1
|
Popp S, Beitzke D, Strassl A, Kronberger C, Kammerlander A, Duca F, Loewe C, Hoffner M, Heidinger BH, Beitzke D. Evaluation of Extracellular Volume and Coronary Artery Disease in Cardiac Amyloidosis Using Photon-Counting CT. Invest Radiol 2025:00004424-990000000-00330. [PMID: 40279664 DOI: 10.1097/rli.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
OBJECTIVES In cardiac amyloidosis (CA) protein misfolding and consecutive storage into the extracellular myocardial compartment causes left ventricular hypertrophy and, in later stages of the disease, heart failure. The aim of this study was to compare extracellular volume (ECV) measurements obtained from photon-counting CT (PCCT) to the imaging reference cardiac magnetic resonance imaging (CMR) and to evaluate coronary artery disease (CAD) in a CA cohort. MATERIALS AND METHODS Thirty CA patients (mean age 77.5 +/- 7.9 years) underwent clinically indicated coronary CT angiography (CCTA) for the evaluation of CAD on a first-generation PCCT including a late-phase scan for assessment of ECV. ECV in PCCT was derived using 2 different techniques: (I) a single-energy (SE) technique, based on attenuation changes between the precontrast calcium scoring scan and delayed CCTA in the equilibrium phase (II) a dual-energy (DE) technique, based on iodine density maps from the delayed scan. Both methods were compared with CMR-derived ECV. Statistical analysis included repeated-measures analysis of variance (RM-ANOVA) with Bonferroni-adjusted pairwise comparisons. Correlations between methods were assessed using Pearson's correlation coefficient, and agreement was evaluated using Bland-Altman analysis. RESULTS CMR exhibited the highest mean ECV value (42.93 ± 10.14), followed by the SE method (42.5 ± 9.1), while the DE method yielded the lowest ECV values (40.7 ± 9.2). When compared with CMR, ECV obtained via the DE method was significantly lower (MDiff = -2.24, P = 0.04). In contrast, no significant difference was observed between CMR and the SE method (MDiff = 0.43, P = 1.00). Differences between the DE and SE methods were significant (MDiff = -1.82, P < 0.001). Despite these differences, all 3 methods demonstrated excellent positive correlations. The strongest correlation was observed between the DE and SE methods (r = 0.98, P < 0.001), indicating high consistency in their measurements. Comparatively, the correlation between CMR and DE (r = 0.892, P < 0.001) was slightly stronger than that between CMR and SE methods (r = 0.882, P < 0.001). CAD was present in 29 (97.0%) CA patients with a mean Agatston score of 1086 ± 1398 (range 0-6848.5). Despite this high mean plaque burden and 14 (47.6%) patients presenting with atrial fibrillation, image quality was preserved in 29 (97.0%) patients with 17 (57.6%) of the patients having nonobstructive CAD. CONCLUSIONS Compared to the imaging reference standard CMR, ECV derived from the DE and SE methods via PCCT demonstrated excellent positive correlations with CMR. The DE method exhibited minor differences compared to CMR, which were clinically not relevant. CAD with an extensive burden of calcified plaque was highly prevalent in CA; however, 57.6% of patients presented with nonobstructive CAD. Therefore, PCCT is a valuable tool for imaging both the coronary arteries and myocardial structure in CA.
Collapse
Affiliation(s)
- Sabine Popp
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (S.P., D.B., A.S., C.L., M.H., B.H., D.B.); and Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria (C.K., A.K., F.D.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Horinouchi H, Sekitani T, Nishii T, Negi N, Sofue K, Fukuda T, Takahashi S. Evaluation of Image Quality of Temporal Maximum Intensity Projection and Average Intensity Projection of Adaptive 4D-Spiral CT Scans: A Phantom Study. Cureus 2025; 17:e81849. [PMID: 40201047 PMCID: PMC11975546 DOI: 10.7759/cureus.81849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/10/2025] Open
Abstract
Adaptive four-dimensional (4D) spiral computed tomography (CT) scans facilitate the acquisition of volume perfusion data for organs or long-range vessels; however, optimizing image quality and reducing noise while minimizing radiation doses remains challenging. Thus, image-processing techniques such as temporal maximum intensity projection (MIP) and average intensity projection (AIP) are crucial in this context. This ex vivo study aimed to compare the image noise, spatial resolution, and measurements of temporal MIP and AIP images generated from low radiation dose 4D CT scans data with those of conventional CT images using phantoms. Three phantoms were scanned with equivalent radiation doses using single helical and adaptive 10-phase 4D spiral scans using a third-generation dual-source CT scanner. Temporal MIP and AIP images of 4D CT scans were generated by summing varying numbers of phases, incorporating automatic motion correction with non-rigid registration and noise reduction algorithm. The CT values and image noise of the temporal MIP and AIP images were compared to conventional CT images. The task transfer function (TTF) was calculated using static phantoms. Vessel diameters of the phantoms for each image dataset were evaluated using motion phantoms. Temporal AIP images showed comparable CT values with those of the reference image. In contrast, the CT values of the temporal MIP images were significantly higher than those of the reference images (p<0.01). The image noise of temporal AIP images with six or more phases was equal to or lower than that of the reference images. In contrast, temporal MIP images exhibited consistently high noise levels regardless of the number of summed phases. The TTF of temporal AIP images was comparable to that of the reference CT images. However, the TTF of temporal MIP images gradually decreased as the number of summed phases increased. No significant differences were observed in vessel diameter measurements among the three groups or with varying numbers of summed phases (p>0.05). In conclusion, temporal MIP and AIP images generated from low radiation dose 4D CT scans could effectively reduce noise while preserving measurement reliability in the motion phantom, achieving performance comparable to conventional CT images.
