1
|
Ma W, Yu L, Kang P, Chu Z, Li Y. Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis. Molecules 2024; 29:5834. [PMID: 39769925 PMCID: PMC11728452 DOI: 10.3390/molecules29245834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Metal-organic frameworks (MOFs) represent a category of crystalline materials formed by the combination of metal ions or clusters with organic linkers, which have emerged as a prominent research focus in the field of photocatalysis. Owing to their distinctive characteristics, including structural diversity and configurations, significant porosity, and an extensive specific surface area, they provide a flexible foundation for various potential applications in photocatalysis. In recent years, researchers have tackled many issues in the MOF-based photocatalytic yield. However, limited light adsorption regions, lack of active sites and active species, and insufficient efficiency of photogenerated charge carrier separation substantially hinder the photocatalytic performance. In this review, we summarized the strategies to improve the photocatalytic performance and recent developments achieved in MOF and MOF-based photocatalysis, including water splitting, CO2 conversion, photocatalytic degradation of pollutants, and photocatalytic nitrogen fixation into ammonia. In conclusion, the existing challenges and prospective advancements in MOF-based photocatalysis are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Yingxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (W.M.); (L.Y.); (P.K.); (Z.C.)
| |
Collapse
|
2
|
Tian T, Hu X, Huang Y, Du H, Wang C, Yang M. Enhancing CO 2 photoreduction to CO with 100 % selectivity by constructing heterojunctions and regulating open metal sites in Au/Fe 3O 4/MIL-101(Fe) catalysts. J Colloid Interface Sci 2024; 680:33-41. [PMID: 39488897 DOI: 10.1016/j.jcis.2024.10.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The widespread utilization of fossil fuels has resulted in a significant increase in CO2 emissions, leading to a variety of environmental issues. The photocatalytic conversion of CO2 into fuel presents an effective solution to both the energy crisis and environmental warming. Therefore, the selection of a suitable catalyst is paramount. However, traditional photocatalysts often encounter challenges such as rapid electron-hole recombination and limited exposure of active sites. To improve these limitations, this study introduces AFM-X, a heterojunction catalyst composed of Au/Fe3O4/MIL-101(Fe)-X, which facilitates the formation of open metal sites (OMS) that enhance the effective separation of photogenerated carriers. In AFM-X, OMS function as Lewis acid sites, thereby enhancing CO2 adsorption. The presence of Au nanoparticles (NPs) introduces additional active sites for CO2 reduction. The synergistic effect between OMS and Au NPs increases the catalyst's active sites, while the heterojunction construction promotes electron transfer, thereby enhancing CO2 photocatalytic reduction efficiency. The CO generation rate of AFM-2 reached 98.8 μmol g-1 h-1, surpassing those of FM, MIL-101(Fe), Fe3O4, and Au NPs, by 4.1, 6.3, 6.2, and 3.2 times, respectively. Furthermore, AFM-2 maintains stable performance over a 40 h cycle test. In-situ DRIFTS spectroscopy reveals that CO2 reduction occurs through two parallel pathways. This study offers new insights into the design of composite photocatalytic materials, highlighting the effectiveness of OMS Lewis acid sites in significantly enhancing the photocatalytic reduction of CO2.
Collapse
Affiliation(s)
- Tian Tian
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Yao Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Huixian Du
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Mina Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
3
|
Ramos Corona A, Rodríguez López J, Rangel Segura R, Martínez Garcia MM, Flores E, Rodríguez Gattorno G, Alvarado Gil JJ. Microwave-Assisted Synthesis of CdS-MOF MIL-101 (Fe) Composite: Characterization and Photocatalytic Performance. Inorg Chem 2024; 63:19536-19552. [PMID: 39374176 PMCID: PMC11497211 DOI: 10.1021/acs.inorgchem.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
The present study outlines the synthesis of cadmium sulfide-metal-organic framework (CdS-MOF) MIL-101 (Fe) heterojunctions achieved via fast microwave-assisted reactions. Thus, different CdS-MOF MIL-101 (Fe) ratios were prepared to study their effectiveness as photocatalysts. These compounds were employed in the photocatalytic degradation of methylene blue (MB) under UV and visible irradiation. Structural, morphological, textural, compositional, and optical properties of the synthesized compounds determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were utilized to characterize the structural, morphological, textural, compositional, and optical properties. Electrochemical impedance spectroscopy (EIS) was also employed to determine photovoltage and photocurrent densities. The resulting valence band offset (Vfb) and band gap energy values were utilized to construct an energy band scheme. Our research revealed that the CdS-MOF MIL-101 (Fe) heterojunction enhances the efficiency of electron-hole pair separation, thereby mitigating charge carrier recombination effects. Moreover, the type I electronic band structure established an efficient reaction mechanism, effectively suppressing the recombination of photogenerated electron-hole pairs. The photocatalytic system demonstrated exceptional behavior, achieving complete MB removal within 30 min of reaction time and exhibiting outstanding stability and reusability after four reaction cycles. These findings highlight the potential of the synthesized compounds in the field of wastewater treatment for organic pollutants, offering a promising alternative to current environmental issues.
