1
|
Zhao H, Li J, She X, Chen Y, Wang M, Wang Y, Du A, Tang C, Zou C, Zhou Y. Oxygen Vacancy-Rich Bimetallic Au@Pt Core-Shell Nanosphere-Functionalized Electrospun ZnFe 2O 4 Nanofibers for Chemiresistive Breath Acetone Detection. ACS Sens 2024; 9:2183-2193. [PMID: 38588327 DOI: 10.1021/acssensors.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Sensitive and selective acetone detection is of great significance in the fields of environmental protection, industrial production, and individual health monitoring from exhaled breath. To achieve this goal, bimetallic Au@Pt core-shell nanospheres (BNSs) functionalized-electrospun ZnFe2O4 nanofibers (ZFO NFs) are prepared in this work. Compared to pure NFs-650 analogue, the ZFO NFs/BNSs-2 sensor exhibits a stronger mean response (3.32 vs 1.84), quicker response/recovery speeds (33 s/28 s vs 54 s/42 s), and lower operating temperature (188 vs 273 °C) toward 0.5 ppm acetone. Note that an experimental detection limit of 30 ppb is achieved, which ranks among the best cases reported thus far. Besides the demonstrated excellent repeatability, humidity-enhanced response, and long-term stability, the selectivity toward acetone is remarkably improved after BNSs functionalization. Through material characterizations and DFT calculations, all these improvements could be attributed to the boosted oxygen vacancies and abundant Schottky junctions between ZFO NFs and BNSs, and the synergistic catalytic effect of BNSs. This work offers an alternative strategy to realize selective subppm acetone under high-humidity conditions catering for the future requirements of noninvasive breath diabetes diagnosis in the field of individual healthcare.
Collapse
Affiliation(s)
- Hongchao Zhao
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaopeng She
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Chen
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Mengqing Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Aijun Du
- School of Chemistry and Physics, Centre of Materials Science, Queensland University of Technology, Brisbane 4001, Australia
| | - Cheng Tang
- School of Chemistry and Physics, Centre of Materials Science, Queensland University of Technology, Brisbane 4001, Australia
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
2
|
Hu Y, Zhang S, Zhang Z, Zhou H, Li B, Sun Z, Hu X, Yang W, Li X, Wang Y, Liu S, Wang D, Lin J, Chen W, Wang S. Enhancing Photocatalytic-Transfer Semi-Hydrogenation of Alkynes Over Pd/C 3 N 4 Through Dual Regulation of Nitrogen Defects and the Mott-Schottky Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304130. [PMID: 37403556 DOI: 10.1002/adma.202304130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The selective hydrogenation of alkynes is an important reaction; however, the catalytic activity and selectivity in this reaction are generally conflicting. In this study, ultrafine Pd nanoparticles (NPs) loaded on a graphite-like C3 N4 structure with nitrogen defects (Pd/DCN) are synthesized. The resulting Pd/DCN exhibits excellent photocatalytic performance in the transfer hydrogenation of alkynes with ammonia borane. The reaction rate and selectivity of Pd/DCN are superior to those of Pd/BCN (bulk C3 N4 without nitrogen defects) under visible-light irradiation. The characterization results and density functional theory calculations show that the Mott-Schottky effect in Pd/DCN can change the electronic density of the Pd NPs, and thus enhances the hydrogenation selectivity toward phenylacetylene. After 1 h, the hydrogenation selectivity of Pd/DCN reaches 95%, surpassing that of Pd/BCN (83%). Meanwhile, nitrogen defects in the supports improve the visible-light response and accelerate the transfer and separation of photogenerated charges to enhance the catalytic activity of Pd/DCN. Therefore, Pd/DCN exhibits higher efficiency under visible light, with a turnover frequency (TOF) of 2002 min-1 . This TOF is five times that of Pd/DCN under dark conditions and 1.5 times that of Pd/BCN. This study provides new insights into the rational design of high-performance photocatalytic transfer hydrogenation catalysts.
