed high specific capacitance values (473 and 363 F g-1) at 0.05 A g-1 and excellent triangular charge-discharge patterns (< 9% and 35% reduction of capacitance, respectively after 1000 cycles (charging rate: 0.2 A g-1)). At pH 3 and current density of 6.5 mA cm-2, 4B-ENcGe exhibited superior EF degradation performance (99.4% after 60 min) against 2.5 mg L-1 lindane (H2O2 generation capacity: 2.53 mmol. h-1, current efficiency: 89.4%, and stability: up to 5th cycles). The complete EF-based mineralization of lindane suggests that these electrodes should offer one-step cost-effective treatment for wastewater contaminants.
Collapse
Affiliation(s)
- Jaganathan Senthilnathan
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, 600036, India
| | - Ambika Selvaraj
- Dept of civil engineering, Indian institute of technology hyderabad,India
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Masahiro Yoshimura
- Promotion Centre for Global Materials Research, Department of Material Science and Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Khan SU, Perini JAL, Hussain S, Khan H, Khan S, Boldrin Zanoni MV. Electrochemical preparation of Nb 2O 5 nanochannel photoelectrodes for enhanced photoelectrocatalytic performance in removal of RR120 dye. CHEMOSPHERE 2020; 257:127164. [PMID: 32480087 DOI: 10.1016/j.chemosphere.2020.127164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The present work describes the synthesis of niobium oxide nanochannels (Nb2O5NCs) with high surface area, porosity, photocurrent density, and photoelectrochemical stability as photocatalyst. The Nb2O5NCs were prepared by electrochemical anodization of niobium foil in different electrolytes: 1 M H2SO4 containing 0.4 wt% HF (S1); glycerol containing 0.4 M NH4F (S2); 0.25 g NH4F with 4 vol% water in glycol at 50 °C (S3); and glycerol containing 10 wt% K2HPO4, at 130 °C (S4, annealed in air; S5, annealed in N2). All the Nb2O5NCs showed well-organized arrays of nanochannels grown on the Nb foil, with tube diameters in the order S4<S2<S1<S3 and film thicknesses in the order S1<S2<S3<S4, as determined using FEG-SEM analyses. The samples were also characterized using XRD, EDX, DRS, XPS, EIS, Mott-Schottky analysis, and LSV curves. But, best results were obtained only when phosphorus (about 1% doping) was incorporated into the electrodes samples prepared in glycerol containing 10 wt% K2HPO4 at 130 °C (i.e. S4 and S5). This procedure enhances the absorption intensity in the UV-Vis regions, the conductivity, the charge carrier density, and the photocurrent density. The Nb2O5NC sample S5 was tested for the degradation of Procion Red HE-3B (RR120) dye, as a model pollutant, achieving efficient photoelectrodegradation with nearly 2 times higher mineralization efficiency compared to photolysis (PT) and photocatalysis (PC). Thus, the results indicate that the modification of Nb2O5NC thin film photoelectrodes by phosphorous doping can be a powerful and efficient alternative to usual approaches applied to the treatment of complex reactive dyes.
Collapse
Affiliation(s)
- Saad Ullah Khan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil; Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - João Angelo Lima Perini
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil.
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Sabir Khan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil; Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima, Peru
| | - Maria V Boldrin Zanoni
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
21
|
Hu X, Zeng X, Liu Y, Lu J, Zhang X. Carbon-based materials for photo- and electrocatalytic synthesis of hydrogen peroxide. NANOSCALE 2020; 12:16008-16027. [PMID: 32720961 DOI: 10.1039/d0nr03178j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high demand for hydrogen peroxide (H2O2) has been dominantly supplied by the anthraquinone process for various applications globally, including chemical synthesis and wastewater treatment. However, the centralized manufacturing and intensive energy input and waste output are significant challenges associated with this process. Accordingly, the on-site production of H2O2via electro- and photocatalytic water oxidation and oxygen reduction partially is greener and easier to handle and has recently emerged with extensive research aiming to seek active, selective and stable catalysts. Herein, we review the current status and future perspectives in this field focused on carbon-based catalysts and their hybrids, since they are relatively inexpensive, bio-friendly and flexible for structural modulation. We present state-of-the-art progress, typical strategies for catalyst engineering towards selective and active H2O2 production, discussion on electro- and photochemical mechanisms and H2O2 formation through both reductive and oxidative reaction pathways, and conclude with the key challenges to be overcome. We expect promising developments would be inspired in the near future towards practical decentralized H2O2 production and its direct use.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3168, Australia.