Collapse
Affiliation(s)
- Armando Ramos Corona
- Investigador
Posdoctoral por México, Departamento de Física Aplicada, Cinvestav-Unidad Mérida, Carretera Antigua a Progreso Km.
6, Mérida, Yucatán 97310, México
| | - Jorge Rodríguez López
- Instituto
Tecnológico del Valle de Morelia, Ciencias Básicas, Carretera Morelia Salamanca Km 6.5, Morelia, Michoacán 58100, México
| | - Ricardo Rangel Segura
- División
de Estudios de Posgrado de la Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica
S/N, Ciudad Universitaria, Morelia, Michoacán 58030, México
| | - Mónica Monserrat Martínez Garcia
- Investigador
Posdoctoral por México, Departamento de Física Aplicada, Cinvestav-Unidad Mérida, Carretera Antigua a Progreso Km.
6, Mérida, Yucatán 97310, México
| | - Eduardo Flores
- Departamento
de Física Aplicada, Cinvestav-Unidad
Mérida, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán 97310, México
| | - Geonel Rodríguez Gattorno
- Departamento
de Física Aplicada, Cinvestav-Unidad
Mérida, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán 97310, México
| | - Juan José Alvarado Gil
- Departamento
de Física Aplicada, Cinvestav-Unidad
Mérida, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán 97310, México
| |
Collapse
|
4
|
Xuan R, Mo J, Chen J, Dou Y, Li X, Jiang Z, Chai B, Wang C, Ding D, Yan J, Wang X. Enhanced photocatalytic CO 2 conversion of a CdS/Co-BDC nanocomposite via Co(ii)/Co(iii) redox cycling. RSC Adv 2024; 14:25247-25255. [PMID: 39139241 PMCID: PMC11320058 DOI: 10.1039/d4ra04842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Photocatalytic CO2 reduction into value-added chemical fuels using sunlight as the energy input has been a thorny, challenging and long-term project in the environment/energy fields because of to its low efficiency. Herein, a series of CdS/Co-BDC composite photocatalysts were constructed by incorporating CdS nanoparticles into Co-BDC using a dual-solvent in situ growth strategy for improving photocatalytic CO2 reduction efficiency. The composites were characterized through XRD, SEM, TEM, XPS, DRS and EPR techniques in detail. 18% CdS/Co-BDC composites showed superior performance for the photocatalytic CO2 reduction to CO, which was 8.9 and 19.6 times higher than that showed by the pure CdS and Co-BDC, respectively. The mechanism of enhanced photocatalytic CO2 reduction performance was analyzed. The CdS/Co-BDC composites showed better adsorption for CO2. Detailed analysis of XPS, transient photocurrent responses, and electrochemical impedance spectroscopy (EIS) shows the existence of strong charge interaction between CdS and Co-BDC and the photo-electrons of CdS can be transferred to Co-BDC. Additionally, Co-oxo of Co-BDC plays the role of a redox-active site and promotes the reduction performance via the method of valence transition of Co(ii)/Co(iii) redox.
