1
|
Li Z, Lu X, Zhang Z, Yan S, Yang Y. Rapid Fingerprinting of Urinary Volatile Metabolites and Point-of-Care Diagnosis of Phenylketonuria on a Patterned Nanorod Sensor Array with Multiplexed Surface-Enhanced Raman Scattering Readouts. Anal Chem 2024; 96:14541-14549. [PMID: 39206680 DOI: 10.1021/acs.analchem.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Phenylketonuria (PKU) is one of the most common genetic metabolic diseases, especially among newborns. Traditional clinical examination of newborn blood samples for PKU is invasive, laborious, and limited to hospitals and healthcare facilities. We reported herein a SERS-based sensor array with three thiophenolic nanoreceptors built on a patterned nanorod vertical array for rapid and inexpensive detection of characteristic volatile biomarkers indicative of PKU in the urine and accurate classification of newborn baby patients all performed on a hand-held SERS spectrophotometer. The well-ordered array was generated from the volatility-driven assembly of gold nanorods (AuNRs) into an upright and closely packed hexagonal configuration. The uniformly distributed nanowells between AuNRs offered an intense and aspect-ratio-dependent plasmonic field for the molecular enhancement of SERS outputs. The SERS-based detector was integrated into a test chip for regular monitoring of volatile phenylketone bodies in the spiked solution or patients' urine within 5 min, allowing the quantification of a wide variety of normal or abnormal metabolites at their physiologically relevant concentration range. The detection limits for common biomarkers of PKU, including phenylpyruvic acid, 4-hydroxyphenylacetic acid, and phenylacetic acid, were at a few μM and well below the diagnostic thresholds. Moreover, the volatile headspace mixtures from a given urine sample could be fingerprinted by the sensor array and discriminated using machine-learning algorithms. Ultimately, the discrimination of baby patients among 26 cases of mild and classic PKU phenotypes and 17 cases of healthy volunteers could be realized with an overall accuracy of 97%. This hand-held SERS platform plays a pivotal role in advancing healthcare applications in quick screening of neonatal PKU through a facile urinary vapor test.
Collapse
Affiliation(s)
- Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China
| | - Shuoyang Yan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yunli Yang
- Clinical Study and Evidence Based Medicine Institute, Gansu Provincial People's Hospital, Lanzhou 730000, P.R. China
| |
Collapse
|
2
|
Kneipp J, Seifert S, Gärber F. SERS microscopy as a tool for comprehensive biochemical characterization in complex samples. Chem Soc Rev 2024; 53:7641-7656. [PMID: 38934892 DOI: 10.1039/d4cs00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Surface enhanced Raman scattering (SERS) spectra of biomaterials such as cells or tissues can be used to obtain biochemical information from nanoscopic volumes in these heterogeneous samples. This tutorial review discusses the factors that determine the outcome of a SERS experiment in complex bioorganic samples. They are related to the SERS process itself, the possibility to selectively probe certain regions or constituents of a sample, and the retrieval of the vibrational information in order to identify molecules and their interaction. After introducing basic aspects of SERS experiments in the context of biocompatible environments, spectroscopy in typical microscopic settings is exemplified, including the possibilities to combine SERS with other linear and non-linear microscopic tools, and to exploit approaches that improve lateral and temporal resolution. In particular the great variation of data in a SERS experiment calls for robust data analysis tools. Approaches will be introduced that have been originally developed in the field of bioinformatics for the application to omics data and that show specific potential in the analysis of SERS data. They include the use of simulated data and machine learning tools that can yield chemical information beyond achieving spectral classification.
Collapse
Affiliation(s)
- Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Stephan Seifert
- Hamburg School of Food Science, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Florian Gärber
- Hamburg School of Food Science, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
3
|
Wei Y, Fan X, Chen D, Zhu X, Yao L, Zhao X, Tang X, Wang J, Zhang Y, Qiu T, Hao Q. Probing Oxidation Mechanisms in Plasmonic Catalysis: Unraveling the Role of Reactive Oxygen Species. NANO LETTERS 2024; 24:2110-2117. [PMID: 38290214 DOI: 10.1021/acs.nanolett.3c04979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Plasmon-induced oxidation has conventionally been attributed to the transfer of plasmonic hot holes. However, this theoretical framework encounters challenges in elucidating the latest experimental findings, such as enhanced catalytic efficiency under uncoupled irradiation conditions and superior oxidizability of silver nanoparticles. Herein, we employ liquid surface-enhanced Raman spectroscopy (SERS) as a real-time and in situ tool to explore the oxidation mechanisms in plasmonic catalysis, taking the decarboxylation of p-mercaptobenzoic acid (PMBA) as a case study. Our findings suggest that the plasmon-induced oxidation is driven by reactive oxygen species (ROS) rather than hot holes, holding true for both the Au and Ag nanoparticles. Subsequent investigations suggest that plasmon-induced ROS may arise from hot carriers or energy transfer mechanisms, exhibiting selectivity under different experimental conditions. The observations were substantiated by investigating the cleavage of the carbon-boron bonds. Furthermore, the underlying mechanisms were clarified by energy level theories, advancing our understanding of plasmonic catalysis.