| | | | | | | | | |
Collapse
|
22
|
Bhembe YA, Lukhele LP, Sinha Ray S, Dlamini LN. Intercalation of Nb 2O 5 nano-flowers into the walls of few-layer black phosphorus creating a heterostructure of FL-BP@Nb 2O 5 with the potential for environmental application. Dalton Trans 2020; 49:7474-7487. [PMID: 32436924 DOI: 10.1039/d0dt01073a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein we report the successful exfoliation of few-layer BP (FL-BP) from bulk BP via ultrasonication in N-methylpyrrolidone (NMP). FL-BP exhibited an orthorhombic phase structure similar to that of bulk BP with weak electrostatic out-of-plane interactions and strong ionic in-plane bonds. The weakened out-of-plane bonds allowed the intercalation of Nb2O5 nano-flowers that were hydrothermally synthesized, forming an intimate contact with the exfoliated BP. The successful formation of the heterointerface was confirmed by the co-existence of crystal phases of both compounds as per the XRD results. The formation of the new intrinsic Nb-P bond was confirmed by the presence of Raman shoulders of both compounds, further substantiated by the XPS analysis. The heterointerface enhanced Nb2O5 light-harvesting capacity as per the UV-vis measurements. The FL-BP's properties of higher carrier effective mass and density were successfully incorporated in the composite, implying an increased flow of electrons in the composite's lattice structure. This was displayed by the great suppression of the fast recombination rate of charge carriers in the composites. The 3% BP@Nb2O5 composite exhibited excellent optoelectrical properties, compared to the other composites, as suggested by the microstrain calculations, PL, and the EIS data. Mott-Schottky plots verified the p-n type heterojunction formed in the composites, and further verified the increased electron density/concentration in the composites, with respect to Nb2O5. Noteworthy, the incorporation of FL-BP in the lattice of Nb2O5 increased the surface area and the pore size and volume, which is a character beneficial for photocatalysis as it presents active sites and diffusion pathways.
Collapse
Affiliation(s)
- Yoliswa Anittah Bhembe
- Department, of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.
| | | | - Suprakas Sinha Ray
- Department, of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa. and Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | | |
Collapse
|
23
|
Zhou H, Shi S, Cui J, Cui S, Guo J, Wei J, Chai N, Liu T, Zhang K, Yin J, Zhang X. Face‐Type Coupling as an Ideal Interface Synergy between the Nb
2
O
5
Crystal Lattice and Graphene for Energy Conversion. ChemistrySelect 2020. [DOI: 10.1002/slct.201904398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huawei Zhou
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Shaozhen Shi
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Jiawen Cui
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Shuting Cui
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Junxue Guo
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Jiazhen Wei
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Ning Chai
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Ting Liu
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Kaixuan Zhang
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Jie Yin
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| | - Xianxi Zhang
- School of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage Liaocheng University No. 1, Hunan Road, Dongchangfu District, Liaocheng City Shandong China 252059
| |
Collapse
|
24
|
|
25
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Das RK, Golder AK. Use of plant based analytes for the synthesis of NiO nanoparticles in catalyzing electrochemical H2O2 production. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhou W, Gao J, Rajic L, Ding Y, Zhao Y, Zhao H, Meng X, Wang Y, Kou K, Xu Y, Wu S, Qin Y, Alshawabkeh AN. Drastic Enhancement of H 2O 2 Electro-generation by Pulsed Current for Ibuprofen Degradation: Strategy Based on Decoupling Study on H 2O 2 Decomposition Pathways. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 338:709-718. [PMID: 32153347 PMCID: PMC7062375 DOI: 10.1016/j.cej.2017.12.152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Efficient H2O2 electrogeneration from 2-electron oxygen reduction reaction (ORR) represents an important challenge for environmental remediation application. H2O2 production is determined by 2-electron ORR as well as H2O2 decomposition. In this work, a novel strategy based on the systematical investigation on H2O2 decomposition pathways was reported, presenting a drastically improved bulk H2O2 concentration. Results showed that bulk phase disproportion, cathodic reduction, and anodic oxidation all contributed to H2O2 depletion. To decrease the extent of H2O2 cathodic reduction, the pulsed current was applied and proved to be highly effective to lower the extent of H2O2 electroreduction. A systematic study of various pulsed current parameters showed that H2O2 concentration was significantly enhanced by 61.6% under pulsed current of "2s ON + 2s OFF" than constant current. A mechanism was proposed that under pulsed current, less H2O2 molecules were electroreduced when they diffused from the porous cathode to the bulk electrolyte. Further results demonstrated that a proper pulse frequency was necessary to achieve a higher H2O2 production. Finally, this strategy was applied to Electro-Fenton (EF) process with ibuprofen as model pollutant. 