1
|
Xiao R, Ji D, Wu L, Fang Z, Guo Y, Hao W. Mild and rapid construction of Ti electrodes for efficient and corrosion-resistant oxidative catalysis at industrial-grade intensity. J Colloid Interface Sci 2025; 679:566-577. [PMID: 39383835 DOI: 10.1016/j.jcis.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
The development of cost-effective and corrosion-resistant catalytic electrodes for chlorine/oxygen evolution reaction (CER/OER) in large-scale industrial applications is a significant challenge. Herein, the sol-gel method is employed to achieve a uniform coating of ruthenium (Ru) doping copper (Cu) on titanium sheet (Ru + 20 %Cu@Ti), and the highly efficient industrial grade stable Ti dimensional stable anode can be quickly constructed at 723.15 K for 2 h. Cu doping reduces the vacancy formation energy of surface oxygen, promotes additional lattice oxygen vacancy assisted hydrolysis dissociation pathway, improves the selectivity and specific activity of CER at high concentration doping, and reduces the binding energy of OER intermediates (e.g., *OH, *O, and *OOH) at adjacent Ru active sites. The overpotentials require to reach the current density of 10 mA cm-2 for CER and OER were only 365 mV and 232 mV at the conditions of 5.0 M NaCl (pH = 7.0) and 1.0 M KOH + 0.5 M NaCl. More importantly, Ru + 20 %Cu@Ti demonstrates excellent stability, operates continuously for over 340h at industrial current density in neutral and alkaline electrolytes, and its strengthening life reaches 64 h, with ultra-low performance attenuation. Impressively, the designed applied electrode (8.0 cm ✕ 15.0 cm) achieves long-term CER at 0.2-0.3 A cm-2. Further industrial grade evaluation of CER shows that its chlorine extraction polarizability, enhances life and weight loss meet the requirements of industrial applications.
Collapse
Affiliation(s)
- Rui Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dingkun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Liugang Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ziyan Fang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanhui Guo
- Department of Materials Science. Fudan University. Songhu road 2005, Yangpu district, Shanghai 200433, China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Zhu Y, Wang H, Li B, Wang T, Zhu Y, Hou J. Construction of a Zero-gap Flow-Through Microfluidic Reactor with Porous RuO 2 -IrO 2 @Pt Anode for Electrocatalytic Oxidation of Antibiotics in Water. Chem Asian J 2024:e202301128. [PMID: 38323702 DOI: 10.1002/asia.202301128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
In this study, a zero-gap flow-through microfluidic reactor was constructed for the degradation of tetracycline and norfloxacin in water using a porous Ti/RuO2 -IrO2 @Pt electrode as the anode and porous titanium plate as the cathode. The operation parameters included electrolyte type, electrolyte concentration, current density, initial concentration of pollutants and pH, were investigated. The degradation efficiency and energy consumption were calculated and compared with traditional electrolyzer. In the zero-gap flow-through microfluidic reactor, 100 % of both tetracycline and norfloxacin can be decomposed in 15 min, and high mineralization rate were achieved under the optimized reaction condition. And the reaction was consistent with pseudo-first-order kinetics with k value of 0.492 cm-1 and 1.010 cm-1 , for tetracycline and norfloxacin, respectively. In addition, the energy consumption was 28.33 kWh ⋅ kg-1 TC and 8.36 kWh ⋅ kg-1 NOR, for tetracycline and norfloxacin, respectively, which was much lower than that of traditional electrolyzer. The LC-MS results showed that tetracycline underwent a series of demethylation, dehydration and deamination reactions, and the norfloxacin went through ring opening reaction, decarboxylation and hydroxylation reaction, and finally both produced CO2 and H2 O.