Collapse
Affiliation(s)
- Yaning Hu
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shuo Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hexin Zhou
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Bing Li
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuemin Hu
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Wenxiu Yang
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoyan Li
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yu Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Shuhu Liu
- Beijing Synchrontron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering, Ningbo, 315201, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuo Wang
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
3
|
Kalita L, Sonowal K, Basyach P, Saha B, Saikia L. Multifunctional CdS Nanoparticle-Decorated CeO 2 as Efficient Visible Light Photocatalysts and Toxic Cr(VI) Sensors. ACS OMEGA 2023; 8:11768-11781. [PMID: 37033836 PMCID: PMC10077448 DOI: 10.1021/acsomega.2c05811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Several one-dimensional and three-dimensional CdS@CeO2 nanocomposites were synthesized by a solvothermal route. A nanoflower-shaped CdS@CeO2 nanocomposite (CdS-NF@CeO2) was selected as the model catalyst after various characterizations. It was, then, employed directly as a luminescent sensor for Cr(VI) detection in an aqueous medium. A good linear quenching was observed in the range of 0-0.5 μM with a detection limit of 0.04 μM. The quantum yield of the catalyst was found to be 73%. Moreover, our catalyst is highly selective toward Cr(VI) and can be applied as an efficient sensor for real water analysis. The efficiency of the catalyst was also tested in controlling the photocatalytic activity for oxidation of benzylamine to N-benzylidenebenzylamine under a domestic LED bulb with molecular O2 as a sole, green oxidant. Conversion (>99.9%) and selectivity as high as 100% were observed for the CdS-NF@CeO2 photocatalyst. These results show the potential applications of CdS-NF@CeO2 nanocomposites as an efficient photocatalyst for organic transformation and environmental remediation.
Collapse
Affiliation(s)
- Lisamoni Kalita
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karanika Sonowal
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purashri Basyach
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Biswajit Saha
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lakshi Saikia
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Anuchai S, Juntrapirom S, Jarusupakornkul K, Tantraviwat D, Inceesungvorn B. Oxygen vacancy-rich BiOBr microflowers for enhancing photocatalytic reduction of nitrobenzene under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Liu C, Liu Y, Shi Y, Wang Z, Guo W, Bi J, Wu L. Au nanoparticles-anchored defective metal–organic frameworks for photocatalytic transformation of amines to imines under visible light. J Colloid Interface Sci 2022; 631:154-163. [DOI: 10.1016/j.jcis.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
6
|
Si C, Liu F, Yan X, Xu J, Niu G, Han Q. Designing a Polyoxometalate-Incorporated Metal-Organic Framework for Reduction of Nitroarenes to Anilines by Sequential Proton-Coupled Electron Transfers. Inorg Chem 2022; 61:5335-5342. [PMID: 35290043 DOI: 10.1021/acs.inorgchem.2c00106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing new photocatalysts for reduction of nitroarenes to anilines under mild conditions is very significant. Herein, a new polyoxometalate-based metal-organic framework (POMOF), {[Co(H2O)]2[Co2(H2O)6(TPT)][Co(TPT)PW11O39]}·3H2O·TPT (namely, CoW-TPT, TPT = 2,4,6-tri(4-pyridyl)-1,3,5-triazine), was prepared by incorporating Co(II)-substituted Keggin-type anions [PCoW11O39]5- and a photosensitizer (TPT) into a framework. In this structure, the direct coordination bond between [PCoW11O39]5- and TPT ligand and π···π interactions between TPT molecules are beneficial for the separation and migration of photogenerated carriers, thus improving the photocatalytic activity of CoW-TPT. The combination of both photosensitizer TPT and the electron-storable component [PCoW11O39]5- in a cooperative photocatalysis fashion is conducive to the photocatalytic multielectron reduction of nitroarenes. CoW-TPT provided a high conversion of 94.71% in the photocatalytic reduction of nitroarenes to anilines utilizing triethanolamine as the proton source and electron donor by sequential proton-coupled electron transfers.
