1
|
Mie Y, Mikami C, Yasutake Y, Shigemura Y, Yamashita T, Tsujino H. Electrochemical Analysis and Inhibition Assay of Immune-Modulating Enzyme, Indoleamine 2,3-Dioxygenase. Pharmaceuticals (Basel) 2025; 18:352. [PMID: 40143129 PMCID: PMC11944389 DOI: 10.3390/ph18030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background: An accurate and rapid analysis of human indoleamine 2,3-dioxygenase (hIDO) is crucial for the development of anticancer pharmaceuticals because of the role of hIDO in promoting tumoral immune escape. However, the conventional assay of hIDO is limited by interference from reductants, which are used to reduce the heme iron to begin the hIDO catalytic reaction. Methods: A direct electrochemical method was applied to drive the hIDO reaction. Results: The nanostructured gold electrode enabled the electrochemical reduction of the heme iron of hIDO1. In the presence of substrates (tryptophan and oxygen), a bioelectrocatalytic current was observed, confirming an electrochemically driven hIDO reaction. A well-known inhibitor of hIDO, epacadostat, hindered this catalytic signal according to its concentration, demonstrating the rapid evaluation of its inhibition activity for the hIDO reaction. Through an in silico study using the proposed electrochemical assay system, we discovered a strong inhibitor candidate with a half-maximal inhibitory concentration of 10 nM. Conclusions: An accurate and rapid assay system in drug discovery for hIDO and kynureine pathway-targeted immunotherapy has been developed.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan (Y.Y.)
| | - Chitose Mikami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan (Y.Y.)
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan (Y.Y.)
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan
| | - Yuki Shigemura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan (H.T.)
| | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya 663-8179, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan (H.T.)
- Museum Links, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Matvieiev O, Šelešovská R, Marton M, Hatala M, Metelka R, Weis M, Vojs M. Effect of different modification by gold nanoparticles on the electrochemical performance of screen-printed sensors with boron-doped diamond electrode. Sci Rep 2023; 13:21525. [PMID: 38057545 DOI: 10.1038/s41598-023-48834-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Screen-printed sensors with chemically deposited boron-doped diamond electrodes (BDDE) were modified with different types of gold nanoparticles (AuNPs) according to a new original procedure. Physically and electrochemically deposited AuNPs had various sizes and also nanoporous character. They also differ in shape and density of surface coverage. The developed sensors were characterized using scanning electron microscopy and Raman spectroscopy. Their electrochemical properties were studied using cyclic voltammetry and electrochemical impedance spectrometry of selected outer sphere ([Ru(NH3)6]Cl3) and inner sphere (K3[Fe(CN)6], dopamine) redox markers. The application possibilities of such novel screen-printed sensors with BDDE modified by AuNPs were verified in the analysis of the neurotransmitter dopamine. The best analytical performance was achieved using printed sensors modified with the smallest AuNPs. The achieved limit of detection values in nanomolar concentrations (2.5 nmol L-1) are much lower than those of unmodified electrodes, which confirms the significant catalytic effects of gold nanoparticles on the surface of the working electrode. Sensors with the best electrochemical properties were successfully applied in the analysis of a model solution and spiked urine samples.
Collapse
Affiliation(s)
- Oleksandr Matvieiev
- Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Renáta Šelešovská
- Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| | - Marián Marton
- Faculty of Electrical Engineering and Information Technology, Institute of Electronics and Photonics, Slovak University of Technology in Bratislava, Ilkovičova 3, Bratislava, 812 19, Slovak Republic
| | - Michal Hatala
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, 812 37, Slovak Republic
| | - Radovan Metelka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Martin Weis
- Faculty of Electrical Engineering and Information Technology, Institute of Electronics and Photonics, Slovak University of Technology in Bratislava, Ilkovičova 3, Bratislava, 812 19, Slovak Republic
| | - Marian Vojs
- Faculty of Electrical Engineering and Information Technology, Institute of Electronics and Photonics, Slovak University of Technology in Bratislava, Ilkovičova 3, Bratislava, 812 19, Slovak Republic
| |
Collapse
|
3
|
Wittstock G, Bäumer M, Dononelli W, Klüner T, Lührs L, Mahr C, Moskaleva LV, Oezaslan M, Risse T, Rosenauer A, Staubitz A, Weissmüller J, Wittstock A. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chem Rev 2023; 123:6716-6792. [PMID: 37133401 PMCID: PMC10214458 DOI: 10.1021/acs.chemrev.2c00751] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/04/2023]
Abstract
Nanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis. In this respect, a particular focus will be on mechanistic aspects not well understood, yet. Apart from the mechanistic aspects of catalysis, best practice examples with respect to material preparation and characterization will be discussed. These can improve the reproducibility of the materials property such as the catalytic activity and selectivity as well as the scope of reactions being identified as the main challenges for a broader application of NPG in target-oriented organic synthesis.
