1
|
Chen L, Zhang L, Wang C, Kong F, Duan H, Yang D. Support effect on methane combustion over iridium catalysts: Unraveling the metal-support interaction mechanism. J Colloid Interface Sci 2025; 684:291-299. [PMID: 39798425 DOI: 10.1016/j.jcis.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The redox properties of iridium (Ir) active component are critically important in methane combustion. Interface engineering is highly effective in modulating the redox properties of active metals via tailoring the metal-support interaction (MSI). Herein, Ir catalysts supported on different carriers (TiO2, CeO2, Al2O3) were synthesized and evaluated for methane combustion. The methane combustion performance varied depending on the support, following the order: Ir/TiO2 > Ir/CeO2 > Ir/Al2O3 catalysts. Detailed experimental characterizations indicate that, compared with stronger Ir-CeO2 and Ir-Al2O3 interfaces, the unique moderate Ir-TiO2 interface facilitates the generation of an electron-rich Ir structure with a higher Irδ+ ratio. Theoretical simulations further suggest that the initial cleavage of the CH bond in methane molecules is favored at the superior Ir-TiO2 interface. The more reactive Irδ+ species with electron-rich structures in Ir/TiO2 catalysts not only greatly enhance their redox performance but also lower the activation energy barrier for methane activation, ultimately leading to improved catalytic activity in the total oxidation of methane. This work provides valuable insights for the ingenious catalyst design of more efficient Ir-based catalysts for methane combustion through tailoring MSI.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Lijie Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071 China
| | - Chuanhui Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Fanxin Kong
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Huimei Duan
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China; Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 China.
| |
Collapse
|
2
|
Zhang Y, Du J, Shan Y, Wang F, Liu J, Wang M, Liu Z, Yan Y, Xu G, He G, Shi X, Lian Z, Yu Y, Shan W, He H. Toward synergetic reduction of pollutant and greenhouse gas emissions from vehicles: a catalysis perspective. Chem Soc Rev 2025; 54:1151-1215. [PMID: 39687940 DOI: 10.1039/d4cs00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
It is a great challenge for vehicles to satisfy the increasingly stringent emission regulations for pollutants and greenhouse gases. Throughout the history of the development of vehicle emission control technology, catalysts have always been in the core position of vehicle aftertreatment. Aiming to address the significant demand for synergistic control of pollutants and greenhouse gases from vehicles, this review provides a panoramic view of emission control technologies and key aftertreatment catalysts for vehicles using fossil fuels (gasoline, diesel, and natural gas) and carbon-neutral fuels (hydrogen, ammonia, and green alcohols). Special attention will be given to the research advancements in catalysts, including three-way catalysts (TWCs), NOx selective catalytic reduction (SCR) catalysts, NOx storage-reduction (NSR) catalysts, diesel oxidation catalysts (DOCs), soot oxidation catalysts, ammonia slip catalysts (ASCs), methane oxidation catalysts (MOCs), N2O abatement catalysts (DeN2O), passive NOx adsorbers (PNAs), and cold start catalysts (CSCs). The main challenges for industrial applications of these catalysts, such as insufficient low-temperature activity, product selectivity, hydrothermal stability, and poisoning resistance, will be examined. In addition, the future development of synergistic control of vehicle pollutants and greenhouse gases will be discussed from a catalysis perspective.