Collapse
Affiliation(s)
| | - Toshinori Sekitani
- Radiological Technologist, Osaka College of High Technology, Osaka, JPN
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Tatsuya Nishii
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Noriyuki Negi
- Radiology and Radiation Oncology, Kobe University Hospital, Kobe, JPN
| | - Keitaro Sofue
- Radiology, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Tetsuya Fukuda
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Satoru Takahashi
- Radiology, Takatsuki General Hospital, Takatsuki, JPN
- Radiology, Kobe University Graduate School of Medicine, Kobe, JPN
| |
Collapse
|
3
|
Kokawa T, Kitagawa K, Nakamura S, Takafuji M, Oya T, Sakuma H. Myocardial late enhancement using dual-source CT: intraindividual comparison of single-energy shuttle and dual-energy acquisition. Insights Imaging 2025; 16:64. [PMID: 40120007 PMCID: PMC11929652 DOI: 10.1186/s13244-025-01944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVES Myocardial computed tomography late enhancement (CT-LE) is a valuable modality used for the assessment of myocardial infarction and fibrosis and is effective in detecting latent cardiac amyloidosis. However, the optimal acquisition mode for CT-LE remains unknown. Here, we compared single-energy shuttle mode and DE mode for improving the quality of CT-LE imaging using dual-source CT. METHODS Fifteen patients with suspected or known ischemic heart disease underwent CT-LE imaging 5 min after coronary CT in both shuttle and dual-energy (DE) modes. In DE mode, virtual monoenergetic images at various keVs were reconstructed, and extracellular volume (ECV) was quantified using iodine-specific images. For shuttle mode, ECV was assessed by subtracting the volume from pre-contrast images from CT-LE after non-rigid registration. RESULTS In DE mode, signal-noise-to-ratio was the highest at 70 keV, but it was still lower than that in shuttle mode (p < 0.001). Contrast-noise-to-ratio was the highest on DE mode at 40 keV and was comparable with that in shuttle mode (p = 0.51). Interobserver agreement for infarct detection was higher in shuttle mode (kappa = 0.981) compared to DE mode (kappa = 0.808). Global ECV was comparable between shuttle and DE modes (p = 0.96). However, the coefficient of variation of segmental ECV was significantly lower in shuttle mode (p < 0.001). CONCLUSION Shuttle mode CT-LE demonstrates superior image quality, better agreement in infarct detection, and ECV consistency in comparison to DE mode, suggesting its potential as the preferred approach for CT-LE imaging using dual-source CT despite limited z-axis coverage of 10.5 cm. CLINICAL RELEVANCE STATEMENT CT late enhancement imaging in shuttle mode provides superior image quality and consistent extracellular volume measurements compared to dual-energy mode, highlighting its potential as the preferred acquisition method for CT late enhancement imaging in dual-source CT. KEY POINTS Shuttle mode and dual-energy acquisition are compared for optimal myocardial CT-late enhancement (CT-LE) imaging. Shuttle mode can provide better image quality and more consistent extracellular volume measurements. Despite limited coverage, shuttle mode may be preferred for myocardial CT-LE imaging.
Collapse
Affiliation(s)
- Takanori Kokawa
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan.
- Regional Co-creation Deployment Center, Mie Regional Plan Co-creation Organization, Mie University, Tsu, Japan.
| | - Satoshi Nakamura
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masafumi Takafuji
- Department of Radiology, Mie University Hospital, Tsu, Japan
- Clinical Research Support Center, Mie University Hospital, Tsu, Japan
| | - Takashi Oya
- Department of Radiology, Mie University Hospital, Tsu, Japan
- Department of Radiology, Japanese Red Cross Ise Hospital, Ise, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Japan
| |
Collapse
|
4
|
Takafuji M, Kitagawa K, Mizutani S, Hamaguchi A, Kisou R, Sasaki K, Funaki Y, Iio K, Ichikawa K, Izumi D, Okabe S, Nagata M, Sakuma H. Super-resolution deep learning reconstruction for improved quality of myocardial CT late enhancement. Jpn J Radiol 2025:10.1007/s11604-025-01760-2. [PMID: 40072715 DOI: 10.1007/s11604-025-01760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE Myocardial computed tomography (CT) late enhancement (LE) allows assessment of myocardial scarring. Super-resolution deep learning image reconstruction (SR-DLR) trained on data acquired from ultra-high-resolution CT may improve image quality for CT-LE. Therefore, this study investigated image noise and image quality with SR-DLR compared with conventional DLR (C-DLR) and hybrid iterative reconstruction (hybrid IR). METHODS AND METHODS We retrospectively analyzed 30 patients who underwent CT-LE using 320-row CT. The CT protocol comprised stress dynamic CT perfusion, coronary CT angiography, and CT-LE. CT-LE images were reconstructed using three different algorithms: SR-DLR, C-DLR, and hybrid IR. Image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and qualitative image quality scores are in terms of noise reduction, sharpness, visibility of scar and myocardial boarder, and overall image quality. Inter-observer differences in myocardial scar sizing in CT-LE by the three algorithms were also compared. RESULTS SR-DLR significantly decreased image noise by 35% compared to C-DLR (median 6.2 HU, interquartile range [IQR] 5.6-7.2 HU vs 9.6 HU, IQR 8.4-10.7 HU; p < 0.001) and by 37% compared to hybrid IR (9.8 HU, IQR 8.5-12.0 HU; p < 0.001). SNR and CNR of CT-LE reconstructed using SR-DLR were significantly higher than with C-DLR (both p < 0.001) and hybrid IR (both p < 0.05). All qualitative image quality scores were higher with SR-DLR than those with C-DLR and hybrid IR (all p < 0.001). The inter-observer differences in scar sizing were reduced with SR-DLR and C-DLR compared with hybrid IR (both p = 0.02). CONCLUSION SR-DLR reduces image noise and improves image quality of myocardial CT-LE compared with C-DLR and hybrid IR techniques and improves inter-observer reproducibility of scar sizing compared to hybrid IR. The SR-DLR approach has the potential to improve the assessment of myocardial scar by CT late enhancement.
Collapse
Affiliation(s)
- Masafumi Takafuji
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Radiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Sachio Mizutani
- Department of Radiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Akane Hamaguchi
- Department of Radiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Ryosuke Kisou
- Department of Radiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Kenji Sasaki
- Department of Radiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Yuto Funaki
- Department of Radiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Kotaro Iio
- Department of Cardiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Kazuhide Ichikawa
- Department of Cardiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Daisuke Izumi
- Department of Cardiology, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Shiko Okabe
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Motonori Nagata
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
5
|
Muscogiuri G, Palumbo P, Kitagawa K, Nakamura S, Senatieri A, De Cecco CN, Gershon G, Chierchia G, Usai J, Sferratore D, D'Angelo T, Guglielmo M, Dell'Aversana S, Jankovic S, Salgado R, Saba L, Cau R, Marra P, Di Cesare E, Sironi S. State of the art of CT myocardial perfusion. LA RADIOLOGIA MEDICA 2025; 130:438-452. [PMID: 39704963 DOI: 10.1007/s11547-024-01942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Coronary computed tomography angiography (CCTA) is a powerful tool to rule out coronary artery disease (CAD). In the last decade, myocardial perfusion CT (CTP) technique has been developed for the evaluation of myocardial ischemia, thereby increasing positive predictive value for diagnosis of obstructive CAD. A diagnostic strategy combining CCTA and perfusion acquisitions provides both anatomical coronary evaluation and functional evaluation of the stenosis, increasing the specificity and the positive predictive value of cardiac CT. This could improve risk stratification and guide revascularization procedures, reducing unnecessary diagnostic procedures in invasive coronary angiography. Two different acquisitions protocol have been developed for CTP. Static CTP allows a qualitative or semiquantitative evaluation of myocardial perfusion using a single scan during the first pass of iodinated contrast material in the myocardium. Dynamic CTP is capable of a quantitative evaluation of perfusion through multiple acquisitions, providing direct measure of the myocardial blood flow. For both, CTP acquisition hyperemia is reached using stressor agents such as adenosine or regadenoson. CTP in addition to CCTA acquisition shows good diagnostic accuracy compared to invasive fractional flow reserve (FFR). Furthermore, the evaluation of late iodine enhancement (LIE) could be performed allowing the detection of myocardial infarction.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy.
