1
|
Nuñez JL, Belletti GD, Tielens F, Quaino P. Water dissociation in CNT-supported IrO 2nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:225302. [PMID: 40306308 DOI: 10.1088/1361-648x/add2c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/30/2025] [Indexed: 05/02/2025]
Abstract
Quantum chemical modeling of iridium oxide nanoparticles-(IrO2)n,n=1,2,3-adsorbed on (5, 5) carbon nanotubes (CNTs) is presented. Energetic, geometric, and electronic aspects have been analyzed in depth to understand the main features of the nanoparticles in the gas phase and the adsorption process involved. Covalent Ir-C bonding resulted from the interaction of the (IrO2)1and (IrO2)3particles with the CNT. To evaluate the performance of the material, the dissociation of water into H(ads)and OH(ads)has been investigated. Our results revealed that the intrinsic charge polarization of the iridium oxide clusters favors the water dissociation process, with low activation energies. Moreover, the nanoparticles remain stable and maintain covalent interactions with the CNT surface during the water dissociation process.
Collapse
Affiliation(s)
- José Luis Nuñez
- Instituto de Química Aplicada del Litoral, IQAL (UNL-CONICET), FIQ-UNL, Santa Fe, Argentina
| | | | - Frederik Tielens
- General Chemistry (ALGC) - Materials Modelling Group, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
| | - Paola Quaino
- Instituto de Química Aplicada del Litoral, IQAL (UNL-CONICET), FIQ-UNL, Santa Fe, Argentina
| |
Collapse
|
2
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
3
|
Nguyen TT, Sayler RI, Shoemaker AH, Zhang J, Stoll S, Winkler JR, Britt RD, Hunter BM. Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2024; 146:15019-15026. [PMID: 38743719 DOI: 10.1021/jacs.3c13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O-O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxide─one of the best earth-abundant electrocatalysts to be studied─water oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.
Collapse
Affiliation(s)
- Trisha T Nguyen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Richard I Sayler
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Aaron H Shoemaker
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jibo Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jay R Winkler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Bryan M Hunter
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Xie Y, Yang Z. Morphological and Coordination Modulations in Iridium Electrocatalyst for Robust and Stable Acidic OER Catalysis. CHEM REC 2023; 23:e202300129. [PMID: 37229769 DOI: 10.1002/tcr.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane water splitting (PEMWS) technology has high-level current density, high operating pressure, small electrolyzer-size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high-quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long-term non-decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
5
|
Shen Y, Bo L, Zhang Y, Shi W, Xia L, Ji X, Guan X, Wang Y, Tong J. Simply constructing composite of highly dispersed Ag decorated porous nanosheets of CoO/CoP/Co2P with highly enhanced electrocatalytic activities for overall water splitting. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|