Collapse
Affiliation(s)
- Ruina Xuan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Jieqiong Mo
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Jiwen Chen
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Yixin Dou
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Xiaofang Li
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Zhuo Jiang
- School of Electrical Engineering and Automation, Wuhan University Wuhan 430072 China
| | - Bo Chai
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Chunlei Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Deng Ding
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Juntao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| | - Xiaobo Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China +86-15927216471
| |
Collapse
|
5
|
He H, Jian X, Zen T, Feng B, Hu Y, Yuan Z, Zhao Z, Gao X, Lv L, Cao Z. Sulfur defect induced Cd 0.3Zn 0.7S in-situ anchoring on metal organic framework for enhanced photothermal catalytic CO 2 reduction to prepare proportionally adjustable syngas. J Colloid Interface Sci 2024; 653:687-696. [PMID: 37741176 DOI: 10.1016/j.jcis.2023.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
The rapid recombination of interfacial charges is considered to be the main obstacle limiting the photocatalytic CO2 reduction. Thus, it is a challenge to research an accurate and stable charge transfer control strategy. MIL-53 (Al)-S/Cd0.3Zn0.7S (MAS/CZS-0.3) photocatalysts with chemically bonded interfaces were constructed by in-situ electrostatic assembly of sulfur defect Cd0.3Zn0.7S (CZS-0.3) on the surface of MIL-53 (Al) (MAW), which enhanced interfacial coupling and accelerated electron transfer efficiency. An adjustable proportion of syngas (H2/CO) was prepared by photothermal catalytic CO2 reduction at micro-interface. and the optimal yield of CO (66.10 μmol∙g-1∙h-1) and H2 (71.0 μmol∙g-1∙h-1) was realized by the MAS/CZS-0.3 photocatalyst. The improved activity was due to the photogenerated electrons migrated from CZS-0.3 to the adsorption active sites of MAS, which strengthened the adsorption and activation of CO2 on MAS. The photothermal catalytic CO2 reduction to CO follows the pathway of CO2→*COOH → CO and CO2→*HCO3-→CO. This work provided a reference for the research, characterization, and application of in-situ anchoring of metal organic frameworks in photothermal catalytic CO2 reduction, and provided a green path for the supply of Syngas in industry.
Collapse
Affiliation(s)
- Hongbin He
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xuan Jian
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Tianxu Zen
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Bingbing Feng
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yanan Hu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhongqiang Yuan
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zizhen Zhao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiaoming Gao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Lei Lv
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhenheng Cao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
6
|
Sun G, Tai Z, Li F, Ye Q, Wang T, Fang Z, Jia L, Liu W, Wang H. Construction of ZnIn 2 S 4 /CdS/PdS S-Scheme Heterostructure for Efficient Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207758. [PMID: 36965055 DOI: 10.1002/smll.202207758] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
It is facing a tremendous challenge to develop the desirable hybrids for photocatalytic H2 generation by integrating the advantages of a single semiconductor. Herein, an all-sulfide ZnIn2 S4 /CdS/PdS heterojunction is constructed for the first time, where CdS and PdS nanoparticles anchor in the spaces of ZnIn2 S4 micro-flowers due to the confinement effects. The morphology engineering can guarantee rapid charge transfer owing to the short carrier migration distances and the luxuriant reactive sites provided by ZnIn2 S4 . The S-scheme mechanism between ZnIn2 S4 and CdS assisted by PdS cocatalyst is testified by in situ irradiated X-ray photoelectron spectroscopy and electron paramagnetic resonance (EPR), where the electrons and holes move in reverse driven by work function difference and built-in electric field at the interfaces. The optimal ZnIn2 S4 /CdS/PdS performs a glaring photocatalytic activity of 191.9 µmol h-1 (10 mg of catalyst), and the largest AQE (apparent quantum efficiency) can reach a high value of 26.26%. This work may afford progressive tactics to design multifunctional photocatalysts.
Collapse
Affiliation(s)
- Guotai Sun
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zige Tai
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fan Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhiyu Fang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lichao Jia
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
7
|
Cui R, Zhou J, Wang D, Zhao Y, Xiang X, Shang H, Zhang B. Double solvent synthesis of ultrafine Pt nanoparticles supported on halloysite nanotubes for chemoselective cinnamaldehyde hydrogenation. Dalton Trans 2023; 52:3325-3332. [PMID: 36808190 DOI: 10.1039/d2dt03600b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The development of highly active, low cost and durable catalysts for selective hydrogenation of aldehydes is imperative and challenging. In this contribution, we rationally constructed ultrafine Pt nanoparticles (Pt NPs) supported on the internal and external surfaces of halloysite nanotubes (HNTs) by a facile double solvent strategy. The influence of Pt loading, HNTs surface properties, reaction temperature, reaction time, H2 pressure and solvents on the performance of cinnamaldehyde (CMA) hydrogenation was analyzed. The optimal catalysts with the Pt loading of 3.8 wt% and the average Pt particle size of 2.98 nm exhibited outstanding catalytic activity for the hydrogenation of CMA to cinnamyl alcohol (CMO) with 94.1% conversion of CMA and 95.1% selectivity to CMO. More impressively, the catalyst showed excellent stability during six cycles of use. The ultra-small size and high dispersion of Pt NPs, the negative charge on the outer surface of HNTs, the -OH on the inner surface of HNTs, and the polarity of anhydrous ethanol solvent account for the outstanding catalytic performance. This work offers a promising way to develop high-efficiency catalysts with high CMO selectivity and stability by combining clay mineral halloysite and ultrafine nanoparticles.