Collapse
Affiliation(s)
- Yan Zhang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Jinpeng Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yulong Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingjing Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Meng Wang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Zhi Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guangyan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangzhi He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaoyan Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhihua Lian
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Wenpo Shan
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Hong He
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Nachimuthu S, Xie GC, Jiang JC. Unraveling the catalytic performance of RuO 2(1 1 0) for highly-selective ethylene production from methane at low temperature: Insights from first-principles and microkinetic simulations. J Colloid Interface Sci 2025; 678:992-1003. [PMID: 39270399 DOI: 10.1016/j.jcis.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Despite significant progress in low-temperature methane (CH4) activation, commercial viability, specifically obtaining high yields of C1/C2 products, remains a challenge. High desorption energy (>2 eV) and overoxidation of the target products are key limitations in CH4 utilization. Herein, we employ first-principles density functional theory (DFT) and microkinetics simulations to investigate the CH4 activation and the feasibility of its conversion to ethylene (C2H4) on the RuO2 (1 1 0) surface. The CH activation and CH4 dehydrogenation processes are thoroughly investigated, with a particular focus on the diffusion of surface intermediates. The results show that the RuO2 (1 1 0) surface exhibits high reactivity in CH4 activation (Ea = 0.60 eV), with CH3 and CH2 are the predominant species, and CH2 being the most mobile intermediate on the surface. Consequently, self-coupling of CH2* species via CC coupling occurs more readily, yielding C2H4, a potential raw material for the chemical industry. More importantly, we demonstrate that the produced C2H4 can easily desorb under mild conditions due to its low desorption energy of 0.97 eV. Microkinetic simulations based on the DFT energetics indicate that CH4 activation can occur at temperatures below 200 K, and C2H4 can be desorbed at room temperature. Further, the selectivity analysis predicts that C2H4 is the major product at low temperatures (300-450 K) with 100 % selectivity, then competes with formaldehyde at intermediate temperatures in the CH4 conversion over RuO2 (1 1 0) surface. The present findings suggest that the RuO2 (1 1 0) surface is a potential catalyst for facilitating ethylene production under mild conditions.
Collapse
Affiliation(s)
- Santhanamoorthi Nachimuthu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Guan-Cheng Xie
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jyh-Chiang Jiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
4
|
Fujisaki T, Tsuji Y, Tu PH, Doan TCD, Rivera Rocabado DS, Staykov AT, Yashiro K, Shiratori Y. Investigating Ni nanoparticles on CeO 2 for methane dissociation: a comparative study of theoretical calculations and experimental insights. Phys Chem Chem Phys 2024. [PMID: 39530151 DOI: 10.1039/d4cp01324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
CeO2 supported with Ni nanoparticles has emerged as a promising catalyst for enhancing the efficiency of dry reforming of methane (DRM) reaction. Methane dissociation (CH4 → CH3 + H) was reported as one of the rate-determining steps in the DRM reaction. We elucidated the reaction mechanism and explored methods for reducing the activation energy using density functional theory (DFT) calculations, where the activation energy of methane dissociation was determined at multiple Ni4 cluster sites on CeO2. In parallel, we experimentally evaluated methane dissociation based on the methane consumption rate in the DRM reaction using newly developed flower-like Ni-supported CeO2 catalyst (Ce(F)). The experimental activation energy was determined to be 0.69 eV (15.91 kcal mol-1), closely matching the DFT-calculated value of 0.80 eV (18.45 kcal mol-1) for the Ni4 cluster model, validating our theoretical predictions. Additionally, we discovered that positively charging the Ni4 can lower the activation energy of methane dissociation. These findings contribute to a deeper understanding of how to control the activation energy of the methane dissociation reaction in DRM.
Collapse
Affiliation(s)
- Takaya Fujisaki
- Faculty of Materials for Energy, Shimane University, 1060, Nishikawazu, Matsue, Shimane 690-0823, Japan.
| | - Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Phuc Hoan Tu
- Department of Mechanical Science and Engineering, School of Advanced Engineering, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015, Japan.
| | - Tin Chanh Duc Doan
- Institute for Nanotechnology (INT), Vietnam National University Ho Chi Minh City (VNUHCM), Community 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - David S Rivera Rocabado
- Graduate School of Nanobioscience, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Aleksandar Tsekov Staykov
- International Institute for Carbon-neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiji Yashiro
- Faculty of Materials for Energy, Shimane University, 1060, Nishikawazu, Matsue, Shimane 690-0823, Japan.
