1
|
Doherty DF, Roets LE, Dougan CM, Brown RR, Hawthorne IJ, O'Kane C, Krasnodembskaya AD, Mall MA, Taggart CC, Weldon S. Mesenchymal stromal cells reduce inflammation and improve lung function in a mouse model of cystic fibrosis lung disease. Sci Rep 2024; 14:30899. [PMID: 39730509 DOI: 10.1038/s41598-024-81276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue. BALF analysis revealed a significant reduction in inflammatory cells after MSC administration, with both monocytic cells and neutrophils significantly reduced. Pro-inflammatory cytokines keratinocyte-derived chemokine (KC) and osteopontin were also significantly reduced. Histological tissue analysis revealed a reduction in emphysema in Scnn1b-TG mice treated with MSCs and consistent with these findings, improvements in lung function after MSC therapy were observed. Furthermore, MSCs enhanced Ki67 staining in alveolar cells, which may indicate regeneration of the destroyed parenchyma. Mechanistically, restoration of peroxisome proliferator-activated receptor-γ (PPARγ) expression and its transcriptional program were identified after MSC treatment. Our data demonstrate that MSC therapy can reduce inflammation, damage, and lung function decline in the chronically inflamed lung of Scnn1b-Tg mice, suggesting that MSCs may provide an effective tool in the treatment of muco-obstructive diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Declan F Doherty
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Lydia E Roets
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Caoifa M Dougan
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Ryan R Brown
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Ian J Hawthorne
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Cecilia O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- BerlinInstitute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson, Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
2
|
Komaru Y, Bai YZ, Kreisel D, Herrlich A. Interorgan communication networks in the kidney-lung axis. Nat Rev Nephrol 2024; 20:120-136. [PMID: 37667081 DOI: 10.1038/s41581-023-00760-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
The homeostasis and health of an organism depend on the coordinated interaction of specialized organs, which is regulated by interorgan communication networks of circulating soluble molecules and neuronal connections. Many diseases that seemingly affect one primary organ are really multiorgan diseases, with substantial secondary remote organ complications that underlie a large part of their morbidity and mortality. Acute kidney injury (AKI) frequently occurs in critically ill patients with multiorgan failure and is associated with high mortality, particularly when it occurs together with respiratory failure. Inflammatory lung lesions in patients with kidney failure that could be distinguished from pulmonary oedema due to volume overload were first reported in the 1930s, but have been largely overlooked in clinical settings. A series of studies over the past two decades have elucidated acute and chronic kidney-lung and lung-kidney interorgan communication networks involving various circulating inflammatory cytokines and chemokines, metabolites, uraemic toxins, immune cells and neuro-immune pathways. Further investigations are warranted to understand these clinical entities of high morbidity and mortality, and to develop effective treatments.
Collapse
Affiliation(s)
- Yohei Komaru
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yun Zhu Bai
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Andreas Herrlich
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, USA.
| |
Collapse
|
3
|
Tanner L, Bergwik J, Bhongir RKV, Puthia M, Lång P, Ali MN, Welinder C, Önnerfjord P, Erjefält JS, Palmberg L, Andersson G, Egesten A. Tartrate resistant acid phosphatase 5 (TRAP5) mediates immune cell recruitment in a murine model of pulmonary bacterial infection. Front Immunol 2022; 13:1079775. [PMID: 36569898 PMCID: PMC9779928 DOI: 10.3389/fimmu.2022.1079775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction During airway infection, upregulation of proinflammatory cytokines and subsequent immune cell recruitment is essential to mitigate bacterial infection. Conversely, during prolonged and non-resolving airway inflammation, neutrophils contribute to tissue damage and remodeling. This occurs during diseases including cystic fibrosis (CF) and COPD where bacterial pathogens, not least Pseudomonas aeruginosa, contribute to disease progression through long-lasting infections. Tartrate-resistant acid phosphatase (TRAP) 5 is a metalloenzyme expressed by alveolar macrophages and one of its target substrates is the phosphoglycoprotein osteopontin (OPN). Methods We used a knockout mouse strain (Trap5-/-) and BALB/c-Tg (Rela-luc)31Xen mice paired with siRNA administration or functional protein add-back to elucidate the role of Trap5 during bacterial infection. In a series of experiments, Trap5-/- and wild-type control mice received intratracheal administration of P.aerugniosa (Xen41) or LPS, with mice monitored using intravital imaging (IVIS). In