Collapse
Affiliation(s)
- Rongqian Cui
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Jiaqi Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Dan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Yafei Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China.
| |
Collapse
|
8
|
Gao X, He H, Zhu W, Yang C, Xu K, Feng B, Hu Y, Fu F. Continuously Flow Photothermal Catalysis Efficiently CO 2 Reduction Over S-Scheme 2D/0D Bi 5 O 7 I-OVs/Cd 0.5 Zn 0.5 S Heterojunction with Strong Interfacial Electric Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206225. [PMID: 36587970 DOI: 10.1002/smll.202206225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Using CO2 , water, and sunlight to produce solar fuel is a very attractive process, which can synchronously reduce carbon and convert solar energy into hydrocarbons. However, photocatalytic CO2 reduction is often limited by the low selectivity of reduction products and poor photocatalytic activity. In this study, S-scheme Bi5 O7 I-OVs/Cd0.5 Zn0.5 S (Bi5 O7 I-OVs/CZS-0.5) heterojunction with strong interfacial electric field (IEF) is prepared by in situ growth method. The performance of reduction CO2 to CO is studied by continuous flow photothermal catalytic (PTC) CO2 reduction platform. 12.5% Bi5 O7 I-OVs/CZS-0.5 shows excellent CO yield of 58.6 µmol g-1 h-1 and selectivity of 98.4%, which are 35.1 times than that of CZS-0.5 under visible light. The charge transfer path of the S-scheme through theoretical calculation (DFT), in situ irradiation Kelvin probe force microscope (ISI-KPFM) and in situ irradiation X-ray photoelectron spectroscopy (ISI-XPS) analysis, is verified. The study can provide useful guidance and reference for improving activity by oxygen vacancy induced strong IEF and the development of a continuous flow PTC CO2 reduction system.
Collapse
Affiliation(s)
- Xiaoming Gao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Hongbin He
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Wei Zhu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710600, P. R. China
| | - Chunming Yang
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Kaixuan Xu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Bingbing Feng
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Yanan Hu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Feng Fu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| |
Collapse
|
9
|
Yang M, Bao YS, Zhou ML, Wang S, Cui YH, Liu W, Li LC, Meng LX, Zhang YY, Han ZB. An Efficient Bifunctional Core–Shell MIL-101(Cr)@MOF-867 Composite to Catalyze Deacetalization–Knoevenagel Tandem Reaction. Catal Letters 2023. [DOI: 10.1007/s10562-022-04259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Kong N, Du H, Li Z, Lu T, Xia S, Tang Z, Song S. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Zhang YY, Zhou ML, Cui YH, Yang M, Bao YS, Ye Y, Tian DM, Liu LY, Han ZB. Polymelamine Formaldehyde-Coated MIL-101 as an Efficient Dual-Functional Core-Shell Composite to Catalyze the Deacetalization-Knoevenagel Tandem Reaction. Inorg Chem 2022; 61:13678-13684. [PMID: 36007887 DOI: 10.1021/acs.inorgchem.1c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous organic polymer (POP) coated on a metal-organic framework (MOF) has the functions and advantages of MOF and POP at the same time and has excellent catalytic ability. In this study, an efficient dual-functional core-shell composite MOF@POP with Lewis acid and Brønsted base sites was synthesized using the impregnation method in which MIL-101(Cr) was the core component and polymelamine formaldehyde (PMF) was the shell component. Most importantly, the obtained MIL-101(Cr)@PMF showed perfect catalytic activity in the deacetalization-Knoevenagel tandem reaction. In addition, it could still maintain ultrahigh physical and chemical stability.
