1
|
Michicich M, Traylor Z, McCoy C, Valerio DM, Wilson A, Schneider M, Davis S, Barabas A, Mann RJ, LePage DF, Jiang W, Drumm ML, Kelley TJ, Conlon RA, Hodges CA. A W1282X cystic fibrosis mouse allows the study of pharmacological and gene-editing therapeutics to restore CFTR function. J Cyst Fibros 2025; 24:164-174. [PMID: 39532588 PMCID: PMC11788034 DOI: 10.1016/j.jcf.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND People with cystic fibrosis carrying two nonsense alleles lack CFTR-specific treatment. Growing evidence supports the hypothesis that nonsense mutation identity affects therapeutic response, calling for mutation-specific CF models. We describe a novel W1282X mouse model and compare it to an existing G542X mouse. METHODS The W1282X mouse was created using CRISPR/Cas9 to edit mouse Cftr. In this model, Cftr transcription was assessed using qRT-PCR and CFTR function was measured in the airway by nasal potential difference and in the intestine by short circuit current. Growth, survival, and intestinal motility were examined as well. Correction of W1282X CFTR was assessed pharmacologically and by gene-editing using a forskolin-induced swelling (FIS) assay in small intestine-derived organoids. RESULTS Homozygous W1282X mice demonstrate decreased Cftr mRNA, little to no CFTR function, and reduced survival, growth, and intestinal motility. W1282X organoids treated with various combinations of pharmacologic correctors display a significantly different amount of CFTR function than that of organoids from G542X mice. Successful gene editing of W1282X to wildtype sequence in intestinal organoids was achieved leading to restoration of CFTR function. CONCLUSIONS The W1282X mouse model recapitulates common human manifestations of CF similar to other CFTR null mice. Despite the similarities between the congenic W1282X and G542X models, they differ meaningfully in their response to identical pharmacological treatments. This heterogeneity highlights the importance of studying therapeutics across genotypes.
Collapse
Affiliation(s)
- Margaret Michicich
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Zachary Traylor
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Caitlan McCoy
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Dana M Valerio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Alma Wilson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Molly Schneider
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Sakeena Davis
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Amanda Barabas
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Rachel J Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - David F LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Weihong Jiang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States.
| |
Collapse
|
2
|
Trouvé P, Saint Pierre A, Férec C. Cystic Fibrosis: A Journey through Time and Hope. Int J Mol Sci 2024; 25:9599. [PMID: 39273547 PMCID: PMC11394767 DOI: 10.3390/ijms25179599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Just over thirty years is the span of a generation. It is also the time that has passed since the discovery of the gene responsible for cystic fibrosis. Today, it is safe to say that this discovery has revolutionized our understanding, research perspectives, and management of this disease, which was, thirty years ago, a pediatric condition with a grim prognosis. The aim of this review is to present the advances that science and medicine have brought to our understanding of the pathophysiology of the disease and its management, which in many ways, epitomizes modern molecular genetic research. Since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, modeling the CFTR protein, deciphering its function as an ion channel, and identifying its molecular partners have led to numerous therapeutic advances. The most significant advancement in this field has been the discovery of protein modulators that can target its membrane localization and chloride channel activity. However, further progress is needed to ensure that all patients can benefit from a therapy tailored to their mutations, with the primary challenge being the development of treatments for mutations leading to a complete absence of the protein. The present review delves into the history of the multifaceted world of CF, covering main historical facts, current landscape, clinical management, emerging therapies, patient perspectives, and the importance of ongoing research, bridging science and medicine in the fight against the disease.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Aude Saint Pierre
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
3
|
Morais P, Zhang R, Yu YT. Therapeutic Nonsense Suppression Modalities: From Small Molecules to Nucleic Acid-Based Approaches. Biomedicines 2024; 12:1284. [PMID: 38927491 PMCID: PMC11201248 DOI: 10.3390/biomedicines12061284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nonsense mutations are genetic mutations that create premature termination codons (PTCs), leading to truncated, defective proteins in diseases such as cystic fibrosis, neurofibromatosis type 1, Dravet syndrome, Hurler syndrome, Beta thalassemia, inherited bone marrow failure syndromes, Duchenne muscular dystrophy, and even cancer. These mutations can also trigger a cellular surveillance mechanism known as nonsense-mediated mRNA decay (NMD) that degrades the PTC-containing mRNA. The activation of NMD can attenuate the consequences of truncated, defective, and potentially toxic proteins in the cell. Since approximately 20% of all single-point mutations are disease-causing nonsense mutations, it is not surprising that this field has received significant attention, resulting in a remarkable advancement in recent years. In fact, since our last review on this topic, new examples of nonsense suppression approaches have been reported, namely new ways of promoting the translational readthrough of PTCs or inhibiting the NMD pathway. With this review, we update the state-of-the-art technologies in nonsense suppression, focusing on novel modalities with therapeutic potential, such as small molecules (readthrough agents, NMD inhibitors, and molecular glue degraders); antisense oligonucleotides; tRNA suppressors; ADAR-mediated RNA editing; targeted pseudouridylation; and gene/base editing. While these various modalities have significantly advanced in their development stage since our last review, each has advantages (e.g., ease of delivery and specificity) and disadvantages (manufacturing complexity and off-target effect potential), which we discuss here.