75.0% and 34.1% ibuprofen were removed under pulsed and constant current at 10 min, respectively. The result was in consistent with the higher H2O2 and ·OH production in EF under pulsed current. This work poses a potential approach to drastically enhance H2O2 production for improved EF performance on organic pollutants degradation without making any changes to the system except for power mode.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ljiljana Rajic
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yani Ding
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yuwei Zhao
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Haiqian Zhao
- School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yan Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Kaikai Kou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yiqun Xu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaohua Wu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yukun Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Oliveira RL, Oliveira CS, Landers R, Correia CRD. Pd Nanoparticles Immobilized on Graphene Oxide/Silica Nanocomposite: Efficient and Recyclable Catalysts for Cross-Coupling Reactions. ChemistrySelect 2018. [DOI: 10.1002/slct.201702693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rafael L. Oliveira
- Chemistry Institute; Campinas University; Caixa Postal 6154, CEP 13083-970 Campinas-SP Brazil
| | - Cristine S. Oliveira
- Chemistry Institute; Campinas University; Caixa Postal 6154, CEP 13083-970 Campinas-SP Brazil
| | - Richard Landers
- Physics Institute; Campinas University, CEP-; 13083-970 Campinas-SP- Brazil
| | - Carlos R. D. Correia
- Chemistry Institute; Campinas University; Caixa Postal 6154, CEP 13083-970 Campinas-SP Brazil
| |
Collapse
|
29
|
Royaei N, Shahrabi T, Yaghoubinezhad Y. The investigation of the electrocatalytic and corrosion behavior of a TiO2–RuO2 anode modified by graphene oxide and reduced graphene oxide nanosheets via a sol–gel method. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01353e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The participation of GO in the coating structure improved the ClER activity, selectivity, and the electrochemical stability of the electrodes significantly.
Collapse
Affiliation(s)
- N. Royaei
- Department of Materials Engineering
- Faculty of Engineering
- Tarbiat Modares University
- Tehran
- Iran
| | - T. Shahrabi
- Department of Materials Engineering
- Faculty of Engineering
- Tarbiat Modares University
- Tehran
- Iran
| | - Y. Yaghoubinezhad
- Department of Mechanical and Materials Engineering
- Birjand University of Technology
- Birjand
- Iran
| |
Collapse
|
30
|
Meng Z, Li J, Huo F, Huang Y, Xiang Z. Fungi residue derived carbon as highly efficient hydrogen peroxide electrocatalyst. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Wan W, Zhang Y, Ji R, Wang B, He F. Metal Foam-Based Fenton-Like Process by Aeration. ACS OMEGA 2017; 2:6104-6111. [PMID: 30023763 PMCID: PMC6044970 DOI: 10.1021/acsomega.7b00977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 05/09/2023]
Abstract
A novel metal foam-based Fenton-like process for wastewater treatment is illustrated in this study. In the system, H2O2 was generated in situ by taking advantage of O2 in air, as metal could activate dissolved O2 to produce •O2- and then generate H2O2. Furthermore, metal foam can enhance the Fe3+/Fe2+ cycling, which eventually improved the efficiency of the Fenton process. The performance of the novel Fenton-like process was assessed by methyl blue (MB), and 94% MB removal could be achieved within 5 min in nickel (Ni) foam system. The degradation of MB in this study was based on both •OH and •O2- radicals, where •O2- radical served as the precursor to generate •OH for MB degradation through a Fenton process. The pH value of 3 with the initial Fe2+ concentration of 0.25 mM was found to be the optimum condition for the Fenton-like process. This study provides a general and new strategy for efficient wastewater treatment just using aeration and metal foams (such as Ni, Al, and Cu foams), which also offers a good alternative for rational design and application of traditional Fenton process.
