1
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
2
|
Effect of Precursor and Temperature Annealing on the Catalytic Activity of Intermetallic Ni3Sn2 Alloy. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.4.15923.743-754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of nickel precursors and the temperature annealing to obtain intermetallic Ni3Sn2 alloy catalysts on its activity and selectivity in the selective hydrogenation of biomass-derived furfural (FFald) were investigated. Two types of nickel precursors (c.a., i) nickel metal (Ni°) derived from Raney®nickel and ii) nickel ion (Ni2+) derived from nickel chloride) were employed as the starting materials via hydrothermal at 423 K for 24 h followed by reduction with H2 at the elevated temperature of 573-873 K for 1.5 h. The physico-chemical properties of the intermetallic Ni3Sn2 were characterized by XRD, N2-, and H2-adsorption, ICP-AES, and NH3-TPD. The intermetallic Ni3Sn2 alloy catalysts, both bulk and supported, demonstrated high activity and selectivity towards hydrogenation of FFald. The activity and selectivity of g-Al2O3 and AA-supported Ni3Sn2 alloy catalysts in the hydrogenation of FFald to furfuryl alcohol (FFalc) were maintained even after annealing at up to 873 K, but that of bulk Ni3Sn2 drastically dropped. Ni-Sn alloy catalysts which were obtained from Raney®Ni precursor showed more stable than that of nickel salts during hydrogenation of furfural to furfuryl alcohol. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
3
|
Pino N, Quinchia J, Gómez S, Espinal JF, Montoya A, López D. Selective heterogeneous hydrodeoxygenation of acetophenone over monometallic and bimetallic Pt-Co catalyst. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200346. [PMID: 34510929 DOI: 10.1098/rsta.2020.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 06/13/2023]
Abstract
The hydrodeoxygenation (HDO) of acetophenone was evaluated in liquid phase and gas phase over monometallic Pt/SiO2, Co/SiO2 and bimetallic Pt-Co/SiO2 catalysts. The influence of reaction time and loading of the catalyst were analysed by following the conversion and products selectivity. Phenylethanol, cyclohexylethanone and cyclohexylethanol are the main products of reaction using the Pt/SiO2 catalyst. By contrast, ethylbenzene and phenylethanol are the only products formed on the Co/SiO2 and Pt-Co/SiO2 catalysts. The bimetallic catalyst is more stable as a function of time and more active towards the HDO process than the monometallic systems. The presence of an organic solvent showed only minor changes in product yields with no effect on the product speciation. Periodic density functional theory analysis indicates a stronger interaction between the carbonyl group of acetophenone with Co than with Pt sites of the mono and bimetallic systems, indicating a key activity of oxophilic sites towards improved selectivity to deoxygenated products. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
Collapse
Affiliation(s)
- Natalia Pino
- Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jennifer Quinchia
- Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Santiago Gómez
- Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan F Espinal
- Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Alejandro Montoya
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Diana López
- Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
4
|
Huang N, Liu B, Lan X, Wang T. Insights into the Bimetallic Effects of a RhCo Catalyst for Ethene Hydroformylation: Experimental and DFT Investigations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ning Huang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Boyang Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Zhang S, Johnson DD, Shelton WA, Xu Y. Hydrogen Adsorption on Ordered and Disordered Pt-Ni Alloys. Top Catal 2020. [DOI: 10.1007/s11244-020-01338-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wang S, Xu D, Zhu D, Zhao B, Guan H, Qin Y, Wu B, Yang Y, Li Y. Elucidating the restructuring-induced highly active bimetallic Pt–Co/KL catalyst for the aromatization of n-heptane. Chem Commun (Camb) 2020; 56:892-895. [DOI: 10.1039/c9cc08845h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The restructured bimetallic Pt–Co/KL catalyst promotes the aromatization of n-heptane.
Collapse
Affiliation(s)
- Shuyuan Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Dan Xu
- Energy Research Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- People's Republic of China
| | - Di Zhu
- Energy Research Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- People's Republic of China
| | - Baofeng Zhao
- Energy Research Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- People's Republic of China
| | - Haibin Guan
- Energy Research Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- People's Republic of China
| | - Yong Qin
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Baoshan Wu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Yong Yang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| |
Collapse
|
7
|
Arias PL, Cecilia JA, Gandarias I, Iglesias J, López Granados M, Mariscal R, Morales G, Moreno-Tost R, Maireles-Torres P. Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00240b] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This minireview gives an overview about heterogeneous catalytic technologies for the oxidation of key platform molecules (glucose, 5-hydroxymethylfurfural, furfural and levulinic acid) into valuable chemicals.