Collapse
Affiliation(s)
- Chen Si
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Fan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaomei Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jiangbo Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Guiqin Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
7
|
Li M, Qiu J, Xu J, Zhu Y, Yao J. Self-Induced Oxygen Vacancies on Carboxyl-Rich MIL-121 Enable Efficient Activation and Oxidation of Benzyl Alcohol under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11509-11516. [PMID: 35195388 DOI: 10.1021/acsami.1c24934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oxygen vacancies could efficiently drive the photocatalytic oxidation of aromatic alcohol through the activation of reactants. However, the activation between aromatic alcohol and O2 (oxidant) over oxygen vacancies is rarely studied. Herein, the ZnIn2S4/MIL-121 heterostructure with abundant surface uncoordinated carboxyl was rationally designed for benzyl alcohol (BA) oxidation under visible light. Oxygen vacancies on catalysts were self-induced after the surface complexation between the uncoordinated carboxyl and BA molecules. Based on the reaction results, it is concluded that the oxygen vacancy activation to BA is more effective than that to O2 for BA oxidation over ZnIn2S4/MIL-121 hybrids. Specifically, when the activation fully occurs on BA (reaction in N2), an admirable conversion of 93.9% (corresponding production rate of benzaldehyde: 2348 μmol·g-1·h-1) is achieved, which is 3.4 times that of pure ZnIn2S4, whereas an inferior conversion of 45.9% is obtained in O2 due to the competition effect between O2 and BA for oxygen vacancies.
Collapse
Affiliation(s)
- Ming Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Yu YH, Huang SL, Yang GY. [Ru(NꓥNꓥN)2-Ce]-based Framework for Photocatalytic Sulfide Oxidation and Hydrogen Production. CrystEngComm 2022. [DOI: 10.1039/d2ce00397j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using photosensitized Ru(NꓥNꓥN)2-metalloligand, a series of Ce-frameworks were synthesized. The incorporation of visible-light-responsive Ru(NꓥNꓥN)2-unit endows the Ce-frameworks with photocatalytic activities in both sulfide oxidation and hydrogen production. The doping of...
Collapse
|
9
|
Guo M, Zhang M, Liu R, Zhang X, Li G. State-of-the-Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metal-Organic Framework (MOF)-Based Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103361. [PMID: 34716687 PMCID: PMC8728825 DOI: 10.1002/advs.202103361] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Indexed: 05/07/2023]
Abstract
Photocatalytic hydrogenation provides an effective alternative way for the synthesis of industrial chemicals to meet the economic and environment expectations. Especially, over the past few years, metal-organic frameworks (MOFs), featured with tunable structure, porosity, and crystallinity, have been significantly developed as many high-performance catalysts in the field of photocatalysis. In this review, the background and development of photocatalytic hydrogenation are systemically summarized. In particular, the comparison between photocatalysis and thermal catalysis, and the fundamental understanding of photohydrogenation, including reaction pathways, reducing species, regulation of selectivity, and critical parameters of light, are proposed. Moreover, this review highlights the advantages of MOFs-based photocatalysts in the area of photohydrogenation. Typical effective strategies for modifying MOFs-based composites to produce their advantages are concluded. The recent progress in the application of various types of MOFs-based photocatalysts for photohydrogenation of unsaturated organic chemicals and carbon dioxide (CO2 ) is summarized and discussed in detail. Finally, a brief conclusion and personal perspective on current challenges and future developments of photocatalytic hydrogenation processes and MOFs-based photocatalysts are also highlighted.