Collapse
Affiliation(s)
- Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
| | - Huan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
| | - Bingqing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
| | - Tian Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
| | - Yunfu Zhu
- Shaanxi Haofengjingcheng Environmental Technology Co. LTD, Xian, 710021, PR China
| | - Jianing Hou
- Shaanxi Haofengjingcheng Environmental Technology Co. LTD, Xian, 710021, PR China
| |
Collapse
|
3
|
Choi S, Choi WI, Lee JS, Lee CH, Balamurugan M, Schwarz AD, Choi ZS, Randriamahazaka H, Nam KT. A Reflection on Sustainable Anode Materials for Electrochemical Chloride Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300429. [PMID: 36897816 DOI: 10.1002/adma.202300429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Chloride oxidation is a key industrial electrochemical process in chlorine-based chemical production and water treatment. Over the past few decades, dimensionally stable anodes (DSAs) consisting of RuO2 - and IrO2 -based mixed-metal oxides have been successfully commercialized in the electrochemical chloride oxidation industry. For a sustainable supply of anode materials, considerable efforts both from the scientific and industrial aspects for developing earth-abundant-metal-based electrocatalysts have been made. This review first describes the history of commercial DSA fabrication and strategies to improve their efficiency and stability. Important features related to the electrocatalytic performance for chloride oxidation and reaction mechanism are then summarized. From the perspective of sustainability, recent progress in the design and fabrication of noble-metal-free anode materials, as well as methods for evaluating the industrialization of novel electrocatalysts, are highlighted. Finally, future directions for developing highly efficient and stable electrocatalysts for industrial chloride oxidation are proposed.
Collapse
Affiliation(s)
- Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| | - Won Il Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Seo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Chang Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Andrew D Schwarz
- Milton Hill Business and Technology Centre, Infineum, Abingdon, OX13 6BB, UK
| | - Zung Sun Choi
- Infineum Singapore LLP, Singapore, 098632, Singapore
| | | | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
4
|
Dong H, Shao X, Hancox S, McBeath ST, Tarpeh WA, Hoffmann MR. Understanding the Catalytic Active Sites of Crystalline CoSb xO y for Electrochemical Chlorine Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40369-40377. [PMID: 37594304 PMCID: PMC10472335 DOI: 10.1021/acsami.3c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
The chlorine evolution reaction (CER) is a key reaction in electrochemical oxidation (EO) of water treatment. Conventional anodes based on platinum group metals can be prohibitively expensive, which hinders further application of EO systems. Crystalline cobalt antimonate (CoSbxOy) was recently identified as a promising alternative to conventional anodes due to its high catalytic activity and stability in acidic media. However, its catalytic sites and reaction mechanism have not yet been elucidated. This study sheds light on the catalytically active sites in crystalline CoSbxOy anodes by using scanning electrochemical microscopy to compare the CER catalytic activities of a series of anode samples with different bulk Sb/Co ratios (from 1.43 to 2.80). The results showed that Sb sites served as more active catalytic sites than the Co sites. The varied Sb/Co ratios were also linked with slightly different electronic states of each element, leading to different CER selectivities in 30 mM chloride solutions under 10 mA cm-2 current density. The high activity of Sb sites toward the CER highlighted the significance of the electronic polarization that changed the oxidation states of Co and Sb.
