1
|
Liu C, Wang W, Wu F, Zhang J, Chen C, Cheng P, Zhu Y, Zhang S, Seong G. Research Progress on Preparation and Electrocatalytic Performance of Tin Dioxide Nanomaterials. CHEM REC 2025; 25:e202500007. [PMID: 40195570 DOI: 10.1002/tcr.202500007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Indexed: 04/09/2025]
Abstract
In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell's performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti-toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected.
Collapse
Affiliation(s)
- Chang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weixia Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feiyang Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jiayi Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chunguang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ping Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuanzheng Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Gimyeong Seong
- Department of Environmental and Energy Engineering, The University of Suwon, Gyeonggi-do, 18323, Republic of Korea
| |
Collapse
|
2
|
Qin X, Li J, Jiang TW, Ma XY, Jiang K, Yang B, Chen S, Cai WB. Disentangling heterogeneous thermocatalytic formic acid dehydrogenation from an electrochemical perspective. Nat Commun 2024; 15:7509. [PMID: 39209883 PMCID: PMC11362458 DOI: 10.1038/s41467-024-51926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Heterogeneous thermocatalysis of formic acid dehydrogenation by metals in solution is of great importance for chemical storage and production of hydrogen. Insightful understanding of the complicated formic acid dehydrogenation kinetics at the metal-solution interface is challenging and yet essential for the design of efficient heterogeneous formic acid dehydrogenation systems. In this work, formic acid dehydrogenation kinetics is initially studied from a perspective of electrochemistry by decoupling this reaction on Pd catalyst into two short-circuit half reactions, formic acid oxidation reaction and hydrogen evolution reaction and manipulating the electrical double layer impact from the solution side. The pH-dependences of formic acid dehydrogenation kinetics and the associated cation effect are attributed to the induced change of electric double layer structure and potential by means of electrochemical measurements involving kinetic isotope effect, in situ infrared spectroscopy as well as grand canonical quantum mechanics calculations. This work showcases how kinetic puzzles on some important heterogeneous catalytic reactions can be tackled by electrochemical theories and methodologies.
Collapse
Affiliation(s)
- Xianxian Qin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China
| | - Jiejie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tian-Wen Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China
| | - Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China
| | - Kun Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Qi X, Obata K, Yui Y, Honma T, Lu X, Ibe M, Takanabe K. Potential-Rate Correlations of Supported Palladium-Based Catalysts for Aqueous Formic Acid Dehydrogenation. J Am Chem Soc 2024; 146:9191-9204. [PMID: 38500345 PMCID: PMC10996003 DOI: 10.1021/jacs.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Aqueous formic acid dehydrogenation (FAD) is a crucial process for hydrogen production, as hydrogen is a clean energy carrier. During this process, formic acid converts into hydrogen and carbon dioxide over a catalyst. Pd-based catalysts have exhibited significant potential in FAD due to their high activity and selectivity. In this study, we investigated aqueous thermal FAD in a mixture of formic acid and sodium formate using electrochemical open-circuit potential (OCP) measurement by loading the catalysts onto a conductive substrate as a working electrode. By varying the reaction conditions such as the concentration of reactants and modifying Pd with Ag, different FAD rates were obtained. Consequently, we revealed the correlation between the catalyst OCP and FAD rate; superior FAD rates reflected a more negative catalyst OCP. Furthermore, deactivation was observed across all catalysts during FAD, with a concurrent increase in catalyst OCP. Interestingly, we found that the logarithm of the FAD rate showed a linear correlation with the OCP of the catalyst during the decay phase, which we quantitatively explained based on the reaction mechanism. This study presents a new discovery that bridges thermal and electrocatalysis.
