1
|
Zou J, Wu C, Wu S, He S, Li X, Yang C. Tungsten phosphide nanoparticles anchored on ultrathin carbon nanosheets for efficient oxidative desulfurization: Pivotal roles and generation pathways of singlet oxygen. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136623. [PMID: 39581035 DOI: 10.1016/j.jhazmat.2024.136623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Singlet oxygen (1O2) is an excellent reactive oxygen species for the selective oxidation of organic compounds. Therefore, its application in oxidative desulfurization (ODS) of fuels is theoretically promising, while this has rarely been systematically investigated. Herein, a novel ultrathin carbon nanosheet (CN)-supported tungsten phosphide (WP) catalyst (WP/CN) was devised and employed to activate hydrogen peroxide (H2O2) for the efficient 1O2 generation in ODS. The turnover frequency of WP/CN for the oxidation of dibenzothiophene was as high as 32.7 h-1 at 60 °C, surpassing that of most reported ODS catalysts. More importantly, benefiting from the high selectivity of 1O2, the WP/CN-H2O2 system exhibited exceptional interference resistance and achieved complete ODS of real diesels at a molar ratio of H2O2 to S of 4:1 (the theoretical value is 2:1), outperforming reported ODS systems. The results of experiments and density functional theory calculations demonstrated that the most reasonable reaction pathway for the formation of 1O2 was H2O2→H2O2*→2OH*→O*→2O*→1O2*. The present findings may provide new insights into the development of high-performance and energy-saving ODS processes.
Collapse
Affiliation(s)
- Juncong Zou
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chengche Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Leng X, Bai J, Dai Z, Man S, Lei B, Yao J, Bai L, Gao H, Xu L. A tungsten phosphide cocatalyst enhanced bismuth tungstate photoanode with the robust built-in electric field towards highly efficient photoelectrochemical water splitting. J Colloid Interface Sci 2024; 661:1-11. [PMID: 38295691 DOI: 10.1016/j.jcis.2024.01.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
The use of low-cost and effective cocatalyst is a potential strategy to optimize the effectiveness of photoelectrochemical (PEC) water splitting. In this study, tungsten phosphide (WP) is introduced as a remarkably active cocatalyst to enhance the PEC efficiency of a Bi2WO6 photoanode. The onset potential of Bi2WO6/WP demonstrates a negative shift, while the photocurrent density demonstrates a significant 5.5-fold increase compared to that of unmodified Bi2WO6 at 1.23 VRHE (reversible hydrogen electrode). The loading of WP cocatalyst facilitates the rapid transfer of holes, increasing the range of visible light absorption, the water adsorption ability as well as promoting the separation of photogenerated electrons and holes via the built-in electric field between Bi2WO6 and WP. This study proposes a strategy to hinder the recombination of electron-hole pairs by using WP cocatalyst as a hole capture agent, improve the photoelectric conversion efficiency, and enhance the overall photoelectrochemical properties of Bi2WO6 photoanode.
Collapse
Affiliation(s)
- Xueyang Leng
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jinlong Bai
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Zheng Dai
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Suyao Man
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Bo Lei
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jing Yao
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Lina Bai
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Hong Gao
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Lingling Xu
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
3
|
He M, Li X, Wang A, Hu Y, Sheng Q, Shang S. Controllable synthesis of nanostructured nickel phosphosulfide by reduction of mixtures of Na4P2S6 and NiCl2 with low P/Ni ratios in hydrogen plasma. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Wang L, Wang B, Fan M, Ling L, Zhang R. Unraveling the Structure and Composition Sensitivity of Transition Metal Phosphide toward Catalytic Performance of C2H2 Semi-Hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Tang B, Yang Z, Song Z, Shi G, Fu D, Sun X, Zou J, Qi H. Self-built field induces surface electrons to reduce H+ to atomic H* for photocatalytic hydrodechlorination of 2-chlorophenols. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Zhou X, Li X, Prins R, Lv J, Wang A, Sheng Q. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk CoP and Co2P catalysts with stoichiometric P/Co ratios. J Catal 2021. [DOI: 10.1016/j.jcat.2020.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Li M, Li J, Jin Z. Synergistic effect of MoS2 over WP photocatalyst for promoting hydrogen production. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Zhou X, Li X, Prins R, Wang A, Wang L, Liu S, Sheng Q. Desulfurization of 2-phenylcyclohexanethiol over transition-metal phosphides. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Liu X, Jiang Y, Li Y, Wang Z, Li J, Huo H, Lin K, Du Y. MoP
4
Nanoparticles as a Novel and Efficient Cocatalyst for Enhanced Photocatalytic Hydrogen Evolution. ChemCatChem 2019. [DOI: 10.1002/cctc.201901476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Yanqiu Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Yudong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Zhe Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Junzhuo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Hang Huo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
10
|