- School of Medicine, University of Milano-Bicocca, Milan, Italy.
| | - Pierpaolo Palumbo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Kakuya Kitagawa
- Regional Co-Creation Deployment Center, Mie University Mie Regional Plan Co-Creation Organization, Mie, Japan
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | - Satoshi Nakamura
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | | | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University, Altanta, GA, USA
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Gabrielle Gershon
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | - Jessica Usai
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| | | | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, Department of Dental and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Marco Guglielmo
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sonja Jankovic
- Center for Radiology, University Clinical Center Nis, Nis, Republic of Serbia
| | - Rodrigo Salgado
- Department of Radiology, Antwerp University Hospital & Holy Heart Lier, Antwerp, Belgium
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sandro Sironi
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Kagawa Y, Takafuji M, Fujita S, Kokawa T, Fukuma T, Ishida M, Fujii E, Okamoto R, Kitagawa K, Sakuma H, Dohi K. Myocardial extracellular volume fraction estimations using late enhancement CT in patients with atrial fibrillation: a comparative study with cardiac MR. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025; 41:419-426. [PMID: 39883382 DOI: 10.1007/s10554-024-03316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025]
Abstract
Myocardial extracellular volume fraction (ECV) measured via MRI serves as a quantitative indicator of myocardial fibrosis. However, accurate measurement of ECV using MRI in the presence of AF is challenging. Meanwhile, CT could be a promising alternative tool for measuring ECV regardless of sinus rhythm or AF. The purpose of this study was to assess the reliability of estimating ECV using CT in patients with AF by comparing it with MRI-derived ECV. Forty-two patients (n = 42) with AF underwent cardiac CT a median of 12 days before catheter ablation, and cardiac MRI a median of 1 day after catheter ablation. Myocardial ECV measured by CT and MRI was compared. Pre-ablation CT scan was performed in the presence of AF in 25 patients, with the remaining 17 in sinus rhythm (SR). All patients were in SR at the time of MRI post ablation. The average of CT-derived ECVs was 0.277 ± 0.022 and that of MRI-derived ECVs was 0.282 ± 0.019 in patients with AF. The average of CT-derived ECVs was 0.268 ± 0.025 and that of MRI-derived ECVs was 0.278 ± 0.025 in patients with SR at the time of the CT scan. CT and MRI were in good agreement with mean differences of -0.0048 ± 0.027 in AF and - 0.0095 ± 0.0354 in SR. CT-derived ECV in the presence of AF measured before ablation showed good agreement with ECV by MRI in SR after ablation. CT-ECV estimations are reliable and feasible in patients with AF.
Collapse
Affiliation(s)
- Yoshihiko Kagawa
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masafumi Takafuji
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Satoshi Fujita
- Department of Cardiology, Mie Heart Center, Taki-gun, Mie, Japan
| | - Takanori Kokawa
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tomoyuki Fukuma
- Department of Cardiology, Nabari City Hospital, Nabari, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eitaro Fujii
- Department of Cardiology, Nabari City Hospital, Nabari, Japan
| | - Ryuji Okamoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
7
|
Bartoli A, Gnasso C, Palmisano A, Bettinelli A, Vignale D, Esposito A. Myocardial Characterization on CT: Late Iodine Enhancement and Extracellular Volume. Echocardiography 2025; 42:e70108. [PMID: 39963992 DOI: 10.1111/echo.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 05/10/2025] Open
Abstract
Myocardial tissue characterization is fundamental in diagnosing, treating, and managing various cardiac diseases. In recent years, cardiac computed tomography (CCT) emerged as a valuable alternative to cardiac magnetic resonance (CMR) for myocardial tissue characterization, with the possibility to detect myocardial scar and quantify the extracellular volume fraction in a single CT study with the advantage of combined coronary arteries evaluation, shorter scanning time, and less susceptibility to device artifacts compared to CMR. However, CCT is typically affected by a lower contrast-to-noise ratio and potentially increased radiation exposure. Therefore, a deep understanding of the available technology and the strategies for acquisition optimization is of fundamental importance to improve image quality and accuracy, while minimizing radiation exposure. This review summarizes principles of myocardial characterization on CCT, acquisition protocols according to the different technologies available including the dual-energy CT and the innovative photon-counting detector CT, and setting of clinical utility.
Collapse
Affiliation(s)
- Axel Bartoli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Radiology, TIMONE Hospital, AP-HM, Marseille, France
- CRMBM - UMR CNRS 7339, Aix-Marseille University, Marseille, France
| | - Chiara Gnasso
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Palmisano
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Bettinelli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Vignale
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Toritani H, Yoshida K, Hosokawa T, Tanabe Y, Yamamoto Y, Nishiyama H, Kido T, Kawaguchi N, Matsuda M, Nakano S, Miyazaki S, Uetani T, Inaba S, Yamaguchi O, Kido T. The Feasibility of a Model-Based Iterative Reconstruction Technique Tuned for the Myocardium on Myocardial Computed Tomography Late Enhancement. J Comput Assist Tomogr 2025; 49:85-92. [PMID: 39095055 DOI: 10.1097/rct.0000000000001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study evaluated the feasibility of a model-based iterative reconstruction technique (MBIR) tuned for the myocardium on myocardial computed tomography late enhancement (CT-LE). METHODS Twenty-eight patients who underwent myocardial CT-LE and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) within 1 year were retrospectively enrolled. Myocardial CT-LE was performed using a 320-row CT with low tube voltage (80 kVp). Myocardial CT-LE images were scanned 7 min after CT angiography (CTA) without additional contrast medium. All myocardial CT-LE images were reconstructed with hybrid iterative reconstruction (HIR), conventional MBIR (MBIR_cardiac), and new MBIR tuned for the myocardium (MBIR_myo). Qualitative (5-grade scale) scores and quantitative parameters (signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]) were assessed as image quality. The sensitivity, specificity, and accuracy of myocardial CT-LE were evaluated at the segment level using an American Heart Association (AHA) 16-segment model, with LGE-MRI as a reference standard. These results were compared among the different CT image reconstructions. RESULTS In 28 patients with 448 segments, 160 segments were diagnosed with positive by LGE-MRI. In the qualitative assessment of myocardial CT-LE, the mean image quality scores were 2.9 ± 1.2 for HIR, 3.0 ± 1.1 for MBIR_cardiac, and 4.0 ± 1.0 for MBIR_myo. MBIR_myo showed a significantly higher score than HIR ( P < 0.001) and MBIR_cardiac ( P = 0.018). In the quantitative image quality assessment of myocardial CT-LE, the median image SNR was 10.3 (9.1-11.1) for HIR, 10.8 (9.8-12.1) for MBIR_cardiac, and 16.8 (15.7-18.4) for MBIR_myo. The median image CNR was 3.7 (3.0-4.6) for HIR, 3.8 (3.2-5.1) for MBIR_cardiac, and 6.4 (5.0-7.7) for MBIR_myo. MBIR_myo significantly improved the SNR and CNR of CT-LE compared to HIR and MBIR_cardiac ( P < 0.001). The sensitivity, specificity, and accuracy for the detection of myocardial CT-LE were 70%, 92%, and 84% for HIR; 71%, 92%, and 85% for MBIR_cardiac; and 84%, 92%, and 89% for MBIR_myo, respectively. MBIR_myo showed significantly higher image quality, sensitivity, and accuracy than the others ( P < 0.05). CONCLUSIONS MBIR tuned for myocardium improved image quality and diagnostic performance for myocardial CT-LE assessment.