Collapse
Affiliation(s)
- Mengya Guo
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Mingwei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Runze Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| |
Collapse
|
10
|
Wu T, Shi Y, Wang Z, Liu C, Bi J, Yu Y, Wu L. Unsaturated Ni II Centers Mediated the Coordination Activation of Benzylamine for Enhancing Photocatalytic Activity over Ultrathin Ni MOF-74 Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61286-61295. [PMID: 34904825 DOI: 10.1021/acsami.1c20128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Creating accessible unsaturated active sites in metal-organic frameworks (MOFs) holds great promise for developing highly efficient catalysts. Herein, ultrathin Ni MOF-74 nanosheets (NMNs) with high-density coordinatively unsaturated NiII centers are prepared as a photocatalyst. The results of in situ ATR-IR, Raman, UV-vis DRS, and XPS suggest that abundant NiII centers can act as the active sites for boosting benzylamine (BA) activation via forming -Ni-NH2- coordination intermediates. The generation of coordination intermediates assists the transfer of photo-generated holes to BA molecules for producing BA cation free radicals, better impelling the breaking of N-H bonds and the photooxidation of BA molecules. The photo-generated electrons further activate O2 molecules to O2•- radicals for triggering the reaction. The experiments reveal that the coordination activation of BA molecules may be a rate-determining step on NMNs rather than the adsorption and activation of O2 molecules. Moreover, NMNs possess a better ability for the separation of photo-generated carriers in comparison with bulk Ni MOF-74 (NMBs). As a result, NMNs achieve a kinetic rate constant of 0.538 h-1 for the photocatalytic oxidative coupling of BA under visible light, about 50 times higher than that of NMBs (0.0011 h-1). Finally, a probable synergetic catalytic mechanism with coordination activation and photocatalysis is discussed on a molecular level. This study not only highlights the importance of coordination activation for heterogeneous photocatalysis but also affords an inspiration for building ultrathin MOF nanosheets.
Collapse
Affiliation(s)
- Taikang Wu
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yingzhang Shi
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhiwen Wang
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Cheng Liu
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jinhong Bi
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ling Wu
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
11
|
Tong J, Wang J, Shen X, Zhang H, Wang Y, Fang Q, Chen L. One-Pot Synthesis of Schiff Bases by Defect-Induced TiO 2-x-Catalyzed Tandem Transformation from Alcohols and Nitro Compounds. Inorg Chem 2021; 60:10715-10721. [PMID: 34184890 DOI: 10.1021/acs.inorgchem.1c01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schiff bases that are generally formed from condensation reactions of aldehydes (or ketones) and amino groups could also be produced by a photodriven one-pot tandem reaction between alcohols and nitro compounds, in our case. Herein, TiO2-x porous cages derived from NH2-MIL-125 by a self-sacrificing template route are used to study the organic transformation and exhibit 100% conversion efficiency of nitrobenzene and 100% selectivity for Schiff bases in the system of benzyl alcohol (5 mL) and nitrobenzene (41 μL) upon light irradiation, but hydrogen by dehydrogenation of benzyl alcohol cannot be detected. Successful occurrence of the organic transformation is mainly attributed to Ti(III)-oxygen vacancy associates. Surface oxygen vacancy-related Ti(III) sites are responsible for binding with nitro groups, and low-coordinated Ti5c sites selectively adsorb hydroxyl groups of benzyl alcohol. The Ti(III) and oxygen vacancy associates capture photogenerated electrons for achievement of multielectron reduction of nitrobenzene and the subsequent Schiff base condensation reaction with the as-formed benzaldehyde.
Collapse
Affiliation(s)
- Jing Tong
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
| | - Jinfeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaoshuang Shen
- School of Physical Science & Technology, Yangzhou University, Yangzhou 225002, P. R. China
| | - Hui Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiang Fang
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
| | - Liyong Chen
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
12
|
Wang L, Li SR, Chen YZ, Jiang HL. Encapsulating Copper Nanocrystals into Metal-Organic Frameworks for Cascade Reactions by Photothermal Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004481. [PMID: 33458947 DOI: 10.1002/smll.202004481] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/04/2020] [Indexed: 06/12/2023]
Abstract
Composite materials with multifunctional properties usually possess synergetic effects in catalysis toward cascade reactions. In this work, a facile strategy to the encapsulation of octahedral Cu2 O nanocrystals (NCs) by metal-organic frameworks (MOFs) is reported, and an oriented growth of MOF enclosures (namely, HKUST-1) around Cu2 O NCs with desired feedstock ratio is achieved. The strategy defines the parameter range that precisely controls the etching rate of metal oxide and the MOF crystallization rate. Finally, the Cu@HKUST-1 composites with uniform morphology and controlled MOF thickness have been successfully fabricated after the reduction of Cu2 O to Cu NCs in HKUST-1. The integration of Cu NCs properties with MOF advantages helps to create a multifunctional catalyst, which exhibits cooperative catalytic activity and improved recyclability toward the one-pot cascade reactions under mild conditions involving visible-light irradiation. The superior performance can be attributed to the plasmonic photothermal effect of Cu NCs, while HKUST-1 shell provides Lewis acid sites, substrates and H2 enrichment, and stabilizes the Cu cores.