Collapse
Affiliation(s)
- Pedro Morais
- Drug Metabolism and Pharmacokinetics, Research and Development, Bayer Pharmaceuticals, 42113 Wuppertal, Germany
| | - Rui Zhang
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| |
Collapse
|
4
|
Premchandar A, Ming R, Baiad A, Da Fonte DF, Xu H, Faubert D, Veit G, Lukacs GL. Readthrough-induced misincorporated amino acid ratios guide mutant-specific therapeutic approaches for two CFTR nonsense mutations. Front Pharmacol 2024; 15:1389586. [PMID: 38725656 PMCID: PMC11079177 DOI: 10.3389/fphar.2024.1389586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Premature termination codons (PTCs) represent ∼9% of CF mutations that typically cause severe expression defects of the CFTR anion channel. Despite the prevalence of PTCs as the underlying cause of genetic diseases, understanding the therapeutic susceptibilities of their molecular defects, both at the transcript and protein levels remains partially elucidated. Given that the molecular pathologies depend on the PTC positions in CF, multiple pharmacological interventions are required to suppress the accelerated nonsense-mediated mRNA decay (NMD), to correct the CFTR conformational defect caused by misincorporated amino acids, and to enhance the inefficient stop codon readthrough. The G418-induced readthrough outcome was previously investigated only in reporter models that mimic the impact of the local sequence context on PTC mutations in CFTR. To identify the misincorporated amino acids and their ratios for PTCs in the context of full-length CFTR readthrough, we developed an affinity purification (AP)-tandem mass spectrometry (AP-MS/MS) pipeline. We confirmed the incorporation of Cys, Arg, and Trp residues at the UGA stop codons of G542X, R1162X, and S1196X in CFTR. Notably, we observed that the Cys and Arg incorporation was favored over that of Trp into these CFTR PTCs, suggesting that the transcript sequence beyond the proximity of PTCs and/or other factors can impact the amino acid incorporation and full-length CFTR functional expression. Additionally, establishing the misincorporated amino acid ratios in the readthrough CFTR PTCs aided in maximizing the functional rescue efficiency of PTCs by optimizing CFTR modulator combinations. Collectively, our findings contribute to the understanding of molecular defects underlying various CFTR nonsense mutations and provide a foundation to refine mutation-dependent therapeutic strategies for various CF-causing nonsense mutations.
Collapse
Affiliation(s)
| | - Ruiji Ming
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Abed Baiad
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Denis Faubert
- IRCM Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
5
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Tupayachi Ortiz MG, Baumlin N, Yoshida M, Salathe M. Response to Elexacaftor/Tezacaftor/Ivacaftor in people with cystic fibrosis with the N1303K mutation: Case report and review of the literature. Heliyon 2024; 10:e26955. [PMID: 38463894 PMCID: PMC10920363 DOI: 10.1016/j.heliyon.2024.e26955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Thousands of CFTR mutations have been identified, but only a fraction are known to cause CF, with the most common being the prototypical class II CFTR mutation F508del. Elexacaftor-Tezacaftor-Ivacaftor (ETI) is a CFTR modulator that significantly increases ppFEV1 and reduces exacerbation frequencies. It is indicated for people with CF (pwCF) 2 years or older with at least one copy of F508del or one copy of the other 177 CFTR mutations that are responsive to ETI based on clinical or in vitro data. N1303K is the second most common class II mutation in the U.S. but is not yet FDA-approved for CFTR modulator therapy. However, N1303K is very similar to the F508del mutation and reveals variable in vitro responses to ETI. Theratyping provides an opportunity to consider ETI therapy for pwCF with mutations currently not approved by the FDA. We describe the case of an adult CF patient with W1282X and N1303K CFTR mutations and advanced CF lung disease (ACFLD) and declining lung function in which ETI was started after theratyping of nasal cells showed a meaningful response to ETI (current enhanced to over 10% of WT CFTR). The patient experienced clinical improvement with a 5% improvement in ppFEV1 and 10% increase in weight. However, there was no change in sweat chloride and the increase in ppFEV1 was less than what has been described for ACFLD patients with more typical ETI-amenable mutations. However, the response was in line with a few other cases described in the literature. This suggests a partial functional CFTR rescue like first-generation modulators for F508del. Thus, pwCF with N1303K CFTR variant could be considered for ETI eligibility.