Collapse
Affiliation(s)
| | - Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Takaaki Hosokawa
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Yuta Yamamoto
- Department of Radiology, Saiseikai Matsuyama Hospital, Matsuyama City, Ehime Prefecture
| | - Hikaru Nishiyama
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Megumi Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Shota Nakano
- Canon Medical Systems Corporation, Otawara City, Tochigi Prefecture
| | - Shigehiro Miyazaki
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Shinji Inaba
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| |
Collapse
|
9
|
Oyama-Manabe N, Oda S, Ohta Y, Takagi H, Kitagawa K, Jinzaki M. Myocardial late enhancement and extracellular volume with single-energy, dual-energy, and photon-counting computed tomography. J Cardiovasc Comput Tomogr 2024; 18:3-10. [PMID: 38218665 DOI: 10.1016/j.jcct.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Computed tomography late enhancement (CT-LE) is emerging as a non-invasive technique for cardiac diagnosis with wider accessibility compared to MRI, despite its typically lower contrast-to-noise ratio. Optimizing CT-LE image quality necessitates a thorough methodology addressing contrast administration, timing, and radiation dose, alongside a robust understanding of extracellular volume (ECV) quantification methods. This review summarizes CT-LE protocols, clinical utility, and advances in ECV measurement through both single-energy and dual-energy CT. It also highlights photon-counting detector CT technology as an innovative means to potentially improve image quality and reduce radiation exposure.
Collapse
Affiliation(s)
- Noriko Oyama-Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hidenobu Takagi
- Department of Advanced Radiological Imaging Collaborative Research, Tohoku University, Sendai, Japan; Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Hospital, Tsu, Japan.
| | | |
Collapse
|
10
|
Nishii T, Kobayashi T, Tanaka H, Kotoku A, Ohta Y, Morita Y, Umehara K, Ota J, Horinouchi H, Ishida T, Fukuda T. Deep Learning-based Post Hoc CT Denoising for Myocardial Delayed Enhancement. Radiology 2022; 305:82-91. [PMID: 35762889 DOI: 10.1148/radiol.220189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background To improve myocardial delayed enhancement (MDE) CT, a deep learning (DL)-based post hoc denoising method supervised with averaged MDE CT data was developed. Purpose To assess the image quality of denoised MDE CT images and evaluate their diagnostic performance by using late gadolinium enhancement (LGE) MRI as a reference. Materials and methods MDE CT data obtained by averaging three acquisitions with a single breath hold 5 minutes after the contrast material injection in patients from July 2020 to October 2021 were retrospectively reviewed. Preaveraged images obtained in 100 patients as inputs and averaged images as ground truths were used to supervise a residual dense network (RDN). The original single-shot image, standard averaged image, RDN-denoised original (DLoriginal) image, and RDN-denoised averaged (DLave) image of holdout cases were compared. In 40 patients, the CT value and image noise in the left ventricular cavity and myocardium were assessed. The segmental presence of MDE in the remaining 40 patients who underwent reference LGE MRI was evaluated. The sensitivity, specificity, and accuracy of each type of CT image and the improvement in accuracy achieved with the RDN were assessed using odds ratios (ORs) estimated with the generalized estimation equation. Results Overall, 180 patients (median age, 66 years [IQR, 53-74 years]; 107 men) were included. The RDN reduced image noise to 28% of the original level while maintaining equivalence in the CT values (P < .001 for all). The sensitivity, specificity, and accuracy of the original images were 77.9%, 84.4%, and 82.3%, of the averaged images were 89.7%, 87.9%, and 88.5%, of the DLoriginal images were 93.1%, 87.5%, and 89.3%, and of the DLave images were 95.1%, 93.1%, and 93.8%, respectively. DLoriginal images showed improved accuracy compared with the original images (OR, 1.8 [95% CI: 1.2, 2.9]; P = .011) and DLave images showed improved accuracy compared with the averaged images (OR, 2.0 [95% CI: 1.2, 3.5]; P = .009). Conclusion The proposed denoising network supervised with averaged CT images reduced image noise and improved the diagnostic performance for myocardial delayed enhancement CT. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.
Collapse
Affiliation(s)
- Tatsuya Nishii
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takuma Kobayashi
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironori Tanaka
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Akiyuki Kotoku
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasutoshi Ohta
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiaki Morita
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kensuke Umehara
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Junko Ota
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroki Horinouchi
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Ishida
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tetsuya Fukuda
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
11
|
Kim MY, Yang DH, Choo KS, Lee W. Beyond Coronary CT Angiography: CT Fractional Flow Reserve and Perfusion. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:3-27. [PMID: 36237355 PMCID: PMC9238199 DOI: 10.3348/jksr.2021.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
심장 전산화단층촬영은 비약적인 기술발전과 다양한 연구 결과를 바탕으로 심혈관위험 계층화와 치료 결정을 위한 관상동맥 질환의 진단과 예후 평가성능이 입증되었다. 전산화단층촬영 관상동맥조영술은 폐쇄성 관상동맥 질환에 대한 음성 예측도가 높아서 침습적 혈관조영술의 빈도를 줄일 수 있는 관상동맥 질환 관련 검사의 관문으로 부상했지만, 진단특이도가 상대적으로 낮다. 하지만 심장 전산화단층촬영을 이용한 분획혈류예비력과 심근관류를 분석하여 관상동맥 질환의 혈역학적 유의성을 확인하는 기능적 평가를 통해 그 한계를 극복할 수 있다. 최근에는 이를 보다 객관적이고 재현 가능하도록 인공지능을 접목하는 연구들이 활발히 진행되고 있다. 본 종설에서는 심장 전산화단층촬영의 기능적 영상화 기법들에 대해 알아보고자 한다.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki Seok Choo
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Whal Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Takafuji M, Kitagawa K, Nakamura S, Kokawa T, Kagawa Y, Fujita S, Fukuma T, Fujii E, Dohi K, Sakuma H. Hyperemic myocardial blood flow in patients with atrial fibrillation before and after catheter ablation: A dynamic stress CT perfusion study. Physiol Rep 2021; 9:e15123. [PMID: 34806340 PMCID: PMC8606864 DOI: 10.14814/phy2.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) patients without coronary artery stenosis often show clinical evidence of ischemia. However myocardial perfusion in AF patients has been poorly studied. The purposes of this study were to investigate altered hyperemic myocardial blood flow (MBF) in patients with AF compared with risk-matched controls in sinus rhythm (SR), and to evaluate hyperemic MBF before and after catheter ablation using dynamic CT perfusion. METHODS Hyperemic MBF was quantified in 87 patients with AF (44 paroxysmal, 43 persistent) scheduled for catheter ablation using dynamic CT perfusion, and compared with hyperemic MBF in 87 risk-matched controls in SR. Follow-up CT after ablation was performed in 49 AF patients. RESULTS Prior to ablation, hyperemic MBF of patients in AF during the CT (1.29 ± 0.34 ml/mg/min) was significantly lower than in patients in SR (1.49 ± 0.26 ml/g/min, p = 0.002) or matched controls (1.65 ± 0.32 ml/g/min, p < 0.001); no significant difference was seen between patients in SR during the CT and matched controls (vs. 1.50 ± 0.31 ml/g/min, p = 0.815). In patients in AF during the pre-ablation CT (n = 24), hyperemic MBF significantly increased after ablation from 1.30 ± 0.35 to 1.53 ± 0.17 ml/g/min (p = 0.004); whereas in patients in SR during the pre-ablation CT (n = 25), hyperemic MBF did not change significantly after ablation (from 1.46 ± 0.26 to 1.49 ± 0.27 ml/g/min, p = 0.499). CONCLUSION In the current study using stress perfusion CT, hyperemic MBF in patients with AF during pre-ablation CT was significantly lower than that in risk-matched controls, and improved significantly after restoration of SR by catheter ablation, indicating that MBF abnormalities in AF patients are caused primarily by AF itself.