Collapse
Affiliation(s)
- Yunjia Wei
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Dexiang Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiangnan Zhu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiawei Wang
- School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
4
|
Yao X, Ehtesabi S, Höppener C, Deckert-Gaudig T, Schneidewind H, Kupfer S, Gräfe S, Deckert V. Mechanism of Plasmon-Induced Catalysis of Thiolates and the Impact of Reaction Conditions. J Am Chem Soc 2024; 146:3031-3042. [PMID: 38275163 PMCID: PMC10859934 DOI: 10.1021/jacs.3c09309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
The conversion of the thiols 4-aminothiophenol (ATP) and 4-nitrothiophenol (NTP) can be considered as one of the standard reactions of plasmon-induced catalysis and thus has already been the subject of numerous studies. Currently, two reaction pathways are discussed: one describes a dimerization of the starting material yielding 4,4'-dimercaptoazobenzene (DMAB), while in the second pathway, it is proposed that NTP is reduced to ATP in HCl solution. In this combined experimental and theoretical study, we disentangled the involved plasmon-mediated reaction mechanisms by carefully controlling the reaction conditions in acidic solutions and vapor. Motivated by the different surface-enhanced Raman scattering (SERS) spectra of NTP/ATP samples and band shifts in acidic solution, which are generally attributed to water, additional experiments under pure gaseous conditions were performed. Under such acidic vapor conditions, the Raman data strongly suggest the formation of a hitherto not experimentally identified stable compound. Computational modeling of the plasmonic hybrid systems, i.e., regarding the wavelength-dependent character of the involved electronic transitions of the detected key intermediates in both reaction pathways, confirmed the experimental finding of the new compound, namely, 4-nitrosothiophenol (TP*). Tracking the reaction dynamics via time-dependent SERS measurements allowed us to establish the link between the dimer- and monomer-based pathways and to suggest possible reaction routes under different environmental conditions. Thereby, insight at the molecular level was provided with respect to the thermodynamics of the underlying reaction mechanism, complementing the spectroscopic results.
Collapse
Affiliation(s)
- Xiaobin Yao
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Sadaf Ehtesabi
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Christiane Höppener
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Henrik Schneidewind
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Stephan Kupfer
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Fraunhofer Institute of Applied Optics and
Precision Engineering, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
5
|
He Z, Li F, Zuo P, Tian H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3083. [PMID: 37109920 PMCID: PMC10145016 DOI: 10.3390/ma16083083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Over the past several years, resonance energy transfer involving noble metallic nanoparticles has received considerable attention. The aim of this review is to cover advances in resonance energy transfer, widely exploited in biological structures and dynamics. Due to the presence of surface plasmons, strong surface plasmon resonance absorption and local electric field enhancement are generated near noble metallic nanoparticles, and the resulting energy transfer shows potential applications in microlasers, quantum information storage devices and micro-/nanoprocessing. In this review, we present the basic principle of the characteristics of noble metallic nanoparticles, as well as the representative progress in resonance energy transfer involving noble metallic nanoparticles, such as fluorescence resonance energy transfer, nanometal surface energy transfer, plasmon-induced resonance energy transfer, metal-enhanced fluorescence, surface-enhanced Raman scattering and cascade energy transfer. We end this review with an outlook on the development and applications of the transfer process. This will offer theoretical guidance for further optical methods in distance distribution analysis and microscopic detection.