Collapse
Affiliation(s)
- Yu-Yang Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Mei-Li Zhou
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Yong-He Cui
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Ming Yang
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Yan-Sai Bao
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Yun Ye
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Dong-Mei Tian
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Li-Yan Liu
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
12
|
Yang W, Xu M, Tao KY, Zhang JH, Zhong DC, Lu TB. Building 2D/2D CdS/MOLs Heterojunctions for Efficient Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200332. [PMID: 35451165 DOI: 10.1002/smll.202200332] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
2D lamellar materials can offer high surface area and abundant reactive sites, thus showing an appealing prospect in photocatalytic hydrogen evolution. However, it is still difficult to build cost-efficient photocatalytic hydrogen evolution systems based on 2D materials. Herein, an in situ growth method is employed to build 2D/2D heterojunctions, with which 2D Ni-based metal-organic layers (Ni-MOLs) are closely grown on 2D porous CdS (P-CdS) nanosheets, affording traditional P-CdS/Ni-MOL heterojunction materials. Impressively, the optimized P-CdS/Ni-MOL catalyst exhibits superior photocatalytic hydrogen evolution performance, with an H2 yield of 29.81 mmol g-1 h-1 . This value is 7 and 2981 times higher than that of P-CdS and Ni-MOLs, respectively, and comparable to those of reported state of the art catalysts. Photocatalytic mechanism studies reveal that the enhanced photocatalytic performance can be attributed to the 2D/2D intimate interface between P-CdS and Ni-MOLs, which facilitates the fast charge carriers' separation and transfer. This work provides a strategy to develop 2D MOL-based photocatalysts for sustainable energy conversion.
Collapse
Affiliation(s)
- Wei Yang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Meng Xu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ke-Ying Tao
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ji-Hong Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
13
|
Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Bai Y, Han M, Li X, Feng S, Lu L, Ma S. Facile and Efficient Photocatalyst for Degradation of Chlortetracycline Promoted by H2O2. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00412g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composite photocatalyst based on a cerium (III) metal-organic framework (MOF-1 or 1), graphene oxide (GO), and Fe3O4 was constructed for the first time and was investigated for the degradation...
Collapse
|
15
|
Liang R, Wang S, Lu Y, Yan G, He Z, Xia Y, Liang Z, Wu L. Assembling Ultrafine SnO 2 Nanoparticles on MIL-101(Cr) Octahedrons for Efficient Fuel Photocatalytic Denitrification. Molecules 2021; 26:7566. [PMID: 34946648 PMCID: PMC8708904 DOI: 10.3390/molecules26247566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Effectively reducing the concentration of nitrogen-containing compounds (NCCs) remains a significant but challenging task in environmental restoration. In this work, a novel step-scheme (S-scheme) SnO2@MCr heterojunction was successfully fabricated via a facile hydrothermal method. At this heterojunction, MIL-101(Cr) octahedrons are decorated with highly dispersed SnO2 quantum dots (QDs, approximate size 3 nm). The QDs are evenly wrapped around the MIL-101(Cr), forming an intriguing zero-dimensional/three-dimensional (0D/3D) S-scheme heterostructure. Under simulated sunlight irradiation (280 nm < λ < 980 nm), SnO2@MCr demonstrated superior photoactivity toward the denitrification of pyridine, a typical NCC. The adsorption capacity and adsorption site of SnO2@MCr were also investigated. Tests using 20%SnO2@MCr exhibited much higher activity than that of pure SnO2 and MIL-101(Cr); the reduction ratio of Cr(VI) is rapidly increased to 95% after sunlight irradiation for 4 h. The improvement in the photocatalytic activity is attributed to (i) the high dispersion of SnO2 QDs, (ii) the binding of the rich adsorption sites with pyridine molecules, and (iii) the formation of the S-scheme heterojunction between SnO2 and MIL-101(Cr). Finally, the photocatalytic mechanism of pyridine was elucidated, and the possible intermediate products and degradation pathways were discussed.