Collapse
Affiliation(s)
- Pedro L. Arias
- Chemical and Environmental Engineering Department
- University of the Basque Country (UPV-EHU)
- Bilbao
- Spain
| | - Juan A. Cecilia
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| | - Iñaki Gandarias
- Chemical and Environmental Engineering Department
- University of the Basque Country (UPV-EHU)
- Bilbao
- Spain
| | - José Iglesias
- Chemical and Environmental Engineering Group
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Manuel López Granados
- Institute of Catalysis and Petrochemistry (CSIC)
- C/Marie Curie, 2
- Campus de Cantoblanco
- Madrid
- Spain
| | - Rafael Mariscal
- Institute of Catalysis and Petrochemistry (CSIC)
- C/Marie Curie, 2
- Campus de Cantoblanco
- Madrid
- Spain
| | - Gabriel Morales
- Chemical and Environmental Engineering Group
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Ramón Moreno-Tost
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| | - Pedro Maireles-Torres
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| |
Collapse
|
8
|
Román AM, Hasse JC, Medlin JW, Holewinski A. Elucidating Acidic Electro-Oxidation Pathways of Furfural on Platinum. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02656] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Li X, Li Y, Wang T. Effect of oxide supports on Pt-Ni bimetallic catalysts for the selective hydrogenation of biomass-derived 2(5H)-furanone. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Mizrahi MD, Krylova G, Giovanetti LJ, Ramallo-López JM, Liu Y, Shevchenko EV, Requejo FG. Unexpected compositional and structural modification of CoPt 3 nanoparticles by extensive surface purification. NANOSCALE 2018; 10:6382-6392. [PMID: 29561055 DOI: 10.1039/c8nr00060c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We combined synchrotron small angle X-ray scattering, X-ray fluorescence and extended X-ray absorption fine structure spectroscopy to probe the structure of chemically synthesized CoPt3 nanoparticles (NPs) after ligand removal via the commonly accepted solvent/nonsolvent approach. We showed that the improved catalytic activity of extensively purified NPs could not be explained only in terms of a "cleaner" surface. We found that extensive surface purification results in the substantial leaching of the Co atoms from the chemically synthesized CoPt3 NPs transforming them into CoPt3/Pt core/shell structures with an unexpectedly thick (∼0.5 nm) Pt shell. We indicated that the improved catalytic activity of extensively purified NPs in octyne hydrogenation reaction can be explained by the formation of CoPt3/Pt core/shell structures. Also, we demonstrated that drastic compositional and structural transformation of water transferred CoPt3 NPs was rather a result of extensive removal of native ligands via a solvent/nonsolvent approach than leaching of cobalt atoms in aqueous media. We expect that these findings can be relevant to other transition metal based multicomponent NPs.
Collapse
Affiliation(s)
- Martín D Mizrahi
- INIFTA, CONICET and Dpto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 16, Suc. 4, 1900 La Plata, Buenos Aires, Argentina.
| | - Galyna Krylova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | - Lisandro J Giovanetti
- INIFTA, CONICET and Dpto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 16, Suc. 4, 1900 La Plata, Buenos Aires, Argentina.
| | - José M Ramallo-López
- INIFTA, CONICET and Dpto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 16, Suc. 4, 1900 La Plata, Buenos Aires, Argentina.
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | - Félix G Requejo
- INIFTA, CONICET and Dpto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 16, Suc. 4, 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Li H, Liu X, Yang T, Zhao W, Saravanamurugan S, Yang S. Porous Zirconium-Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. CHEMSUSCHEM 2017; 10:1761-1770. [PMID: 28164471 DOI: 10.1002/cssc.201601898] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/04/2017] [Indexed: 06/06/2023]
Abstract
Biofuranic compounds, typically derived from C5 and C6 carbohydrates, have been extensively studied as promising alternatives to chemicals based on fossil resources. The present work reports the simple assembly of biobased 2,5-furandicarboxylic acid (FDCA) with different metal ions to prepare a range of metal-FDCA hybrids under hydrothermal conditions. The hybrid materials were demonstrated to have porous structure and acid-base bifunctionality. Zr-FDCA-T, in particular, showed a microspheric structure, high thermostability (ca. 400 °C), average pore diameters of approximately 4.7 nm, large density, moderate strength of Lewis-base/acid centers (ca. 1.4 mmol g-1 ), and a small number of Brønsted-acid sites. This material afforded almost quantitative yields of biofuranic alcohols from the corresponding aldehydes under mild conditions through catalytic transfer hydrogenation (CTH). Isotopic 1 H NMR spectroscopy and kinetic studies verified that direct hydride transfer was the dominant pathway and rate-determining step of the CTH. Importantly, the Zr-FDCA-T microspheres could be recycled with no decrease in catalytic performance and little leaching of active sites. Moreover, good yields of C5 (i.e., furfural) or C4 products [i.e., maleic acid and 2(5H)-furanone] could be obtained from furfuryl alcohol without oxidation of the furan ring over these metal-FDCA hybrids. The content and ratio of Lewis-acid/base sites were demonstrated to dominantly affect the catalytic performance of these redox reactions.
Collapse
Affiliation(s)
- Hu Li
- State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Xiaofang Liu
- State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Tingting Yang
- State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Wenfeng Zhao
- State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | | | - Song Yang
- State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| |
Collapse
|
13
|
Ni T, Zhang S, Cao F, Ma Y. NiCo bimetallic nanoparticles encapsulated in graphite-like carbon layers as efficient and robust hydrogenation catalysts. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00492c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highest catalytic performance of Ni0.5Co0.5@NC catalysts can be attributed to their optimized electronic structure to facilitate the hydrogen activation.
Collapse
Affiliation(s)
- Ting Ni
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology and School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Sai Zhang
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology and School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Fangxian Cao
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology and School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yuanyuan Ma
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology and School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| |
Collapse
|