Collapse
Affiliation(s)
- Wubo Wan
- College
of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
- College
of Life Sciences and Ecology, Hainan Tropical
Ocean University, 1 Yucai
Road, Sanya 572022, China
| | - Yan Zhang
- College
of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Ran Ji
- College
of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Binbin Wang
- College
of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Feng He
- College
of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
- E-mail: . Tel: +86 571 84986072
| |
Collapse
|
32
|
Shah S, Tiwari N, Kumar Y, Jha SN, Auroux A, Pandey JK, Chowdhury B. Highly Acidic, Thermal Stable NbPO 4
@Fullerene Catalyst for Dehydration of Cyclohexanol. ChemistrySelect 2017. [DOI: 10.1002/slct.201700203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sneha Shah
- Department of Applied Chemistry; Indian Institute of Technology (ISM), Dhanbad, Jharkhand; 826004 India
| | - Nidhi Tiwari
- Atomic & Molecular; Bhabha Atomic Research Center; Mumbai 400094 India
| | - Yogesh Kumar
- Atomic & Molecular; Bhabha Atomic Research Center; Mumbai 400094 India
| | - S. N. Jha
- Atomic & Molecular; Bhabha Atomic Research Center; Mumbai 400094 India
| | - Aline Auroux
- Institut de Recherches sur la Catalyse, CNRS; 2 avenue Einstein 69626 VIILLEURBANNE Cedex France
| | - Jai K. Pandey
- Central Institute of Mining and Fuel Research; Dhanbad, Jharkhand 826004 India
| | - Biswajit Chowdhury
- Department of Applied Chemistry; Indian Institute of Technology (ISM), Dhanbad, Jharkhand; 826004 India
| |
Collapse
|
33
|
A new electrochemical platform for ultrasensitive detection of atrazine based on modified self-ordered Nb 2 O 5 nanotube arrays. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Synthesis and Characterization of ZrO2/C as Electrocatalyst for Oxygen Reduction to H2O2. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0355-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Carneiro JF, Paulo MJ, Siaj M, Tavares AC, Lanza MRV. Zirconia on Reduced Graphene Oxide Sheets: Synergistic Catalyst with High Selectivity for H2O2Electrogeneration. ChemElectroChem 2017. [DOI: 10.1002/celc.201600760] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jussara F. Carneiro
- Instituto de Química de São Carlos; Universidade de São Paulo; Avenida Trabalhador São Carlense 400 São Carlos 13566-590, SP Brazil
| | - Maria J. Paulo
- Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications; 1650 Boulevard Lionel-Boulet, Varennes Québec J3X 1S2 Canada
| | - Mohamed Siaj
- Département de Chimie - Faculté des Scienses; Université du Québec a Montréal; 8888 Station Centre-ville Montreal QC H3C 3P8 Canada
| | - Ana C. Tavares
- Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications; 1650 Boulevard Lionel-Boulet, Varennes Québec J3X 1S2 Canada
| | - Marcos R. V. Lanza
- Instituto de Química de São Carlos; Universidade de São Paulo; Avenida Trabalhador São Carlense 400 São Carlos 13566-590, SP Brazil
| |
Collapse
|