Collapse
Affiliation(s)
- Masafumi Takafuji
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| | - Kakuya Kitagawa
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| | - Satoshi Nakamura
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| | - Takanori Kokawa
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| | - Yoshihiko Kagawa
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Satoshi Fujita
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Tomoyuki Fukuma
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Eitaro Fujii
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Kaoru Dohi
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Hajime Sakuma
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| |
Collapse
|
13
|
Ling R, Yu L, Lu Z, Li Y, Zhang J. A Novel Computed Tomography-Based Imaging Approach for Etiology Evaluation in Patients With Acute Coronary Syndrome and Non-obstructive Coronary Angiography. Front Cardiovasc Med 2021; 8:735118. [PMID: 34504882 PMCID: PMC8421729 DOI: 10.3389/fcvm.2021.735118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study sought to investigate the diagnostic value of dynamic CT myocardial perfusion imaging (CT-MPI) combined with coronary CT angiography (CCTA) in acute coronary syndrome (ACS) patients without obstructive coronary angiography. Methods: Consecutive ACS patients with normal or non-obstructive coronary angiography findings who had cardiac magnetic resonance (CMR) contraindications or inability to cooperate with CMR examinations were prospectively enrolled and referred for dynamic CT-MPI + CCTA + late iodine enhancement (LIE). ACS etiology was determined according to combined assessment of coronary vasculature by CCTA, quantified myocardial blood flow (MBF) and presence of LIE. Results: Twenty two patients were included in the final analysis. CCTA revealed two cases of side branch occlusion and one case of intramural hematoma which were overlooked by invasive angiography. High risk plaques were observed in 6 (27.3%) patients whereas myocardial ischemia was presented in 19 (86.4%) patients with varied extent and severity. LIE was positive in 13 (59.1%) patients and microvascular obstruction was presented in three cases with side branch occlusion or spontaneous intramural hematoma. The specific etiology was identified in 20 (90.9%) patients, of which the most common cause was cardiomyopathies (41%), followed by microvascular dysfunction (14%) and plaque disruption (14%). Conclusion: Dynamic CT-MPI + CCTA was able to reveal the potential etiologies in majority of patients with ACS and non-obstructive coronary angiography. It may be a useful alternative to CMR for accurate etiology evaluation.
Collapse
Affiliation(s)
- Runjianya Ling
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lihua Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Goto Y, Kitagawa K, Nakamura S, Takafuji M, Nakamori S, Nagasawa N, Kurita T, Dohi K, Sakuma H. Prognostic Value of Cardiac CT Delayed Enhancement Imaging in Patients With Suspected Coronary Artery Disease. JACC Cardiovasc Imaging 2021; 14:1674-1675. [PMID: 33865785 DOI: 10.1016/j.jcmg.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
|
15
|
From Inception to 2020: a Review of Dynamic Myocardial CT Perfusion Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2021. [DOI: 10.1007/s12410-020-09551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Nakamura S, Kitagawa K, Goto Y, Takafuji M, Nakamori S, Kurita T, Dohi K, Sakuma H. Prognostic Value of Stress Dynamic Computed Tomography Perfusion With Computed Tomography Delayed Enhancement. JACC Cardiovasc Imaging 2020; 13:1721-1734. [DOI: 10.1016/j.jcmg.2019.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
17
|
Tanabe Y, Kurata A, Matsuda T, Yoshida K, Baruah D, Kido T, Mochizuki T, Rajiah P. Computed tomographic evaluation of myocardial ischemia. Jpn J Radiol 2020; 38:411-433. [PMID: 32026226 PMCID: PMC7186254 DOI: 10.1007/s11604-020-00922-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Myocardial ischemia is caused by a mismatch between myocardial oxygen consumption and oxygen delivery in coronary artery disease (CAD). Stratification and decision-making based on ischemia improves the prognosis in patients with CAD. Non-invasive tests used to evaluate myocardial ischemia include stress electrocardiography, echocardiography, single-photon emission computed tomography, and magnetic resonance imaging. Invasive fractional flow reserve is considered the reference standard for assessment of the hemodynamic significance of CAD. Computed tomography (CT) angiography has emerged as a first-line imaging modality for evaluation of CAD, particularly in the population at low to intermediate risk, because of its high negative predictive value; however, CT angiography does not provide information on the hemodynamic significance of stenosis, which lowers its specificity. Emerging techniques, e.g., CT perfusion and CT-fractional flow reserve, help to address this limitation of CT, by determining the hemodynamic significance of coronary artery stenosis. CT perfusion involves acquisition during the first pass of contrast medium through the myocardium following pharmacological stress. CT-fractional flow reserve uses computational fluid dynamics to model coronary flow, pressure, and resistance. In this article, we review these two functional CT techniques in the evaluation of myocardial ischemia, including their principles, technology, advantages, limitations, pitfalls, and the current evidence.