Collapse
Affiliation(s)
- Gunther Wittstock
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Marcus Bäumer
- University
of Bremen, Institute for Applied
and Physical Chemistry, 28359 Bremen, Germany
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
| | - Wilke Dononelli
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Bremen Center for
Computational Materials Science, Hybrid Materials Interfaces Group, Am Fallturm 1, Bremen 28359, Germany
| | - Thorsten Klüner
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Lukas Lührs
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
| | - Christoph Mahr
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Lyudmila V. Moskaleva
- University
of the Free State, Department of Chemistry, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Mehtap Oezaslan
- Technical
University of Braunschweig Institute of Technical Chemistry, Technical Electrocatalysis Laboratory, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Thomas Risse
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Arnimallee
22, 14195 Berlin, Germany
| | - Andreas Rosenauer
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Anne Staubitz
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| | - Jörg Weissmüller
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
- Helmholtz-Zentrum
Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany
| | - Arne Wittstock
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| |
Collapse
|
4
|
Kumar A, Bettinger MF, Vibhu V, Bouvet M, Meunier-Prest R. Correlation of hierarchical porosity in nanoporous gold with the mass transport of electron transfer-coupled-chemical reactions. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Mie Y, Okabe H, Mikami C, Motomura T, Matsuda N. Nanostructured gold thin film electrode derived from surfactant-free gold nanoparticles for enhanced electrocatalysis. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2022.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
A flexible and self-supported nanoporous gold wire electrode with a seamless structure for electrochemical ascorbic acid sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Electrochemical Biosensor Based on Chitosan- and Thioctic-Acid-Modified Nanoporous Gold Co-Immobilization Enzyme for Glycerol Determination. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An electrochemical biosensor based on chitosan- and thioctic-acid-modified nanoporous gold (NPG) co-immobilization glycerol kinase (GK) and glycerol-3-phosphate oxidase (GPO) was constructed for glycerol determination in wine. The NPG, with the properties of porous microstructure, large specific surface area, and high conductivity, was beneficial for protecting the enzyme from inactivation and denaturation and enhancing electron transfer in the modified electrode. The co-immobilization of the enzyme by chitosan-embedding and thioctic-acid-modified NPG covalent bonding was beneficial for improving the catalytic performance and stability of the enzyme-modified electrode. Ferrocene methanol (Fm) was used as a redox mediator to accelerate the electron transfer rate of the enzyme-modified electrode. The fabricated biosensor exhibited a wide determination range of 0.1–5 mM, low determination limit of 77.08 μM, and high sensitivity of 9.17 μA mM−1. Furthermore, it possessed good selectivity, repeatability, and stability, and could be used for the determination of glycerol in real wine samples. This work provides a simple and novel method for the construction of biosensors, which may be helpful to the application of enzymatic biosensors in different determination scenarios.