Yan X, Jin Z, Zhang Y, Zhang Y, Yuan H. Sustainable and efficient hydrogen evolution over a noble metal-free WP double modified Zn xCd 1-xS photocatalyst driven by visible-light. Dalton Trans 2019; 48:11122-11135. [PMID: 31264672 DOI: 10.1039/c9dt01421g] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In terms of energy acquisition, research on the photocatalytic cracking of water to produce hydrogen has become a hub for us to make a transition from theoretical research to practical applications. Charge separations and surface redox reactions of semiconductors are key factors that affect hydrogen production activity. In this study, we used an n-type semiconductor WP as a cocatalyst to modify the solid solution of ZnxCd1-xS and found it to have excellent photocatalytic activity under visible light irradiation. Ultraviolet diffuse reflectance spectroscopy showed the red shift of the absorption band of the composite catalyst and the strong absorption of visible light. Under the action of the matching energy band structure, the fluorescence lifetime of the composite catalyst is shortened (2.33 ns) and the electron injection rate is accelerated (Ket = 0.58 × 109 s-1). Under these favorable conditions, the increased hydrogen production activity of the composite catalyst is finally reflected in the enhanced hydrogen production rate, which reached up to 15 028.6 μmol g-1 h-1. In addition, the yield of hydrogen produced by adding a fresh lactic acid catalyst in the fifth cycle after four cycles of testing was greatly improved. Obviously, the addition of WP turns the composite catalyst into a photocatalyst with high efficiency, stability and is a non-noble metal cocatalyst. Finally, through a series of characterization experiments (SEM, TEM, XPS, BET, Mott-Schottky et al.), we proposed the possible mechanism of WP/ZnxCd1-xS that efficiently promotes hydrogen production. This provides new understanding for designing an effective cocatalyst modified semiconductor to improve photocatalytic activity.
Collapse
Affiliation(s)
- Xian Yan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China and Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China and Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Yupeng Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China and Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Yongke Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China and Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Hong Yuan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China and Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| |
Collapse
|
11
|
Jian Q, Jin Z, Wang H, Zhang Y, Wang G. Photoelectron directional transfer over a g-C3N4/CdS heterojunction modulated with WP for efficient photocatalytic hydrogen evolution. Dalton Trans 2019; 48:4341-4352. [DOI: 10.1039/c8dt05110k] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and transfer of photoelectrons is a crucial factor in the process of photocatalysis.
Collapse
Affiliation(s)
- Qiyan Jian
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P.R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P.R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
| | - Haiyu Wang
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P.R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
| | - Yongke Zhang
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P.R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
| | - Guorong Wang
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P.R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
| |
Collapse
|
12
|
Zhou H, Ran G, Masson JF, Wang C, Zhao Y, Song Q. Novel tungsten phosphide embedded nitrogen-doped carbon nanotubes: A portable and renewable monitoring platform for anticancer drug in whole blood. Biosens Bioelectron 2018; 105:226-235. [PMID: 29412947 DOI: 10.1016/j.bios.2018.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/31/2017] [Accepted: 01/21/2018] [Indexed: 11/24/2022]
Abstract
Biosensors based on converting the concentration of analytes in complex samples into single electrochemical signals are attractive candidates as low cost, high-throughput, portable and renewable sensor platforms. Here, we describe a simple but practical analytical device for sensing an anticancer drug in whole blood, using the detection of methotrexate (MTX) as a model system. In this biosensor, a novel carbon-based composite, tungsten phosphide embedded nitrogen-doped carbon nanotubes (WP/N-CNT), was fixed to the electrode surface that supported redox cycling. The electronic transmission channel in nitrogen doped carbon nanotubes (N-CNT) and the synergistic effect of uniform distribution tungsten phosphide (WP) ensured that the electrode materials have outstanding electrical conductivity and catalytic performance. Meanwhile, the surface electronic structure also endows its surprisingly reproducible performance. To demonstrate portable operation for MTX sensing, screen printing electrodes (SPE) was modified with WP/N-CNT. The sensor exhibited low detection limits (45 nM), wide detection range (0.01-540 μM), good selectivity and long-term stability for the determination of MTX. In addition, the technique was successfully applied for the determination of MTX in whole blood.
Collapse
Affiliation(s)
- Haifeng Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jean-Francois Masson
- Department of Chemistry, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Tian S, Li X, Wang A, Chen Y, Li H, Hu Y. Hydrodenitrogenation of Quinoline and Decahydroquinoline Over a Surface Nickel Phosphosulfide Phase. Catal Letters 2018. [DOI: 10.1007/s10562-018-2370-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|