Collapse
Affiliation(s)
- Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takuya Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Dhiraj Baruah
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
- Department of Radiology, I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Ulitsa, Moscow, Russia
| | | |
Collapse
|
18
|
Li J, Chen XY, Xu K, Zhu L, He M, Sun T, Zhang WJ, Flohr TG, Jin ZY, Xue HD. Detection of insulinoma: one-stop pancreatic perfusion CT with calculated mean temporal images can replace the combination of bi-phasic plus perfusion scan. Eur Radiol 2020; 30:4164-4174. [PMID: 32189051 DOI: 10.1007/s00330-020-06657-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the feasibility of one-stop pancreatic perfusion CT with mean temporal (MT) imaging replacing the combination of a bi-phasic scan plus a perfusion scan to detect insulinoma. MATERIAL AND METHODS Forty-five patients with suspected insulinoma, who underwent both biphasic and perfusion CT, were enrolled in this retrospective study. MT datasets including images for different delineation purposes were generated by averaging 3 dynamic datasets from perfusion CT, which are MTA for arterial, MTPV for portal vein and MTO for lesions. Two readers assessed the image quality and diagnostic performance separately for biphasic and MT datasets. Radiation doses were also assessed. Paired t tests, Wilcoxon signed-rank tests and McNemar's tests were applied for comparison. RESULTS Compared with bi-phasic CT images, image noise, SNR and CNR of the MTA and MTPV datasets were all non-inferior (noise and CNR of the portal vein, p = 0.565 and p = 0.227, respectively) or superior (p ≤ 0.001). The subjective image quality was better in the MTA and MTPV images (p < 0.001 to p = 0.004). The sensitivity and NPV of MT images were also better (95% vs 75% and 75% vs 37.5% for reader 1; 97.5% vs 72.5% and 85.7% vs 35.3% for reader 2). Omitting the bi-phasic scan resulted in a dose reduction of 25% ± 4%. CONCLUSION MT imaging can allow pancreatic perfusion CT to be used alone without the need for an additional bi-phasic CT in the detection of insulinoma. KEY POINTS • Mean temporal images reconstructed from perfusion CT with an averaging technique reproduce usual bi-phasic images (arterial and portal phases). • The image quality of mean temporal images is non-inferior or superior to native bi-phasic CT. The sensitivity and NPV for the diagnosis of insulinoma are better for mean temporal images than for traditional bi-phasic CT. • Mean temporal imaging can allow pancreatic perfusion CT to be used alone without the need for an additional bi-phasic CT in the detection of insulinoma. Radiation dose saving is important.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Xin-Yue Chen
- CT Collaboration, Siemens-Healthineers, Beijing, China
| | - Kai Xu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Liang Zhu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Ming He
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Ting Sun
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Wen-Jia Zhang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Thomas G Flohr
- Department of Computed Tomography, Siemens Healthcare GmbH, Forchheim, Germany
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| | - Hua-Dan Xue
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
19
|
Takafuji M, Kitagawa K, Nakamura S, Hamdy A, Goto Y, Ishida M, Sakuma H. Feasibility of extracellular volume fraction calculation using myocardial CT delayed enhancement with low contrast media administration. J Cardiovasc Comput Tomogr 2020; 14:524-528. [PMID: 32094065 DOI: 10.1016/j.jcct.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Myocardial extracellular volume fraction (ECV) derived from CT delayed enhancement (CTDE) may allow assessment of diffuse myocardial fibrosis. However, the amount of contrast medium required for ECV estimation has not been established. Since ECV estimation by CT is typically performed in combination with coronary CT angiography (CCTA) in clinical settings, we aimed to investigate whether reliable ECV estimation is possible using the contrast dose optimized for CCTA without additional contrast administration. METHODS Twenty patients with known or suspected coronary artery disease who underwent CTDE with a dual-source scanner using two protocols (Protocols A and B) within 2 years were retrospectively enrolled. In Protocol A, CTDE was obtained with 0.84 ml/kg of iopamidol (370 mgI/ml) injected for CCTA. In Protocol B, stress CT perfusion imaging, which requires 40 ml of contrast medium, was added to Protocol A. ECV values calculated from the two protocols were compared. RESULTS Despite the different contrast doses, no significant difference in mean myocardial ECV was seen between Protocols A and B at the patient level (28.7 ± 4.3% vs. 28.7 ± 4.4%, respectively, P = 0.868). Excellent correlations in ECV were seen between the two protocols (r = 0.942, P < 0.001). Bland-Altman analysis showed slight bias (+0.06%), within a 95% limit of agreement of -2.9% and 3.0%. The coefficient of variation was 5.2%. CONCLUSION Reliable ECV estimation can be achieved with the contrast doses optimized for CCTA. Despite the differing contrast administration schemes and doses, ECV values calculated from the two protocols showed excellent agreement, indicating the robustness of ECV estimation by CT.
Collapse
Affiliation(s)
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Hospital, Tsu, Japan.
| | | | - Ahmed Hamdy
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Yoshitaka Goto
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Japan
| |
Collapse
|
20
|
Takafuji M, Kitagawa K, Ishida M, Goto Y, Nakamura S, Nagasawa N, Sakuma H. Myocardial Coverage and Radiation Dose in Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source CT. Korean J Radiol 2020; 21:58-67. [PMID: 31920029 PMCID: PMC6960309 DOI: 10.3348/kjr.2019.0323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/30/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Third-generation dual-source computed tomography (3rd-DSCT) allows dynamic myocardial CT perfusion imaging (dynamic CTP) with a 10.5-cm z-axis coverage. Although the increased radiation exposure associated with the 50% wider scan range compared to second-generation DSCT (2nd-DSCT) may be suppressed by using a tube voltage of 70 kV, it remains unclear whether image quality and the ability to quantify myocardial blood flow (MBF) can be maintained under these conditions. This study aimed to compare the image quality, estimated MBF, and radiation dose of dynamic CTP between 2nd-DSCT and 3rd-DSCT and to evaluate whether a 10.5-cm coverage is suitable for dynamic CTP. MATERIALS AND METHODS We retrospectively analyzed 107 patients who underwent dynamic CTP using 2nd-DSCT at 80 kV (n = 54) or 3rd-DSCT at 70 kV (n = 53). Image quality, estimated MBF, radiation dose, and coverage of left ventricular (LV) myocardium were compared. RESULTS No significant differences were observed between 3rd-DSCT and 2nd-DSCT in contrast-to-noise ratio (37.4 ± 11.4 vs. 35.5 ± 11.2, p = 0.396). Effective radiation dose was lower with 3rd-DSCT (3.97 ± 0.92 mSv with a conversion factor of 0.017 mSv/mGy·cm) compared to 2nd-DSCT (5.49 ± 1.36 mSv, p < 0.001). Incomplete coverage was more frequent with 2nd-DSCT than with 3rd-DSCT (1.9% [1/53] vs. 56% [30/54], p < 0.001). In propensity score-matched cohorts, MBF was comparable between 3rd-DSCT and 2nd-DSCT in non-ischemic (146.2 ± 26.5 vs. 157.5 ± 34.9 mL/min/100 g, p = 0.137) as well as ischemic myocardium (92.7 ± 21.1 vs. 90.9 ± 29.7 mL/min/100 g, p = 0.876). CONCLUSION The radiation increase inherent to the widened z-axis coverage in 3rd-DSCT can be balanced by using a tube voltage of 70 kV without compromising image quality or MBF quantification. In dynamic CTP, a z-axis coverage of 10.5 cm is sufficient to achieve complete coverage of the LV myocardium in most patients.
Collapse
Affiliation(s)
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Hospital, Mie, Japan.
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, Mie, Japan
| | - Yoshitaka Goto
- Department of Radiology, Mie University Hospital, Mie, Japan
| | | | - Naoki Nagasawa
- Department of Radiology, Mie University Hospital, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Mie, Japan
| |
Collapse
|
21
|
The Value of Low-Dose Dynamic Myocardial Perfusion CT for Accurate Evaluation of Microvascular Obstruction in Patients With Acute Myocardial Infarction. AJR Am J Roentgenol 2019; 213:798-806. [PMID: 31166762 DOI: 10.2214/ajr.19.21305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Nieman K, Balla S. Dynamic CT myocardial perfusion imaging. J Cardiovasc Comput Tomogr 2019; 14:303-306. [PMID: 31540820 DOI: 10.1016/j.jcct.2019.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 09/07/2019] [Indexed: 12/30/2022]
Abstract
Cardiac CT offers several approaches to establish the hemodynamic severity of coronary artery obstructions. Dynamic myocardial perfusion CT (MPICT) is based on serial CT imaging to measure the inflow of contrast medium into the myocardium and calculate absolute measures of myocardial perfusion. This review describes the MPICT acquisition protocol, post-image acquisition processing and calculation of quantitative parameters, the diagnostic performance of MPICT and the potential incremental value of this technique in comparison to alternative approaches. Further technical innovation using different scanner platforms and establishment of reproducible diagnostic thresholds to differentiate significant coronary artery disease will be crucial in the path to broader clinical implementation.