Collapse
Affiliation(s)
- Xingyu Qi
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keisuke Obata
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuhki Yui
- Carbon
Neutral Development Division, Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono 410-1193, Shizuoka, Japan
| | - Tetsuo Honma
- Japan
Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-gun 679-5198, Hyogo, Japan
| | - Xiaofei Lu
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaya Ibe
- Advanced
Material Engineering Division, Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono 410-1193, Shizuoka, Japan
| | - Kazuhiro Takanabe
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Bhandari S, Rangarajan S, Li S, Scaranto J, Singh S, Maravelias CT, Dumesic JA, Mavrikakis M. A Coverage Self-Consistent Microkinetic Model for Vapor-Phase Formic Acid Decomposition over Pd/C Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Saurabh Bhandari
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Sha Li
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Jessica Scaranto
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Suyash Singh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Christos T. Maravelias
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| |
Collapse
|
5
|
Huang H, Yang T, Sun F, Liu Z, Tang Q, Liu L, Han Y, Huang J. Leveraging Pd(100)/SnO 2 interfaces for highly efficient electrochemical formic acid oxidation. NANOSCALE 2023; 15:2122-2133. [PMID: 36648401 DOI: 10.1039/d2nr06142b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrocatalytic formic acid oxidation (FAO) is the crucial anodic reaction of direct formic acid fuel cells (DFAFCs), but its activity remains to be largely improved in order to be practically viable. The rational development of enhanced catalysts requires thorough consideration of various contributing factors that are possibly integrated in composite systems. Here, we demonstrate that, Pd(100)/SnO2 interfaces, provided being efficiently exploited, can significantly boost FAO activity by a factor of ∼10, compared with pure Pd(100) facets, with the mass activity reaching a record of 14.55 A mgPd-1 at a 40 mV-lower peak potential. Unique Pd/SnO2 nanocomposites with a myriad of Pd(100)/SnO2 interfaces were obtained by a newly developed successive seeded growth strategy, wherein pre-formed SnO2 nanospheres are used as seeds for two-round overgrowth of multitudinous Pd nanocubes. Using electron microscopic, electrochemical, spectroscopic and computational analyses, we found that the Pd(100)/SnO2 interfaces induce lattice contraction and electron loss on Pd nanocubes, which optimize intermediate binding during FAO. Moreover, we showed that the good cubicity of the Pd nanocubes and the presence of SnO2 nearby further promote the activity by facilitating the potential-determining step and the elimination of the poisoning CO intermediate, respectively. As such, the combined high intrinsic activity and number density of Pd(100)/SnO2 interfaces enabled the superior activity of the Pd/SnO2 nanocomposites. The composite material presented here holds promise for application in DFAFCs, but equally importantly, the insights regarding the structure-performance relationship would be beneficial for designing efficient metal/oxide composite catalysts for diverse electro- and photo-catalytic reactions.
Collapse
Affiliation(s)
- Haiyan Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Institute of Advanced Interdisciplinary Studies, Chongqing 400044, China.
| | - Tianyi Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Institute of Advanced Interdisciplinary Studies, Chongqing 400044, China.
| | - Fang Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Institute of Advanced Interdisciplinary Studies, Chongqing 400044, China.
| | - Zhaohui Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Institute of Advanced Interdisciplinary Studies, Chongqing 400044, China.
| | - Qing Tang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Institute of Advanced Interdisciplinary Studies, Chongqing 400044, China.
| | - Lingmei Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Institute of Advanced Interdisciplinary Studies, Chongqing 400044, China.
| | - Yu Han
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jianfeng Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Institute of Advanced Interdisciplinary Studies, Chongqing 400044, China.
| |
Collapse
|
6
|
Huang S, Li J, Chen Y, Yan L, Zhang P, Zhang X, Zhao C. Boosting the anti-poisoning ability of palladium towards electrocatalytic formic acid oxidation via polyphosphide chemistry. J Colloid Interface Sci 2022; 615:366-374. [PMID: 35149350 DOI: 10.1016/j.jcis.2022.01.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
In this work, we reported a novel polyphosphide strategy for the synthesis of phosphorus doped Pd (P-Pd) using red phosphorus as the starting material at quasi-ambient conditions. Polyphophide anions, as the key reaction intermediates, served as the reducing agent and phosphorus source to modulate the surface electronic structure of Pd. The P-Pd obtained exhibited topmost CO tolerance and electrocatalytic activity to formic acid oxidation among the state-of-arts reports. The mass activity and turnover frequency of P-Pd reached 4413 mA mg-1Pd and 16.04 s-1 at 0.8 V, which were 23.7 and 6.4 times that of commercial Pd/C respectively. After 1000 repeated cycles, 82% initial activity was reserved. Combined with the electrochemical analysis and the density functional theory calculation, the boosted electrochemical performances can be attributed to the size and electronic effects induced by the P doping, which increase the surface actives sites, inhibit the adsorption of CO and change the reaction pathway to favorable CO2 route. A full cell was also assembled to demonstrate the practical potential of the P-Pd, which showed a maximum power density of 21.56 mW cm-2. This polyphophide-based reaction route provides a new strategy for the preparation of efficient and durable phosphorus doped alloys for electrocatalysis.
Collapse
Affiliation(s)
- Shuke Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yilan Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Liwei Yan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Xueyan Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|