addition, multiplex cytokine immunoassays, flow cytometry, multispectral analyses, histological staining were performed. Results In this study, we found that Trap5-/- mice had impaired clearance of P. aeruginosa airway infection and reduced recruitment of immune cells (i.e. neutrophils and inflammatory macrophages). Trap5 knockdown using siRNA resulted in a decreased activation of the proinflammatory transcription factor NF-κB in reporter mice and a subsequent decrease of proinflammatory gene expression. Add-back experiments of enzymatically active TRAP5 to Trap5-/- mice restored immune cell recruitment and bacterial killing. In human CF lung tissue, TRAP5 of alveolar macrophages was detected in proximity to OPN to a higher degree than in normal lung tissue, indicating possible interactions. Discussion Taken together, the findings of this study suggest a key role for TRAP5 in modulating airway inflammation. This could have bearing in diseases such as CF and COPD where excessive neutrophilic inflammation could be targeted by pharmacological inhibitors of TRAP5.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K. V. Bhongir
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Manoj Puthia
- Department of Dermatology and Venereology, Lund University and Skåne University Hospital, Lund, Sweden,Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mohamad N. Ali
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Molecular Skeletal Biology, Section for Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas S. Erjefält
- Unit of Airway Inflammation, Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Lena Palmberg
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden,*Correspondence: Arne Egesten,
| |
Collapse
|
4
|
Khamissi FZ, Ning L, Kefaloyianni E, Dun H, Arthanarisami A, Keller A, Atkinson JJ, Li W, Wong B, Dietmann S, Lavine K, Kreisel D, Herrlich A. Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure. SCIENCE ADVANCES 2022; 8:eabm5900. [PMID: 35213222 PMCID: PMC8880785 DOI: 10.1126/sciadv.abm5900] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 05/08/2023]
Abstract
Tissue injury can drive secondary organ injury; however, mechanisms and mediators are not well understood. To identify interorgan cross-talk mediators, we used acute kidney injury (AKI)-induced acute lung injury (ALI) as a clinically important example. Using kidney and lung single-cell RNA sequencing after AKI in mice followed by ligand-receptor pairing analysis across organs, kidney ligands to lung receptors, we identify kidney-released circulating osteopontin (OPN) as a novel AKI-ALI mediator. OPN release from kidney tubule cells triggered lung endothelial leakage, inflammation, and respiratory failure. Pharmacological or genetic OPN inhibition prevented AKI-ALI. Transplantation of ischemic wt kidneys caused AKI-ALI, but not of ischemic OPN-global knockout kidneys, identifying kidney-released OPN as necessary interorgan signal to cause AKI-ALI. We show that OPN serum levels are elevated in patients with AKI and correlate with kidney injury. Our results demonstrate feasibility of using ligand-receptor analysis across organs to identify interorgan cross-talk mediators and may have important therapeutic implications in human AKI-ALI and multiorgan failure.
Collapse
Affiliation(s)
| | | | | | - Hao Dun
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | | | - Amy Keller
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey J. Atkinson
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Li
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Brian Wong
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Kory Lavine
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel Kreisel
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
5
|
Herrlich A. Interorgan crosstalk mechanisms in disease: the case of acute kidney injury-induced remote lung injury. FEBS Lett 2021; 596:620-637. [PMID: 34932216 DOI: 10.1002/1873-3468.14262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Homeostasis and health of multicellular organisms with multiple organs depends on interorgan communication. Tissue injury in one organ disturbs this homeostasis and can lead to disease in multiple organs, or multiorgan failure. Many routes of interorgan crosstalk during homeostasis are relatively well known, but interorgan crosstalk in disease still lacks understanding. In particular, how tissue injury in one organ can drive injury at remote sites and trigger multiorgan failure with high mortality is poorly understood. As examples, acute kidney injury can trigger acute lung injury and cardiovascular dysfunction; pneumonia, sepsis or liver failure conversely can cause kidney failure; lung transplantation very frequently triggers acute kidney injury. Mechanistically, interorgan crosstalk after tissue injury could involve soluble mediators and their target receptors, cellular mediators, in particular immune cells, as well as newly identified neuro-immune connections. In this review, I will focus the discussion of deleterious interorgan crosstalk and its mechanistic concepts on one example, acute kidney injury-induced remote lung injury.