Collapse
Affiliation(s)
- Heng Dong
- Linde
Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaohan Shao
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Shane Hancox
- Department
of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sean T. McBeath
- Department
of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - William A. Tarpeh
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael R. Hoffmann
- Linde
Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Zhang X, Ao K, Daoud WA. Nano-sphere RuO 2 embedded in MOF-derived carbon arrays as a dual-matrix anode for cost-effective electrochemical wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161126. [PMID: 36587675 DOI: 10.1016/j.scitotenv.2022.161126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The electrodes' activity, surface area and cost hinder the deployment of electrochemical wastewater treatment. Using an economical microfiber-based carbon felt (CF) substrate, we design RuO2 nanospheres confined by CoxO cooperated carbon nanoarrays (RuO2-CoxO@TCF) to augment noble metal utilization and thus reduce the catalyst cost. RuO2-CoxO@TCF anode with vertical diffusion channels exhibits rapid generation ability of oxidizing species particularity in the presence of Cl- ions, which play a crucial role in azo bond cleavage and benzene ring chlorination of methyl orange. As a result, the catalyst shows 99.5 % color removal and ∼ 70 % mineralization efficiency at a concentration of 60 ppm. In synthetic dyeing wastewater, RuO2-CoxO@TCF delivers a stable total organic carbon (TOC) removal throughout ten cycling tests. Moreover, the electricity consumption of RuO2-CoxO@TCF is far below the reference anode, showing great promise for dye degradation and remediation of industrial wastewater.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Kelong Ao
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| |
Collapse
|
6
|
Ji W, Li W, Zhang TC, Wang Y, Yuan S. Constructing Dimensionally Stable TiO2 Nanotube Arrays/SnO2/RuO2 Anode via Successive Electrodeposition for Efficient Electrocatalytic Oxidation of As(III). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Nichols F, Ozoemena KI, Chen S. Electrocatalytic generation of reactive species and implications in microbial inactivation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63941-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Cheng W, Liu Y, Wu L, Chen R, Wang J, Chang S, Ma F, Li Y, Ni H. RuO2/IrO2 nanoparticles decorated TiO2 nanotube arrays for improved activity towards chlorine evolution reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Zhang S, Xi J, Wu J, Wang P, Lin F, Zhang D. Design of an efficient antifouling strategy for underwater optical window based on chlorine generation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Touni A, Liu X, Kang X, Carvalho PA, Diplas S, Both KG, Sotiropoulos S, Chatzitakis A. Galvanic Deposition of Pt Nanoparticles on Black TiO 2 Nanotubes for Hydrogen Evolving Cathodes. CHEMSUSCHEM 2021; 14:4993-5003. [PMID: 34478230 PMCID: PMC9291612 DOI: 10.1002/cssc.202101559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/23/2021] [Indexed: 05/06/2023]
Abstract
A galvanic deposition method for the in-situ formation of Pt nanoparticles (NPs) on top and inner surfaces of high-aspect-ratio black TiO2 -nanotube electrodes (bTNTs) for true utilization of their total surface area has been developed. Density functional theory calculations indicated that the deposition of Pt NPs was favored on bTNTs with a preferred [004] orientation and a deposition mechanism occurring via oxygen vacancies, where electrons were localized. High-resolution transmission electron microscopy images revealed a graded deposition of Pt NPs with an average diameter of around 2.5 nm along the complete nanotube axis (length/pore diameter of 130 : 1). Hydrogen evolution reaction (HER) studies in acidic electrolytes showed comparable results to bulk Pt (per geometric area) and Pt/C commercial catalysts (per mg of Pt). The presented novel HER cathodes of minimal engineering and low noble metal loadings (μg cm-2 range) achieved low Tafel slopes (30-34 mV dec-1 ) and high stability in acidic conditions. This study provides important insights for the in-situ formation and deposition of NPs in high-aspect-ratio structures for energy applications.
Collapse
Affiliation(s)
- Aikaterini Touni
- Department of ChemistryAristotle University of Thessaloniki54124ThessalonikiGreece
| | - Xin Liu
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloGaustadalléen 210349OsloNorway
| | - Xiaolan Kang
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloGaustadalléen 210349OsloNorway
| | | | - Spyros Diplas
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloGaustadalléen 210349OsloNorway
- SINTEF IndustryPOB 124 Blindern0314OsloNorway
| | - Kevin G. Both
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloGaustadalléen 210349OsloNorway
| | | | - Athanasios Chatzitakis
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloGaustadalléen 210349OsloNorway
| |
Collapse
|
11
|
Lim HW, Cho DK, Park JH, Ji SG, Ahn YJ, Kim JY, Lee CW. Rational Design of Dimensionally Stable Anodes for Active Chlorine Generation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hyun Woo Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Deok Ki Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hyun Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Su Geun Ji