Collapse
Affiliation(s)
- Ruowen Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Shihui Wang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Yi Lu
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Guiyang Yan
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
- Xiamen Ocean Vocational College, Xiamen 361000, China
| | - Zhoujun He
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Yuzhou Xia
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Zhiyu Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
16
|
Liu KG, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Zhao X, Li J, Li X, Huo P, Shi W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Mu Q, Su Y, Wei Z, Sun H, Lian Y, Dong Y, Qi P, Deng Z, Peng Y. Dissecting the interfaces of MOF-coated CdS on synergized charge transfer for enhanced photocatalytic CO2 reduction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Guo C, Ma X, Wang B. Metal-organic Frameworks-based Composites and Their Photothermal Applications. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Kim H, Kim N, Ryu J. Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00543j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous framework materials such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs) can be considered promising materials for solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nayeong Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
21
|
Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101374] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Photocatalytic carbon dioxide reduction to methanol catalyzed by ZnO, Pt, Au, and Cu nanoparticles decorated zeolitic imidazolate framework-8. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2. Catalysts 2020. [DOI: 10.3390/catal10111293] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The continuous rise in the atmospheric concentration of carbon dioxide gas (CO2) is of significant global concern. Several methodologies and technologies are proposed and applied by the industries to mitigate the emissions of CO2 into the atmosphere. This review article offers a large number of studies that aim to capture, convert, or reduce CO2 by using a superb porous class of materials (metal-organic frameworks, MOFs), aiming to tackle this worldwide issue. MOFs possess several remarkable features ranging from high surface area and porosity to functionality and morphology. As a result of these unique features, MOFs were selected as the main class of porous material in this review article. MOFs act as an ideal candidate for the CO2 capture process. The main approaches for capturing CO2 are pre-combustion capture, post-combustion capture, and oxy-fuel combustion capture. The applications of MOFs in the carbon capture processes were extensively overviewed. In addition, the applications of MOFs in the adsorption, membrane separation, catalytic conversion, and electrochemical reduction processes of CO2 were also studied in order to provide new practical and efficient techniques for CO2 mitigation.
Collapse
|
24
|
Lin LY, Liu C, Hsieh TT. Efficient visible and NIR light-driven photocatalytic CO2 reduction over defect-engineered ZnO/carbon dot hybrid and mechanistic insights. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Klarner M, Hammon S, Feulner S, Kümmel S, Kador L, Kempe R. Visible Light‐driven Dehydrogenation of Benzylamine under Liberation of H
2. ChemCatChem 2020. [DOI: 10.1002/cctc.202000329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mara Klarner
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Sebastian Hammon
- Theoretical Physics IV University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Sebastian Feulner
- Institute of Physics, Bayreuth Institute of Macromolecule Research (BIMF) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Stephan Kümmel
- Theoretical Physics IV University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Lothar Kador
- Institute of Physics, Bayreuth Institute of Macromolecule Research (BIMF) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Rhett Kempe
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
26
|
Li JY, Li YH, Qi MY, Lin Q, Tang ZR, Xu YJ. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01567] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing-Yu Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yue-Hua Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Qiong Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
27
|
Kidanemariam A, Lee J, Park J. Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction. Polymers (Basel) 2019; 11:E2090. [PMID: 31847223 PMCID: PMC6960843 DOI: 10.3390/polym11122090] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
The accumulation of carbon dioxide (CO2) pollutants in the atmosphere begets global warming, forcing us to face tangible catastrophes worldwide. Environmental affability, affordability, and efficient CO2 metamorphotic capacity are critical factors for photocatalysts; metal-organic frameworks (MOFs) are one of the best candidates. MOFs, as hybrid organic ligand and inorganic nodal metal with tailorable morphological texture and adaptable electronic structure, are contemporary artificial photocatalysts. The semiconducting nature and porous topology of MOFs, respectively, assists with photogenerated multi-exciton injection and adsorption of substrate proximate to void cavities, thereby converting CO2. The vitality of the employment of MOFs in CO2 photolytic reaction has emerged from the fact that they are not only an inherently eco-friendly weapon for pollutant extermination, but also a potential tool for alleviating foreseeable fuel crises. The excellent synergistic interaction between the central metal and organic linker allows decisive implementation for the design, integration, and application of the catalytic bundle. In this review, we presented recent MOF headway focusing on reports of the last three years, exhaustively categorized based on central metal-type, and novel discussion, from material preparation to photocatalytic, simulated performance recordings of respective as-synthesized materials. The selective CO2 reduction capacities into syngas or formate of standalone or composite MOFs with definite photocatalytic reaction conditions was considered and compared.
Collapse
Affiliation(s)
| | | | - Juhyun Park
- School of Chemical Engineering and Materials Science, Institute of Energy-Converting Soft Materials, Chung-Ang University, Seoul 06974, Korea; (A.K.); (J.L.)
| |
Collapse
|