Collapse
Affiliation(s)
- Andreas Herrlich
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, MO, USA
| |
Collapse
|
6
|
Anti-virulence Bispecific Monoclonal Antibody Mediated Protection Against Pseudomonas aeruginosa Ventilator-Associated Pneumonia in a Rabbit Model. Antimicrob Agents Chemother 2021; 66:e0202221. [PMID: 34902264 PMCID: PMC8846318 DOI: 10.1128/aac.02022-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ventilator-associated pneumonia is an important clinical manifestation of the nosocomial pathogen Pseudomonas aeruginosa. We characterized the correlates of protection of MEDI3902, a bispecific human IgG1 mAb that targets the P. aeruginosa type-3-secretion PcrV protein and the Psl exopolysaccharide, in a rabbit model of ventilator-associated pneumonia using lung-protective, low-tidal volume mechanical ventilation. Rabbits infused with MEDI3902 prophylactically were protected, whereas those pretreated with irrelevant isotype-control IgG (c-IgG) succumbed between 12 and 44 hours post infection [100% (8/8) vs. 0% (8/8) survival, P<0.01 by log-rank test]. Lungs from rabbits pretreated with c-IgG, but not those with MEDI3902, had bilateral, multifocal areas of marked necrosis, hemorrhage, neutrophilic inflammatory infiltrate, diffuse fibrinous edema in alveolar spaces. All rabbits pretreated with c-IgG developed worsening bacteremia that peaked at the time of death, whereas only 38% (3/8) rabbits pretreated with MEDI3902 developed such high-grade bacteremia (two-sided Fisher's exact test, P=0.026). Biomarkers associated with acute respiratory distress syndrome were evaluated longitudinally in blood samples collected every 2-4 hours to assess systemic pathophysiological changes in rabbits pretreated with MEDI3902 or c-IgG. Biomarkers were sharply increased or decreased in rabbits pretreated with c-IgG, but not those pretreated with MEDI3902, including ratio of arterial oxygen partial pressure to fractional inspired oxygen PaO2/FiO2 <300, hypercapnia or hypocapnia, severe lactic acidosis, leukopenia and neutropenia. Cytokines and chemokines associated with ARDS were significantly downregulated in lungs from rabbits pretreated with MEDI3902 compared with c-IgG. These results suggest that MEDI3902 prophylaxis could have potential clinical utility for decreasing severity of P. aeruginosa ventilator-associated pneumonia.
Collapse
|
7
|
Osteopontin Expression in Small Airway Epithelium in Copd is Dependent on Differentiation and Confined to Subsets of Cells. Sci Rep 2019; 9:15566. [PMID: 31664154 PMCID: PMC6820743 DOI: 10.1038/s41598-019-52208-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Osteopontin (OPN) plays a role in inflammation via recruitment of neutrophils and tissue remodeling. In this study, we investigated the distribution of OPN-expressing cells in the airway epithelium of normal lung tissue and that from patients with chronic obstructive pulmonary disease (COPD). OPN was detected on the epithelial cell surface of small airways and in scattered cells within the epithelial cell layer. Staining revealed higher OPN concentrations in tissue showing moderate to severe COPD compared to that in controls. In addition, OPN expression was confined to goblet and club cells, and was absent from ciliated and basal cells as detected via immunohistochemistry. However, OPN expression was up-regulated in submerged basal cells cultures exposed to cigarette smoke (CS) extract. Cell fractioning of air-liquid interface cultures revealed increased OPN production from basal compartment cells compared to that in luminal fraction cells. Furthermore, both constitutive and CS-induced expression of OPN decreased during differentiation. In contrast, cultures stimulated with interleukin (IL)-13 to promote goblet cell hyperplasia showed increased OPN production in response to CS exposure. These results indicate that the cellular composition of the airway epithelium plays an important role in OPN expression and that these levels may reflect disease endotypes in COPD.
Collapse
|
8
|
Lamort AS, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells 2019; 8:cells8080815. [PMID: 31382483 PMCID: PMC6721491 DOI: 10.3390/cells8080815] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022] Open
Abstract
The glycoprotein osteopontin (OPN) possesses multiple functions in health and disease. To this end, osteopontin has beneficial roles in wound healing, bone homeostasis, and extracellular matrix (ECM) function. On the contrary, osteopontin can be deleterious for the human body during disease. Indeed, osteopontin is a cardinal mediator of tumor-associated inflammation and facilitates metastasis. The purpose of this review is to highlight the importance of osteopontin in malignant processes, focusing on lung and pleural tumors as examples.