Collapse
|
8
|
Stasyuk N, Demkiv O, Gayda G, Zakalskiy A, Klepach H, Bisko N, Gonchar M, Nisnevitch M. Highly Porous 3D Gold Enhances Sensitivity of Amperometric Biosensors Based on Oxidases and CuCe Nanoparticles. BIOSENSORS 2022; 12:472. [PMID: 35884275 PMCID: PMC9312547 DOI: 10.3390/bios12070472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 12/15/2022]
Abstract
Metallic nanoparticles potentially have wide practical applications in various fields of science and industry. In biosensorics, they usually act as catalysts or nanozymes (NZs) and as mediators of electron transfer. We describe here the development of amperometric biosensors (ABSs) based on purified oxidases, synthesized nanoparticles of CuCe (nCuCe), and micro/nanoporous gold (pAu), which were electro-deposited on a graphite electrode (GE). As an effective peroxidase (PO)-like NZ, nCuCe was used here as a hydrogen-peroxide-sensing platform in ABSs that were based on glucose oxidase, alcohol oxidase, methylamine oxidase, and L-arginine oxidase. At the same time, nCuCe is an electroactive mediator and has been used in laccase-based ABSs. As a result, the ABSs we constructed and characterized were based on glucose, methanol, methyl amine, L-arginine, and catechol, respectively. The developed nCuCe-based ABSs exhibited improved analytical characteristics in comparison with the corresponding PO-based ABSs. Additionally, the presence of pAu, with its extremely advanced chemo-sensing surface layer, was shown to significantly increase the sensitivities of all constructed ABSs. As an example, the bioelectrodes containing laccase/GE, laccase/nCuCe/GE, and laccase/nCuCe/pAu/GE exhibited sensitivities to catechol at 2300, 5055, and 9280 A·M-1·m-2, respectively. We demonstrate here that pAu is an effective carrier of electroactive nanomaterials coupled with oxidases, which may be promising in biosensors.
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine;
| | - Olha Demkiv
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
| | - Galina Gayda
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
| | - Andriy Zakalskiy
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
- Institute of Animal Biology of the National Academy of Agrarian Sciences of Ukraine, 79034 Lviv, Ukraine
| | - Halyna Klepach
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine;
| | - Nina Bisko
- M. G. Kholodny Botany Institute, National Academy of Sciences of Ukraine, 01601 Kyiv, Ukraine;
| | - Mykhailo Gonchar
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine;
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel
| |
Collapse
|
9
|
Biswas A, Nandi S, Kamboj N, Pan J, Bhowmik A, Dey RS. Alteration of Electronic Band Structure via a Metal-Semiconductor Interfacial Effect Enables High Faradaic Efficiency for Electrochemical Nitrogen Fixation. ACS NANO 2021; 15:20364-20376. [PMID: 34894661 DOI: 10.1021/acsnano.1c08652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interface engineering strategy has been an emerging field in terms of material improvisation that not only alters the electronic band structure of a material but also induces beneficial effects on electrochemical performances. Particularly, it is of immense importance for the environmentally benign electrochemical nitrogen reduction reaction (NRR), which is potentially impeded by the competing hydrogen evolution reaction (HER). The main problem lies in the attainment of the desired current density at a negotiable potential where the NRR would dominate over the HER, which in turn hampers the Faradaic efficiency for the NRR. To circumvent this issue, catalyst development becomes necessary, which would display a weak affinity for H-adsorption suppressing the HER at the catalyst surface. Herein, we have adopted the interfacial engineering strategy to synthesize our electrocatalyst NPG@SnS2, which not only suppressed the HER on the active site but yielded 49.3% F.E. for the NRR. Extensive experimental work and DFT calculations regarded that due to the charge redistribution, the Mott-Schottky effect, and the band bending of SnS2 across the contact layer at the interface of NPG, the d-band center for the surface Sn atoms in NPG@SnS2 lowered, which resulted in favored adsorption of N2 on the Sn active site. This phenomenon was driven even forward by the upshift of the Fermi level, and eventually, a decrease was seen in the work function of the heterostructure that increased the conductivity of the material as compared to pristine SnS2. This strategy thus provides a field to methodically suppress the HER in the realm of improving the Faradaic efficiency for the NRR.