Collapse
Affiliation(s)
- Koen Nieman
- Stanford University School of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Room H2157, 300 Pasteur Drive, Stanford, CA, 94304, USA.
| | - Sujana Balla
- Stanford University School of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Room H2157, 300 Pasteur Drive, Stanford, CA, 94304, USA
| |
Collapse
|
23
|
Comparison of the different imaging time points in delayed phase cardiac CT for myocardial scar assessment and extracellular volume fraction estimation in patients with old myocardial infarction. Int J Cardiovasc Imaging 2018; 35:917-926. [DOI: 10.1007/s10554-018-1513-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
|
24
|
Kitagawa K, Goto Y, Nakamura S, Takafuji M, Hamdy A, Ishida M, Sakuma H. Dynamic CT Perfusion Imaging: State of the Art. ACTA ACUST UNITED AC 2018. [DOI: 10.22468/cvia.2018.00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kakuya Kitagawa
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Yoshitaka Goto
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Satoshi Nakamura
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Masafumi Takafuji
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Ahmed Hamdy
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| |
Collapse
|
25
|
Chang S, Han K, Youn JC, Im DJ, Kim JY, Suh YJ, Hong YJ, Hur J, Kim YJ, Choi BW, Lee HJ. Utility of Dual-Energy CT-based Monochromatic Imaging in the Assessment of Myocardial Delayed Enhancement in Patients with Cardiomyopathy. Radiology 2017; 287:442-451. [PMID: 29272215 DOI: 10.1148/radiol.2017162945] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose To investigate the diagnostic utility of dual-energy computed tomography (CT)-based monochromatic imaging for myocardial delayed enhancement (MDE) assessment in patients with cardiomyopathy. Materials and Methods The institutional review board approved this prospective study, and informed consent was obtained from all participants who were enrolled in the study. Forty patients (27 men and 13 women; mean age, 56 years ± 15 [standard deviation]; age range, 22-81 years) with cardiomyopathy underwent cardiac magnetic resonance (MR) imaging and dual-energy CT. Conventional (120-kV) and monochromatic (60-, 70-, and 80-keV) images were reconstructed from the dual-energy CT acquisition. Subjective quality score, contrast-to-noise ratio (CNR), and beam-hardening artifacts were compared pairwise with the Friedman test at post hoc analysis. With cardiac MR imaging as the reference standard, diagnostic performance of dual-energy CT in MDE detection and its predictive ability for pattern classification were compared pairwise by using logistic regression analysis with the generalized estimating equation in a per-segment analysis. The Bland-Altman method was used to find agreement between cardiac MR imaging and CT in MDE quantification. Results Among the monochromatic images, 70-keV CT images resulted in higher subjective quality (mean score, 3.38 ± 0.54 vs 3.15 ± 0.43; P = .0067), higher CNR (mean, 4.26 ± 1.38 vs 3.93 ± 1.33; P = .0047), and a lower value for beam-hardening artifacts (mean, 3.47 ± 1.56 vs 4.15 ± 1.67; P < .0001) when compared with conventional CT. When compared with conventional CT, 70-keV CT showed improved diagnostic performance for MDE detection (sensitivity, 94.6% vs 90.4% [P = .0032]; specificity, 96.0% vs 94.0% [P = .0031]; and accuracy, 95.6% vs 92.7% [P < .0001]) and improved predictive ability for pattern classification (subendocardial, 91.5% vs 84.3% [P = .0111]; epicardial, 94.3% vs 73.5% [P = .0001]; transmural, 93.0% vs 77.7% [P = .0018]; mesocardial, 85.4% vs 69.2% [P = .0047]; and patchy. 84.4% vs 78.4% [P = .1514]). For MDE quantification, 70-keV CT showed a small bias 0.1534% (95% limits of agreement: -4.7013, 5.0080). Conclusion Dual-energy CT-based 70-keV monochromatic images improve MDE assessment in patients with cardiomyopathy via improved image quality and CNR and reduced beam-hardening artifacts when compared with conventional CT images. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Suyon Chang
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Kyunghwa Han
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Jong-Chan Youn
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Dong Jin Im
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Jin Young Kim
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Young Joo Suh
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Yoo Jin Hong
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Jin Hur
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Young Jin Kim
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Byoung Wook Choi
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| | - Hye-Jeong Lee
- From the Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea (S.C., D.J.I., J.Y.K., Y.J.S., Y.J.H., J.H., Y.J.K., B.W.C., H.J.L.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea (K.H.); and Division of Cardiology, Cardiovascular Hospital, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.Y.)
| |
Collapse
|
26
|
Goto Y, Kitagawa K, Uno M, Nakamori S, Ito T, Nagasawa N, Dohi K, Sakuma H. Diagnostic Accuracy of Endocardial-to-Epicardial Myocardial Blood Flow Ratio for the Detection of Significant Coronary Artery Disease With Dynamic Myocardial Perfusion Dual-Source Computed Tomography. Circ J 2017; 81:1477-1483. [PMID: 28442659 DOI: 10.1253/circj.cj-16-1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
BACKGROUND Previous dynamic stress computed tomography perfusion (CTP) studies used absolute myocardial blood flow (MBF in mL/100 g/min) as a threshold to discriminate flow-limiting coronary artery disease (CAD), but absolute MBF can be vary because of multiple factors. The aim of this study was to compare the diagnostic performance of absolute MBF and the transmural perfusion ratio (TPR) for the detection of flow-limiting CAD, and to clarify the influence of CT delayed enhancement (CTDE) on the diagnostic performance of CTP. METHODS AND RESULTS We retrospectively enrolled 51 patients who underwent dual-source CTP and invasive coronary angiography (ICA). TPR was defined as the endocardial MBF of a specific segment divided by the mean of the epicardial MBF of all segments. Flow-limiting CAD was defined as luminal diameter stenosis >90% on ICA or a lesion with fractional flow reserve ≤0.8. Segmental presence and absence of myocardial scar was determined by CTDE. The area under the receiver-operating characteristics curve (AUC) of TPR was significantly greater than that of MBF for the detection of flow-limiting CAD (0.833 vs. 0.711, P=0.0273). Myocardial DE was present in 27 of the 51 patients and in 34 of 143 territories. When only territories containing DE were considered, the AUC of TPR decreased to 0.733. CONCLUSIONS TPR calculated from absolute MBF demonstrated higher diagnostic performance for the discrimination of flow-limiting CAD when compared with absolute MBF itself.