Collapse
Affiliation(s)
- Anne-Sophie Lamort
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece
| | - Ioannis Psallidas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E6BT, UK
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece.
| |
Collapse
|
9
|
Osteopontin protects against lung injury caused by extracellular histones. Mucosal Immunol 2019; 12:39-50. [PMID: 30115999 DOI: 10.1038/s41385-018-0079-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/04/2023]
Abstract
Extracellular histones are present in the airways because of cell death occurring during inflammation. They promote inflammation and cause tissue damage due to their cationic nature. The anionic phosphoglycoprotein osteopontin (OPN) is expressed at high levels during airway inflammation and has been ascribed both pro- and anti-inflammatory roles. In this study, it was hypothesized that OPN may neutralize the harmful activities of extracellular histones at the airway mucosal surface. In a model of histone-induced acute lung injury, OPN-/- mice showed increased inflammation and tissue injury, and succumbed within 24 h, whereas wild-type mice showed lower degrees of inflammation and no mortality. In lipopolysaccharide-induced acute lung injury, wild-type mice showed less inflammation and tissue injury than OPN-/- mice. In bronchoalveolar lavage fluid from ARDS patients, high levels of OPN and also histone-OPN complexes were detected. In addition, OPN bound to histones with high affinity in vitro, resulting in less cytotoxicity and reduced formation of tissue-damaging neutrophil extracellular traps (NETs). The interaction between OPN and histones was dependent on posttranslational modification of OPN, i.e., phosphorylation. The findings demonstrate a novel role for OPN, modulating the pro-inflammatory and cytotoxic properties of free histones.
Collapse
|
10
|
White ES, Xia M, Murray S, Dyal R, Flaherty CM, Flaherty KR, Moore BB, Cheng L, Doyle TJ, Villalba J, Dellaripa PF, Rosas IO, Kurtis JD, Martinez FJ. Plasma Surfactant Protein-D, Matrix Metalloproteinase-7, and Osteopontin Index Distinguishes Idiopathic Pulmonary Fibrosis from Other Idiopathic Interstitial Pneumonias. Am J Respir Crit Care Med 2017; 194:1242-1251. [PMID: 27149370 DOI: 10.1164/rccm.201505-0862oc] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal interstitial lung disease (ILD) characterized by abnormal extracellular matrix (ECM) remodeling. We hypothesized that ECM remodeling might result in a plasma profile of proteins specific for IPF that could distinguish patients with IPF from other idiopathic ILDs. OBJECTIVES To identify biomarkers that might assist in distinguishing IPF from non-IPF ILD. METHODS We developed a panel of 35 ECM, ECM-related, and lung-specific analytes measured in plasma from 86 patients with IPF (derivation cohort) and in 63 patients with IPF (validation cohort). Comparison groups included patients with rheumatoid arthritis-associated ILD (RA-ILD; n = 33), patients with alternative idiopathic ILDs (a-ILD; n = 41), and healthy control subjects (n = 127). Univariable and multivariable logistic regression models identified biomarkers that differentiated patients with IPF from those with a-ILD. Both continuous and diagnostic threshold versions of biomarkers were considered; thresholds were chosen to maximize summed diagnostic sensitivity and specificity in univariate receiver-operating characteristic curve analysis. A diagnostic score was created from the most promising analytes. MEASUREMENTS AND MAIN RESULTS Plasma surfactant protein (SP)-D > 31 ng/ml, matrix metalloproteinase (MMP)-7 > 1.75 ng/ml, and osteopontin > 6 ng/ml each significantly distinguished patients with IPF from patients with a-ILD, both individually and in a combined index. The odds ratio for IPF when at least one analyte in the index exceeded the threshold was 4.4 (95% confidence interval, 2.0-9.7; P = 0.0003). When at least two analytes were elevated, the odds ratio for IPF increased to 5.0 (95% confidence interval, 2.2-11.5; P = 0.0002). CONCLUSIONS A biomarker index of SP-D, MMP-7, and osteopontin enhanced diagnostic accuracy in patients with IPF compared with those with non-IPF ILD. Our data suggest that this biomarker index may improve diagnostic confidence in IPF.