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - You Jin Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan Woo Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
12
|
Wang Y, Xue Y, Zhang C. Rational Surface and Interfacial Engineering of IrO 2 /TiO 2 Nanosheet Arrays toward High-Performance Chlorine Evolution Electrocatalysis and Practical Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006587. [PMID: 33719156 DOI: 10.1002/smll.202006587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The chlorine evolution reaction (CER) is a critical and commercially valuable electrochemical reaction in industrial-scale utilization, including the Chlor-alkali industry, seawater electrolysis, and saline wastewater treatment. Aiming at boosting CER electrocatalysis, hybrid IrO2 /TiO2 nanosheet arrays (NSAs) with rational surface and interfacial tuning strategies are proposed in this study. The IrO2 /TiO2 NSAs exhibit superb CER electrocatalytic activity with a low overpotential (44 mV) at 10 mA cm-2 , low Tafel slope of 40 mV dec-1 , high CER selectivity (95.8%), and long-term durability, outperforming most of the existing counterparts. The boosting mechanism is proposed that the aerophobic/hydrophilic surface engineering and interfacial electronic structure tuning of IrO2 /TiO2 are beneficial for the Cl- mass-transfer, Cl2 release, and Volmer-Heyvrosky kinetics during the CER. Practical saline wastewater treatment by using the IrO2 /TiO2 NSAs electrode is further conducted, demonstrating it has a higher p-nitrophenol degradation ratio (95.10% in 60 min) than that of other electrodes. The rational surface and interfacial engineering of IrO2 /TiO2 NSAs can open up a new way to design highly efficient electrocatalysts for industrial application and environmental remediation.
Collapse
Affiliation(s)
- Yunting Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing, 100083, P. R. China
| | - Yudong Xue
- College of Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Chunhui Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
13
|
Liu Y, Huang J, Feng X, Li H. Thermal-Sprayed Photocatalytic Coatings for Biocidal Applications: A Review. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2020; 30:1-24. [PMID: 38624582 PMCID: PMC7640575 DOI: 10.1007/s11666-020-01118-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Indexed: 05/03/2023]
Abstract
There have been ever-growing demands for disinfection of water and air in recent years. Efficient, eco-friendly, and cost-effective methods of disinfection for pathogens are vital to the health of human beings. The photocatalysis route has attracted worldwide attention due to its highly efficient oxidative capabilities and sustainable recycling, which can be used to realize the disinfection purposes without secondary pollution. Though many studies have comprehensively reviewed the work about photocatalytic disinfection, including design and fabrication of photocatalytic coatings, inactivation mechanisms, or practical applications, systematic reviews about the disinfection photocatalysis coatings from fabrication to effort for practical use are still rare. Among different ways of fabricating photocatalytic materials, thermal spray is a versatile surface coating technique and competitive in constructing large-scale functional coatings, which is a most promising way for the future environmental purification, biomedical and life health applications. In this review, we briefly introduced various photocatalytic materials and corresponding inactivation mechanisms for virus, bacteria and fungus. We summarized the thermal-sprayed photocatalysts and their antimicrobial performances. Finally, we discussed the future perspectives of the photocatalytic disinfection coatings for potential applications. This review would shed light on the development and implementation of sustainable disinfection strategies that is applicable for extensive use for controlling pathogens in the near future.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Jing Huang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Xiaohua Feng
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Hua Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| |
Collapse
|
14
|
Abstract
The increasing energy demand and the subsequent climate change consequences are supporting the search for sustainable alternatives to fossil fuels. In this scenario, the link between hydrogen and renewable energy is playing a key role and unitized hydrogen-chlorine (H2-Cl2) regenerative cells (RFCs) have become promising candidates for renewable energy storage. Described herein are the recent advances in cell configurations and catalysts for the different reactions that may take place in these systems, that work in both modes: electrolysis and fuel cell. It has been found that platinum (Pt)-based catalysts are the best choice for the electrode where hydrogen is involved, whereas for the case of chlorine, ruthenium (Ru)-based catalysts are the best candidates. Only a few studies were found where the catalysts had been tested in both modes and recent advances are focused on decreasing the amount of precious metals contained in the catalysts. Moreover, the durability of the catalysts tested under realistic conditions has not been thoroughly assessed, becoming a key and mandatory step to evaluate the commercial viability of the H2-Cl2 RFC technology.
Collapse
|