- Graduate School of Environmental Studies, Tohoku University, 6-6-01-A004 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yusuke Shiratori
- Department of Mechanical Science and Engineering, School of Advanced Engineering, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015, Japan.
| |
Collapse
|
5
|
Song Y, Shin MJ, Kwon BC, So J, Kim YJ, Kang D, Park NK, Kim M. Synergistic effects of copper and oxygen vacancies in enhancing the efficacy of partially crystalline CuMnxOy catalyst for ozone decomposition. J Chem Phys 2024; 160:234706. [PMID: 38888374 DOI: 10.1063/5.0212226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
To tackle the challenge of ground-level ozone pollution, this study proposed a potential catalytic design approach for ozone decomposition using Cu-Mn bimetallic oxide. This approach is grounded in an understanding of the intrinsic reactivity for catalyst and incorporates a novel potassium-driven low-temperature oxidation process for catalyst synthesis. The research highlights the creation of a highly reactive Cu-Mn oxide phase with extensive defect coverage, leading to significantly increased reaction rates. It also identifies the MnO2(100) facet as a crucial active phase, where oxygen vacancies simultaneously enhance O3 adsorption and decomposition, albeit with a concurrent risk of O2 poisoning due to the stabilization of adsorbed O2. Crucially, the incorporation of Cu offsets the effects of oxygen vacancies, influencing conversion rates and lessening O2 poisoning. The synergistic interplay between Cu and oxygen vacancies elevates the performance of the defect-rich Cu-Mn oxide catalyst. By combining computational and experimental methods, this study not only advances the understanding of the Cu-Mn oxide system for ozone decomposition but also contributes valuable insights into developing more efficient catalysts to mitigate ozone pollution.
Collapse
Affiliation(s)
- Yuna Song
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Min Jae Shin
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Byung Chan Kwon
- Institute of Clean Technology, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungseob So
- Environment and Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Jin Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Dohyung Kang
- Department of Future Energy Convergence, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 01811, Republic of Korea
| | - No-Kuk Park
- Institute of Clean Technology, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Minkyu Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, South Korea
| |
Collapse
|
6
|
Ping L, Zhang Y, Wang B, Fan M, Ling L, Zhang R. Unraveling the Surface State Evolution of IrO 2 in Ethane Chemical Looping Oxidative Dehydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lulu Ping
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Lixia Ling
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| |
Collapse
|
7
|
Martin R, Lee CJ, Mehar V, Kim M, Asthagiri A, Weaver JF. Catalytic Oxidation of Methane on IrO2(110) Films Investigated Using Ambient-Pressure X-ray Photoelectron Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachel Martin
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher J. Lee
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Vikram Mehar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Minkyu Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Aravind Asthagiri
- William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jason F. Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Hu Z, Li Y, Gan C, Sheng M, Sun B, Jiang H. Photocatalytic C–H activation for C–C/CN/C–S bond formation over CdS: effect of morphological regulation and S vacancies. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CdS catalytic materials were utilized to fabricate C–C, CN and C–S bonds for drug intermediates or other value-added products through the high bond energy, low polarity and strong inertia C–H bonds activation.
Collapse
Affiliation(s)
- Zujie Hu
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P.R. China
| | - Yue Li
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P.R. China
| | - Chuan Gan
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P.R. China
| | - Meilin Sheng
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P.R. China
| | - Bin Sun
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P.R. China
| | - Heyan Jiang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P.R. China
| |
Collapse
|
9
|
Bhati M, Dhumal J, Joshi K. Lowering the C–H bond activation barrier of methane by means of SAC@Cu(111): periodic DFT investigations. NEW J CHEM 2022. [DOI: 10.1039/d1nj04525c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methane has long been in the world's spotlight as the simplest yet one of the most notorious hydrocarbons; here, we study the efficiency of single-atom catalysts (SACs) for methane activation using density functional theory (DFT).