Collapse
Affiliation(s)
- Eric S White
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Meng Xia
- 2 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Susan Murray
- 2 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Rachel Dyal
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Candace M Flaherty
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin R Flaherty
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B Moore
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ling Cheng
- 3 Center for International Health Research, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island
| | | | | | - Paul F Dellaripa
- 5 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts; and
| | | | - Jonathan D Kurtis
- 3 Center for International Health Research, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Fernando J Martinez
- 6 Joan and Sanford Weill Department of Internal Medicine, Weill Cornell Medical College New York, New York
| |
Collapse
|
11
|
Gela A, Bhongir RKV, Mori M, Keenan P, Mörgelin M, Erjefält JS, Herwald H, Egesten A, Kasetty G. Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics. PLoS One 2016; 11:e0146192. [PMID: 26731746 PMCID: PMC4712133 DOI: 10.1371/journal.pone.0146192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial infections of the respiratory tract contribute to exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). There is also an increased risk of invasive pneumococcal disease in COPD. The underlying mechanisms are not fully understood but include impaired mucociliary clearance and structural remodeling of the airways. In addition, antimicrobial proteins that are constitutively expressed or induced during inflammatory conditions are an important part of the airway innate host defense. In the present study, we show that osteopontin (OPN), a multifunctional glycoprotein that is highly upregulated in the airways of COPD patients co-localizes with several antimicrobial proteins expressed in the airways. In vitro, OPN bound lactoferrin, secretory leukocyte peptidase inhibitor (SLPI), midkine, human beta defensin-3 (hBD-3), and thymic stromal lymphopoietin (TSLP) but showed low or no affinity for lysozyme and LL-37. Binding of OPN impaired the antibacterial activity against the important bacterial pathogens Streptococcus pneumoniae and Pseudomonas aeruginosa. Interestingly, OPN reduced lysozyme-induced killing of S. pneumoniae, a finding that could be explained by binding of OPN to the bacterial surface, thereby shielding the bacteria. A fragment of OPN generated by elastase of P. aeruginosa retained some inhibitory effect. Some antimicrobial proteins have additional functions. However, the muramidase-activity of lysozyme and the protease inhibitory function of SLPI were not affected by OPN. Taken together, OPN can contribute to the impairment of innate host defense by interfering with the function of antimicrobial proteins, thus increasing the vulnerability to acquire infections during COPD.
Collapse
Affiliation(s)
- Anele Gela
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Ravi K. V. Bhongir
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Michiko Mori
- Airway Inflammation Unit, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - Paul Keenan
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Matthias Mörgelin
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Jonas S. Erjefält
- Airway Inflammation Unit, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - Heiko Herwald
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Arne Egesten
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Gopinath Kasetty
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
- * E-mail:
| |
Collapse
|
12
|
Gela A, Kasetty G, Mörgelin M, Bergqvist A, Erjefält JS, Pease JE, Egesten A. Osteopontin binds and modulates functions of eosinophil-recruiting chemokines. Allergy 2016; 71:58-67. [PMID: 26411293 DOI: 10.1111/all.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Allergic asthma is characterized by eosinophilic inflammation and airway obstruction. There is also an increased risk of pulmonary infection caused by Streptococcus pneumoniae, in particular during severe asthma where high levels of the glycoprotein, osteopontin (OPN), are present in the airways. Eosinophils can be recruited by chemokines activating the receptor CCR3 including eotaxin-1/CCL11, eotaxin-2/CCL24, eotaxin-3/CCL26, RANTES/CCL5, and MEC/CCL28. In addition to inducing chemotaxis, several of these molecules have defensin-like antibacterial properties. This study set out to elucidate the functional consequences of OPN binding to eosinophil-recruiting chemokines. METHODS Antibacterial activities of the chemokines were investigated using viable count assays and electron microscopy. Binding studies were performed by means of surface plasmon resonance. The potential interference of OPN with antibacterial, receptor-activating, and lipopolysaccharide-neutralizing abilities of these chemokines was investigated. RESULTS We found that OPN bound all eosinophil-recruiting chemokines with high affinity except for CCL5. The eosinophil-recruiting chemokines all displayed bactericidal activity against S. pneumoniae, but only CCL26 and CCL28 retained high antibacterial activity in the presence of sodium chloride at physiologic concentrations. Preincubation of the chemokines with OPN strongly inhibited their antibacterial activity against S. pneumoniae but did not affect their ability to activate CCR3. All chemokines investigated showed LPS-neutralizing activity that was impaired by OPN only in the case of CCL24. CONCLUSIONS The data suggest that OPN may impair host defense activities of the chemokines without affecting their eosinophil-recruiting properties. This could be one mechanism explaining the increased vulnerability to acquire pneumococcal infection in parallel with sustained allergic inflammation in asthma.
Collapse
Affiliation(s)
- A. Gela
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - G. Kasetty
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - M. Mörgelin
- Division of Infection Medicine; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - A. Bergqvist
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - J. S. Erjefält
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - J. E. Pease
- Leukocyte Biology Section; NHLI; Faculty of Medicine; Imperial College of Science, Technology and Medicine; London UK
| | - A. Egesten
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| |
Collapse
|