Collapse
Affiliation(s)
| | | | - Mio Uno
- Department of Radiology, Mie University Hospital
| | | | - Tatsuro Ito
- Department of Radiology, Mie University Hospital
| | | | - Kaoru Dohi
- Department of Cardiology, Mie University Hospital
| | | |
Collapse
|
27
|
Tanabe Y, Kido T, Kurata A, Kouchi T, Fukuyama N, Yokoi T, Uetani T, Yamashita N, Miyagawa M, Mochizuki T. Late iodine enhancement computed tomography with image subtraction for assessment of myocardial infarction. Eur Radiol 2017; 28:1285-1292. [DOI: 10.1007/s00330-017-5048-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 01/22/2023]
|
28
|
Sandfort V, Kwan AC, Elumogo C, Vigneault DM, Symons R, Pourmorteza A, Rice K, Davies-Venn C, Ahlman MA, Liu CY, Zimmerman SL, Bluemke DA. Automatic high-resolution infarct detection using volumetric multiphase dual-energy CT. J Cardiovasc Comput Tomogr 2017; 11:288-294. [PMID: 28442244 DOI: 10.1016/j.jcct.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/31/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Late contrast enhancement CT (LCE-CT) visualizes the presence of myocardial infarcts. Differentiation of the contrast-enhanced infarct from blood pool is challenging. We developed a novel method using data from first pass CT angiography (CTA) imaging to enable automatic infarct detection. MATERIALS AND METHODS A canine model of myocardial infarction was produced in 11 animals. Two months later, first pass CTA (90 kVp) and LCE-CT (dual energy 90 kVp/150 kVp tin filtered) were performed. Late gadolinium enhancement MRI was used as reference standard. The CTA and LCE-CT were co-registered using a fully automatic non-rigid method based on curved B-splines. The method allowed for limited elastic deformation and the considerable differences in attenuation between first-pass and delayed image. The blood pool was easily identified on the CTA image by high attenuation. Because CTA and LCE-CT were registered, the blood pool segmentation can be directly transferred to the LCE-CT - thereby solving the key problem of infarct/blood pool differentiation. The remaining segmentation of infarcted vs. noninfarcted myocardium was performed using a threshold. Automatic and MRI-guided expert segmentations of LCE-CT infarcts were compared to each other on volume and area basis (intraclass correlation coefficient, ICC) and on voxel basis (dice similarity coefficient, DSC between automatic and expert CT segmentation). CT infarct volumes were compared with the reference standard MRI. RESULTS The infarcts were mainly subendocardial (81%) and relatively small (median MRI infarct mass 7.4 g). The automatic segmentation showed excellent agreement with expert segmentation on volume and area measurements (ICC = 0.96 and 0.87, respectively). DSC showed moderately good agreement (DSC = 0.47). Compared to MRI there was modest agreement (ICC = 0.62) and excellent correlation (R = 0.9). Manual interaction was less than 1 min per exam. CONCLUSION We propose an automatic method for infarct segmentation on LCE-CT using multiphase CT information, which showed excellent agreement with expert readers and favorable correlation with MRI.
Collapse
Affiliation(s)
- Veit Sandfort
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Alan C Kwan
- The Johns Hopkins Hospital, Department of Medicine, Baltimore, MD, USA
| | - Comfort Elumogo
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Davis M Vigneault
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Rolf Symons
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Amir Pourmorteza
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Kelly Rice
- ORS Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia Davies-Venn
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Mark A Ahlman
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Chia-Ying Liu
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA
| | | | - David A Bluemke
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| |
Collapse
|
29
|
Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance. Int J Cardiovasc Imaging 2017; 33:1609-1618. [DOI: 10.1007/s10554-017-1137-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/08/2017] [Indexed: 01/08/2023]
|
30
|
Rodriguez-Granillo GA. Delayed enhancement cardiac computed tomography for the assessment of myocardial infarction: from bench to bedside. Cardiovasc Diagn Ther 2017; 7:159-170. [PMID: 28540211 DOI: 10.21037/cdt.2017.03.16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A large number of studies support the increasingly relevant prognostic value of the presence and extent of delayed enhancement (DE), a surrogate marker of fibrosis, in diverse etiologies. Gadolinium and iodinated based contrast agents share similar kinetics, thus leading to comparable myocardial characterization with cardiac magnetic resonance (CMR) and cardiac computed tomography (CT) at both first-pass perfusion and DE imaging. We review the available evidence of DE imaging for the assessment of myocardial infarction (MI) using cardiac CT (CTDE), from animal to clinical studies, and from 16-slice CT to dual-energy CT systems (DECT). Although both CMR and gadolinium agents have been originally deemed innocuous, a number of concerns (though inconclusive and very rare) have been recently issued regarding safety issues, including DNA double-strand breaks related to CMR, and gadolinium-associated nephrogenic systemic fibrosis and deposition in the skin and certain brain structures. These concerns have to be considered in the context of non-negligible rates of claustrophobia, increasing rates of patients with implantable cardiac devices, and a number of logistic drawbacks compared with CTDE, such as higher costs, longer scanning times, and difficulties to scan patients with impaired breath-holding capabilities. Overall, these issues might encourage the role of CTDE as an alternative for DE-CMR in selected populations.
Collapse
|
31
|
Kurita Y, Kitagawa K, Kurobe Y, Nakamori S, Nakajima H, Dohi K, Ito M, Sakuma H. Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: A feasibility study. J Cardiovasc Comput Tomogr 2016; 10:237-41. [DOI: 10.1016/j.jcct.2016.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/02/2016] [Accepted: 02/21/2016] [Indexed: 01/13/2023]
|
32
|
Diagnostic accuracy of late iodine enhancement on cardiac computed tomography with a denoise filter for the evaluation of myocardial infarction. Int J Cardiovasc Imaging 2015. [DOI: 10.1007/s10554-015-0716-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Pauwels S, Jans I, Peersman N, Billen J, Vanderschueren D, Desmet K, Vermeersch P. Possibilities and limitations of signal summing for an immunosuppressant LC-MS/MS method. Anal Bioanal Chem 2015; 407:6191-9. [DOI: 10.1007/s00216-015-8799-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
|
34
|
Abstract
Cardiac multidetector computed tomography (MDCT) has become a useful noninvasive modality for anatomical imaging of coronary artery disease (CAD). Currently, the main clinical advantage of coronary computed tomography angiography (CCTA) appears to be related to its high negative predictive value at low or intermediate pretest probability for CAD. With the development of technical aspects of MDCT, clinical practice and research are increasingly shifting toward defining the clinical implication of plaque morphology, myocardial perfusion, and patient outcomes. The presence of positive vessel remodeling, low-attenuation plaques, napkin-ring sign, or spotty calcification on CCTA could be useful information on high-risk vulnerable plaques. The napkin-ring sign, especially, showed higher accuracy for the detection of thin-cap fibroatheroma. Recently, it was reported that cardiac 3D single-photon emission tomography/CT fusion imaging, noninvasive fractional flow reserve computed from CT, and integrated CCTA and CT myocardial perfusion were associated with improved diagnostic accuracy for the detection of hemodynamically significant CAD. Furthermore, several randomized, large clinical trials have evaluated the clinical value of CCTA for chest pain triage in the emergency department or long-term reduction in death, myocardial infarction, or hospitalization for unstable angina. In this review we discuss the role of cardiac MDCT beyond coronary angiography, including a comparison with other currently available imaging modalities used to examine atherosclerotic plaque and myocardial perfusion.
Collapse
Affiliation(s)
- Akira Sato
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba
| | | |
Collapse
|