Collapse
Affiliation(s)
- Maria G Tupayachi Ortiz
- Division of Pulmonary and Critical Care Medicine, University of Miami Miller School of Medicine, 1951 NW 7th Ave, Suite 2278, Miami, FL, 33136, United States
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
| | - Makoto Yoshida
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
| |
Collapse
|
7
|
Lo Cicero S, Castelli G, Blaconà G, Bruno SM, Sette G, Pigliucci R, Villella VR, Esposito S, Zollo I, Spadaro F, Maria RD, Biffoni M, Cimino G, Amato F, Lucarelli M, Eramo A. L1077P CFTR pathogenic variant function rescue by Elexacaftor-Tezacaftor-Ivacaftor in cystic fibrosis patient-derived air-liquid interface (ALI) cultures and organoids: in vitro guided personalized therapy of non-F508del patients. Respir Res 2023; 24:217. [PMID: 37674160 PMCID: PMC10483775 DOI: 10.1186/s12931-023-02516-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Cystic fibrosis (CF) is caused by defects of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR-modulating drugs may overcome specific defects, such as the case of Trikafta, which is a clinically approved triple combination of Elexacaftor, Tezacaftor and Ivacaftor (ETI) that exhibited a strong ability to rescue the function of the most frequent F508del pathogenic variant even in genotypes with the mutated allele in single copy. Nevertheless, most rare genotypes lacking the F508del allele are still not eligible for targeted therapies. Via the innovative approach of using nasal conditionally reprogrammed cell (CRC) cell-based models that mimic patient disease in vitro, which are obtainable from each patient due to the 100% efficiency of the cell culture establishment, we theratyped orphan CFTR mutation L1077P. Protein studies, Forskolin-induced organoid swelling, and Ussing chamber assays congruently proved the L1077P variant function rescue by ETI. Notably, this rescue takes place even in the context of a single-copy L1077P allele, which appears to enhance its expression. Thus, the possibility of single-allele treatment also arises for rare genotypes, with an allele-specific modulation as part of the mechanism. Of note, besides providing indication of drug efficacy with respect to specific CFTR pathogenic variants or genotypes, this approach allows the evaluation of the response of single-patient cells within their genetic background. In this view, our studies support in vitro guided personalized CF therapies also for rare patients who are nearly excluded from clinical trials.
Collapse
Affiliation(s)
- Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Riccardo Pigliucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Speranza Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Immacolata Zollo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario 'A. Gemelli'-IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, AOU Policlinico Umberto I, Rome, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
8
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
9
|
Campbell AE, Dyle MC, Albanese R, Matheny T, Sudheendran K, Cortázar MA, Forman T, Fu R, Gillen AE, Caruthers MH, Floor SN, Calviello L, Jagannathan S. Compromised nonsense-mediated RNA decay results in truncated RNA-binding protein production upon DUX4 expression. Cell Rep 2023; 42:112642. [PMID: 37314931 PMCID: PMC10592454 DOI: 10.1016/j.celrep.2023.112642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Nonsense-mediated RNA decay (NMD) degrades transcripts carrying premature termination codons. NMD is thought to prevent the synthesis of toxic truncated proteins. However, whether loss of NMD results in widespread production of truncated proteins is unclear. A human genetic disease, facioscapulohumeral muscular dystrophy (FSHD), features acute inhibition of NMD upon expression of the disease-causing transcription factor, DUX4. Using a cell-based model of FSHD, we show production of truncated proteins from physiological NMD targets and find that RNA-binding proteins are enriched for aberrant truncations. The NMD isoform of one RNA-binding protein, SRSF3, is translated to produce a stable truncated protein, which is detected in FSHD patient-derived myotubes. Ectopic expression of truncated SRSF3 confers toxicity, and its downregulation is cytoprotective. Our results delineate the genome-scale impact of NMD loss. This widespread production of potentially deleterious truncated proteins has implications for FSHD biology as well as other genetic diseases where NMD is therapeutically modulated.