Collapse
Affiliation(s)
- Ashmita Biswas
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India
| | - Surajit Nandi
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelundvej, Building 301, Kgs. Lyngby DK-2800, Denmark
| | - Navpreet Kamboj
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India
| | - Jaysree Pan
- Department of Physics, Technical University of Denmark, Fysikvej, Building 307, Kgs. Lyngby DK-2800, Denmark
| | - Arghya Bhowmik
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelundvej, Building 301, Kgs. Lyngby DK-2800, Denmark
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India
| |
Collapse
|
10
|
Electrochemical Molecular Conversion of α-Keto Acid to Amino Acid at a Low Overpotential Using a Nanoporous Gold Catalyst. Int J Mol Sci 2021; 22:ijms22179442. [PMID: 34502351 PMCID: PMC8431653 DOI: 10.3390/ijms22179442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
A nanoporous gold (NPG) electrode prepared through a facile anodization technique was employed in the electrochemical reductive amination of biomass-derivable α-keto acids in the presence of a nitrogen source to produce the corresponding amino acids. NPG showed a clear reductive current in the presence of α-keto acid and NH2OH, and the electrolysis experiments confirmed the production of L-amino acid. A reductive voltammetric signal at the NPG electrode appeared at a more positive potential by 0.18-0.79 V, compared with those at the planar-gold electrode without anodization and other previously reported electrode systems, indicating the high activity of the prepared nanostructure for the electrochemical reaction. Maximum Faradaic efficiencies (FEs) of 74-93% in the reductive molecular conversion to amino acids of Ala, Asp, Glu, Gly, and Leu were obtained under the optimized conditions. The FE values were strongly dependent on the applied potential in the electrolysis, suggesting that the hydrogen evolution reaction at the electrode surface was more significant as the applied potential became more negative. The effect of potential at the NPG was lower than that at the planar-gold electrode. These results indicate that nanostructurization decreases the overpotential for the electrochemical reductive amination, resulting in high FE.
Collapse
|
11
|
Electrochemical Discrimination of Salbutamol from Its Excipients in Ventolin TM at Nanoporous Gold Microdisc Arrays. SENSORS 2021; 21:s21123975. [PMID: 34207616 PMCID: PMC8226559 DOI: 10.3390/s21123975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 02/02/2023]
Abstract
The emergence of specific drug–device combination products in the inhalable pharmaceutical industry demands more sophistication of device functionality in the form of an embedded sensing platform to increase patient safety and extend patent coverage. Controlling the nebuliser function at a miniaturised, integrated electrochemical sensing platform with rapid response time and supporting novel algorithms could deliver such a technology offering. Development of a nanoporous gold (NPG) electrochemical sensor capable of creating a unique fingerprint signal generated by inhalable pharmaceuticals provided the impetus for our study of the electrooxidation of salbutamol, which is the active bronchodilatory ingredient in VentolinTM formulations. It was demonstrated that, at NPG-modified microdisc electrode arrays, salbutamol is distinguishable from the chloride excipient present at 0.0154 M using linear sweep voltammetry and can be detected amperometrically. In contrast, bare gold microdisc electrode arrays cannot afford such discrimination, as the potential for salbutamol oxidation and chloride adsorption reactions overlap. The discriminative power of NPG originates from the nanoconfinement effect for chloride in the internal pores of NPG, which selectively enhances the electron transfer kinetics of this more sluggish reaction relative to that of the faster, diffusion-controlled salbutamol oxidation. Sensing was performed at a fully integrated three-electrode cell-on-chip using Pt as a quasi-reference electrode.
Collapse
|
12
|
Mie Y, Katagai S, Ikegami M. Electrochemical Oxidation of Monosaccharides at Nanoporous Gold with Controlled Atomic Surface Orientation and Non-Enzymatic Galactose Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5632. [PMID: 33019754 PMCID: PMC7582603 DOI: 10.3390/s20195632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Non-enzymatic saccharide sensors are of great interest in diagnostics, but their non-selectivity limits their practical diagnostic abilities. In this study, we investigated the electrochemical oxidation of monosaccharides at nanoporous gold (NPG) catalysts with different contributions of surface crystallographic orientations. Fructose elicited no clear electrochemical response, but glucose, galactose, and mannose produced clear oxidative current. The onset potentials for oxidation of these saccharides depended on the surface atomic structure of the NPG. The oxidation potential was approximately 100 mV less positive at the Au(100)-enhanced NPG than at the Au(111)-enhanced NPG. Furthermore, the voltammetric responses significantly differed among the saccharides. Galactose was oxidized at less positive potential and exhibited a higher current response than the other saccharides. This tendency was enhanced in the presence of chloride ions. These features enabled the selective and sensitive detection of galactose at an NPG electrode without enzymes under physiological conditions. A linear range of 10 μM to 1.8 mM was obtained in the calibration plot, which was comparable to those in previously reported enzymatic galactose sensors. Thus, we demonstrated that controlling the crystallographic orientation on the nanostructured electrode surface is useful in developing electrochemical sensors.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (S.K.); (M.I.)
| | | | | |
Collapse
|