Collapse
Affiliation(s)
- Lin Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Shu-Rong Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Yu-Zhen Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
13
|
Shang W, Li Y, Huang H, Lai F, Roeffaers MBJ, Weng B. Synergistic Redox Reaction for Value-Added Organic Transformation via Dual-Functional Photocatalytic Systems. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04815] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weike Shang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, No. 58, YanTa Road, Xi’an 710054, People’s Republic of China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, No. 58, YanTa Road, Xi’an 710054, People’s Republic of China
| | - Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B. J. Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Gao K, Li H, Meng Q, Wu J, Hou H. Efficient and Selective Visible-Light-Driven Oxidative Coupling of Amines to Imines in Air over CdS@Zr-MOFs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2779-2787. [PMID: 33410318 DOI: 10.1021/acsami.0c21007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Construction of porous photoactive MOF-based composite systems is regarded as one of the most effective strategies to improve light harvesting, increase the surface area, provide plenty of exposed active sites, and promote the reduction and oxidation abilities of some organic photocatalytic reactions. Herein, we synthesized porous CdS@Zr-MOF photocatalysts based on the representative photocatalyst CdS and crystalline Zr-MOFs, such as MOF-808, NU-1000, and PCN-222, to illustrate their excellent photocatalytic performance for the synthesis of imines in air. The morphology and composition of these photocatalysts were investigated by X-ray powder diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), indicating their crystallinity, high porosity, and interfacial interaction between constituents. Compared with individual components, these porous CdS@Zr-MOF composites could remarkably promote photocatalytic activity for the oxidative coupling of amines under air and visible-light conditions. The photocatalytic reaction showed broad substrate suitability. More importantly, the conversion yield reached up to 95% for the inactive aliphatic amines, and imines were formed as the single product. The improvement of the photocatalytic performance of CdS@Zr-MOF composites can be mainly ascribed to their high surface areas, more exposed active sites, excellent dispersion of CdS, and special porous photocatalytic systems, which tune the band gap, broaden the light response range, and facilitate the carrier separation.
Collapse
Affiliation(s)
- Kuan Gao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huijie Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qing Meng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jie Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hongwei Hou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
15
|
Hosseini S, Amoozadeh A. Plasma Treatment as a Promising Environmentally Benign Approach for Synthesis of Valuable Multi-gas Doped Nano-TiO 2 -P25: An Efficient Way to Boost the Photocatalytic Performance under Visible Light Illumination. Photochem Photobiol 2021; 97:672-687. [PMID: 33372315 DOI: 10.1111/php.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
An ingenious prospect has been established to synthesize a wide range of non-metal-doped TiO2 -P25 by plasma technique. Different atmospheres (Air, O2 , N2 , Ar and CO2 ) have been embedded on the surface of TiO2 -P25 by plasma treating as an effective alternative to wet chemical pretreatment processes. This approach is clean beyond recognition by employing pure gases as well as no need to poison precursors or organic solvents without producing waste stream, which surprisingly can meet green chemistry purposes. More specifically, plasma has been a contributing factor in the narrowing band gap energies of doped photocatalysts in comparison with pure TiO2 -P25. Synthesized photocatalysts gained enormous benefit from the plasma treatment in the selective oxidation of benzyl alcohols to associating aldehydes under blue LED illumination with excellent yields, which dramatically decreased the time reaction to many folds. Additionally, benzaldehyde formation under influence of various wavelengths of visible light, including blue photons (λmax = 460 nm), green photons (λmax = 510 nm) and red photons (λmax = 630 nm) was compared to assess the effect of plasma treating on photoactivity of nano-TiO2 -P25. Furthermore, as-prepared photocatalysts were investigated by diverse characterization techniques.
Collapse
Affiliation(s)
- Saber Hosseini
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|
16
|
Ma R, Sun J, Li DH, Wei JJ. Exponentially self-promoted hydrogen evolution by uni-source photo-thermal synergism in concentrating photocatalysis on co-catalyst-free P25 TiO2. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|