Collapse
Affiliation(s)
- Zhicong He
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
- School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Intelligent Transportation Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
| | - Fang Li
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Pei Zuo
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hong Tian
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
6
|
Wang X, Zhang Y, Zhao C, Sun S, Xu M, Zhang L, Wang P, Fang Y. Encrypted information reading technology at the micro/nano scale based on surface plasma-driven reactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121607. [PMID: 35841859 DOI: 10.1016/j.saa.2022.121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The plasma exciton induced photocatalytic reaction has considerable potential in terms of controllability and selectivity. In this paper, with the advantage of Raman fingerprinting, the localized photocatalytic reaction driven by surface plasmons is realized by the writing and reading process of encrypted information at the micro/nano scale. A layer of probe molecules (4-nitrobenzenethiol, 4-NBT) was assembled on a gold nanoporous array grown on porous anodic aluminium oxide (AAO) membranes. The focused Raman spot is manipulated in a two-dimensional micro/nano manipulation technique to control the movement of the spot at an excitation wavelength of 633 nm. Probe molecules within the spot trajectory will undergo a photocatalytic reaction to produce p,p'-dimercaptoazobenzene (DMAB) molecules, thereby writing the specific information required. The use of Raman mapping to image the characteristic peaks of formed DMAB under excitation light with a longer wavelength of 785 nm enables the readout of 2D micro/nano cryptograms. Combined with finite-difference time-domain (FDTD) simulations, it was found that the presence of a large number of regularly arranged hot spots on the surface of the array is the key to achieving the efficient photocatalytic reaction. This study enables real-time, lossless recording/reading of encrypted information with the aid of 2D Raman technology. This would be a very interesting research area with broad application in confidential information storage.
Collapse
Affiliation(s)
- Xueyan Wang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Yiyuan Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Chengpeng Zhao
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Shipeng Sun
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Mengqi Xu
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Lisheng Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Peijie Wang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Yan Fang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| |
Collapse
|
7
|
Santhoshkumar S, Murugan E. Size controlled silver nanoparticles on β-cyclodextrin/graphitic carbon nitride: an excellent nanohybrid material for SERS and catalytic applications. Dalton Trans 2021; 50:17988-18000. [PMID: 34851335 DOI: 10.1039/d1dt02809j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A nanohybrid (NH), having high dispersion of silver nanoparticles (AgNPs) on β-cyclodextrin (β-CD)/graphitic carbon nitride (g-CN), designated as AgNPs/β-CD/g-CN-NH, was synthesized and characterized. It was exploited for a couple of environmental remediation applications like SERS sensing and catalytic reduction of specific organic pollutants in water. It showed excellent SERS activity as a Raman probe for the detection of malachite green (MG). Its enhancement factor (EF) and detection limit for MG were equal to 7.26 × 106 and 1 × 10-9 M, respectively. The relative standard deviation (RSD) was equal to 3.8% which indicates high homogeneity of AgNP dispersion and signal reproducibility of the SERS substrate. The NH displayed high catalytic activity for the reduction of eosin yellow (EY) in the presence of NaBH4 with the rate constant (k) of 0.1142 min-1. A comparison of the present NH with other reported materials reveals better SERS and catalytic activities of the former than those of the latter. The SERS activity of the NH was also examined for sensing of other triphenylamine dyes like methyl violet (MV), and it was successful. The same NH also exhibited high catalytic activity towards the reduction of Congo red (CR). The results of both studies clarify that the NH is an excellent SERS substrate and efficient catalyst for the detection of organic environmental pollutants having structures similar to MG and their degradation. This is due to the distribution of the controlled size of AgNPs on g-CN promoted by β-CD. Therefore, we focus our attention on future environmental applications of the nanohybrid as a very cheap SERS substrate and a very active catalyst.
Collapse
Affiliation(s)
- S Santhoshkumar
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Guindy, Chennai-25, India.
| | - E Murugan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Guindy, Chennai-25, India.