Collapse
Affiliation(s)
- Meema Bhati
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune – 411008, India
- Academy of Scientific and Innovative Research (AcSIR), India
| | - Jignesh Dhumal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune – 411008, India
| | - Kavita Joshi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune – 411008, India
- Academy of Scientific and Innovative Research (AcSIR), India
| |
Collapse
|
10
|
Wu C, Yang W, Wang JJ, Li H, Gates ID. Methane activation on dual-atom catalysts supported on graphene. Chem Commun (Camb) 2021; 57:12127-12130. [PMID: 34723294 DOI: 10.1039/d1cc05701d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dual-atom Fe catalysts supported by three nitrogen atom doped graphene (Fe-TM/GP, where TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are explored for methane adsorption and activation. The addition of the second metal significantly tunes the properties of the catalysts. The main factor influencing methane adsorption is electron transfer. The second metal promotes methane adsorption by altering the electronic properties such as the band structure and charge transfer. A volcano-shaped relationship is found between the absolute value of adsorption energy and energy barrier at the heteroatom Fe-TM/GP. Fe-Ni/GP has the lowest energy barrier. Heteroatom Fe-TM/GP has a lower energy barrier than Fe-Fe/GP.
Collapse
Affiliation(s)
- Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, T2N 1N4, Alberta, Canada.
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jacky Jingyi Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, T2N 1N4, Alberta, Canada.
| | - Hao Li
- Department of Physics, Technical University of Denmark, Lyngby, 2800, Denmark.
| | - Ian D Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, T2N 1N4, Alberta, Canada.
| |
Collapse
|
11
|
Yuan X, Meng L, Zheng C, Zhao H. Deep Insight into the Mechanism of Catalytic Combustion of CO and CH 4 over SrTi 1-xB xO 3 (B = Co, Fe, Mn, Ni, and Cu) Perovskite via Flame Spray Pyrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52571-52587. [PMID: 34705414 DOI: 10.1021/acsami.1c14055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perovskites have been recognized as affordable substitutes for noble-metal catalysts for their tunable catalytic activity and thermal stability. Nevertheless, the highly demanding synthesis procedure still hinders the application of perovskites in catalytic combustion. In this work, a series of nanostructured SiTiO3 perovskites with B-site partial substitution by Co, Fe, Mn, Ni, and Cu are synthesized via flame spray pyrolysis in one step. The comprehensive characterizations on textural properties of nanostructured perovskites reveal that the flame-made perovskite nanoparticles all exhibit high crystal purity and large specific surface area (∼40 m2/g). Furthermore, the highest catalytic activity is achieved by SrTi0.5Co0.5O3 due to the formation of favorable oxygen vacancies, outstanding reducibility, and oxygen desorption capability. Additionally, the presence of 10 vol % water vapor during long-term testing indicates remarkable durability and water resistance. Finally, the CO oxidation and CH4 dehydrogenation on SrTiO3 incorporating Co atoms are more thermodynamically and kinetically favorable than those on other doped surfaces.
Collapse
Affiliation(s)
- Xing Yuan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingquan Meng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chaohe Zheng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haibo Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Khalid O, Spriewald Luciano A, Drazic G, Over H. Mixed Ru
x
Ir
1−
x
O
2
Supported on Rutile TiO
2
: Catalytic Methane Combustion, a Model Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Omeir Khalid
- Physikalisch-Chemisches Institut Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Zentrum für Materialforschung Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Alexander Spriewald Luciano
- Physikalisch-Chemisches Institut Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Zentrum für Materialforschung Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Goran Drazic
- Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Herbert Over
- Physikalisch-Chemisches Institut Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Zentrum für Materialforschung Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| |
Collapse
|
13
|
Martin R, Kim M, Lee CJ, Mehar V, Albertin S, Hejral U, Merte LR, Asthagiri A, Weaver JF. Isothermal Reduction of IrO 2(110) Films by Methane Investigated Using In Situ X-ray Photoelectron Spectroscopy. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachel Martin
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Minkyu Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Christopher J. Lee
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Vikram Mehar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Stefano Albertin
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Lindsay R. Merte
- Materials Science and Applied Mathematics, Malmö University, SE-205 06 Malmö, Sweden
| | - Aravind Asthagiri
- William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jason F. Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
14
|
Martin R, Kim M, Asthagiri A, Weaver JF. Alkane Activation and Oxidation on Late-Transition-Metal Oxides: Challenges and Opportunities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rachel Martin
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Minkyu Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Aravind Asthagiri
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jason F. Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|