| |
Collapse
|
8
|
Zhou B, Ou W, Shen J, Zhao C, Zhong J, Du P, Bian H, Li P, Yang L, Lu J, Li YY. Controlling Plasmon-Aided Reduction of p-Nitrothiophenol by Tuning the Illumination Wavelength. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Binbin Zhou
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Weihui Ou
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Junda Shen
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Chenghao Zhao
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Jing Zhong
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Peng Du
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Haidong Bian
- Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen 518055, P. R. China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jian Lu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, P. R. China
| | - Yang Yang Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
9
|
Zhang Z, Kneipp J. Surface Molecular Patterning by Plasmon-Catalyzed Reactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43708-43714. [PMID: 34473478 DOI: 10.1021/acsami.1c12410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembled monolayers (SAMs) on plasmonic substrates play a significant role applications of surface-enhanced Raman scattering (SERS). At the same time, localized surface plasmon resonances (LSPRs) can be employed for a broad range of plasmon-supported chemical modifications. Here, micropatterning using the derivatization of SAMs on gold nanosubstrates for rewritable SERS-based security labels or as the basis for sensing arrays functionalized with biomolecules is demonstrated using different plasmon-catalyzed reactions. The formation of 4,4'-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) as well as from p-nitrothiophenol (PNTP) and the reduction of PNTP to PATP are used to change the functionality of the substrate in specified positions. Employing LSPR, the reactions are started by illumination using visible laser light at a high intensity in a focal spot of a microscope objective and yield microscopic patterns of the reaction product. The obtained molecular patterns can be erased by other reactions, enabling different strategies for rewriting, encryption, or stepwise functionalization.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
10
|
Li Z, Kurouski D. Tip-Enhanced Raman Analysis of Plasmonic and Photocatalytic Properties of Copper Nanomaterials. J Phys Chem Lett 2021; 12:8335-8340. [PMID: 34431299 DOI: 10.1021/acs.jpclett.1c02500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Theoretical predictions suggest that, in addition to gold (Au) and silver (Ag), several other metals such as copper (Cu) and aluminum (Al) can be used as plasmonic materials. However, their plasmonic and photocatalytic properties remain poorly understood. In this contribution, we employed tip-enhanced Raman spectroscopy to examine photocatalytic properties of Cu nanowires and nanocubes (CuNWs and CuNCs). Our results show that both CuNWs and CuNCs demonstrate a far more efficient photocatalytic dimerization of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene than Au nano and microplates. We also found that CuNWs and CuNCs can neither reduce 4-mercaptobenzoic acid (4-MBA) to the corresponding aromatic alcohol nor dearboxylate it forming benzenethiol. We infer that this is due to a unique coordination of 4-MBA on Cu surfaces that was only rarely observed on Au and Ag nanomaterials. Finally, we found that Cu nanostructures can oxidize 4-mercapto-phenyl-methanol to 4-MBA, which was previously only observed on gold-platinum nanoplates.
Collapse
Affiliation(s)
- Zhandong Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Zhang Z, Kneipp J. Ligand-Supported Hot Electron Harvesting: Revisiting the pH-Responsive Surface-Enhanced Raman Scattering Spectrum of p-Aminothiophenol. J Phys Chem Lett 2021; 12:1542-1547. [PMID: 33534593 DOI: 10.1021/acs.jpclett.0c03732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discussion of the surface-enhanced Raman scattering (SERS) spectra of p-aminothiophenol (PATP) and of its photocatalytic reaction product 4,4'-dimercaptoazobenzene (DMAB) is important for understanding plasmon-supported spectroscopy and catalysis. Here, SERS spectra indicate that DMAB forms also in a nonphotocatalytic reaction on silver nanoparticles. Spectra measured at low pH, in the presence of the acids HCl, H2SO4, HNO3, and H3PO4, show that DMAB is reduced to PATP when both protons and chloride ions are present. Moreover, the successful reduction of DMAB in the presence of other, halide and nonhalide, ligands suggests a central role of these species in the reduction. As discussed, the ligands increase the efficiency of hot-electron harvesting. The pH-associated reversibility of the SERS spectrum of PATP is established as an observation of the DMAB dimer at high pH and of PATP as a product of its hot-electron reduction at low pH, in the presence of the appropriate ligand.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
12
|
Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials. Mikrochim Acta 2021; 188:21. [PMID: 33404741 DOI: 10.1007/s00604-020-04671-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the abuse of antibiotics has led to the pollution of soil and water environment, not only poultry husbandry and food manufacturing will be influenced to different degree, but also the human body will produce antibody. The detection of antibiotic content in production and life is imperative. In this review, we provide comprehensive information about chemical sensors and biosensors for antibiotic detection. We classify the currently reported antibiotic detection technologies into chromatography, mass spectrometry, capillary electrophoresis, optical detection, and electrochemistry, introduce some representative examples for each technology, and conclude the advantages and limitations. In particular, the optical and electrochemical methods based on nanomaterials are discussed and evaluated in detail. In addition, the latest research in the detection of antibiotics by photosensitive materials is discussed. Finally, we summarize the pros and cons of various antibiotic detection methods and present a discussion and outlook on the expansion of cross-scientific areas. The synthesis and application of optoelectronic nanomaterials and aptamer screening are discussed and prospected, and the future trends and potential impact of biosensors in antibiotic detection are outlined.Graphical abstract.
Collapse
|