Collapse
Affiliation(s)
- Amy E Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael C Dyle
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roberto Albanese
- Functional Genomics Research Centre, Human Technopole, 20157 Milan, Italy; Computational Biology Research Centre, Human Technopole, 20157 Milan, Italy
| | - Tyler Matheny
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kavitha Sudheendran
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Michael A Cortázar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas Forman
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marvin H Caruthers
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Calviello
- Functional Genomics Research Centre, Human Technopole, 20157 Milan, Italy; Computational Biology Research Centre, Human Technopole, 20157 Milan, Italy
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Birimberg-Schwartz L, Ip W, Bartlett C, Avolio J, Vonk AM, Gunawardena T, Du K, Esmaeili M, Beekman JM, Rommens J, Strug L, Bear CE, Moraes TJ, Gonska T. Validating organoid-derived human intestinal monolayers for personalized therapy in cystic fibrosis. Life Sci Alliance 2023; 6:e202201857. [PMID: 37024122 PMCID: PMC10079552 DOI: 10.26508/lsa.202201857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Highly effective drugs modulating the defective protein encoded by the CFTR gene have revolutionized cystic fibrosis (CF) therapy. Preclinical drug-testing on human nasal epithelial (HNE) cell cultures and 3-dimensional human intestinal organoids (3D HIO) are used to address patient-specific variation in drug response and to optimize individual treatment for people with CF. This study is the first to report comparable CFTR functional responses to CFTR modulator treatment among patients with different classes of CFTR gene variants using the three methods of 2D HIO, 3D HIO, and HNE. Furthermore, 2D HIO showed good correlation to clinical outcome markers. A larger measurable CFTR functional range and access to the apical membrane were identified as advantages of 2D HIO over HNE and 3D HIO, respectively. Our study thus expands the utility of 2D intestinal monolayers as a preclinical drug testing tool for CF.
Collapse
Affiliation(s)
- Liron Birimberg-Schwartz
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Wan Ip
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Claire Bartlett
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Julie Avolio
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Annelotte M Vonk
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherland
| | - Tarini Gunawardena
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Kai Du
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Mohsen Esmaeili
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jeffrey M Beekman
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherland
| | - Johanna Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lisa Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Statistical Sciences and Computer Science, University of Toronto, Toronto, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Christine E Bear
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Theo J Moraes
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Tanja Gonska
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
11
|
Gunawardena TNA, Bozóky Z, Bartlett C, Ouyang H, Eckford PDW, Moraes TJ, Ratjen F, Gonska T, Bear CE. Correlation of Electrophysiological and Fluorescence-Based Measurements of Modulator Efficacy in Nasal Epithelial Cultures Derived from People with Cystic Fibrosis. Cells 2023; 12:cells12081174. [PMID: 37190083 DOI: 10.3390/cells12081174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
It has been suggested that in vitro studies of the rescue effect of CFTR modulator drugs in nasal epithelial cultures derived from people with cystic fibrosis have the potential to predict clinical responses to the same drugs. Hence, there is an interest in evaluating different methods for measuring in vitro modulator responses in patient-derived nasal cultures. Commonly, the functional response to CFTR modulator combinations in these cultures is assessed by bioelectric measurements, using the Ussing chamber. While this method is highly informative, it is time-consuming. A fluorescence-based, multi-transwell method for assaying regulated apical chloride conductance (Fl-ACC) promises to provide a complementary approach to theratyping in patient-derived nasal cultures. In the present work, we compared Ussing chamber measurements and fluorescence-based measurements of CFTR-mediated apical conductance in matching, fully differentiated nasal cultures derived from CF patients, homozygous for F508del (n = 31) or W1282X (n = 3), or heterozygous for Class III mutations G551D or G178R (n = 5). These cultures were obtained through a bioresource called the Cystic Fibrosis Canada-Sick Kids Program in Individual CF Therapy (CFIT). We found that the Fl-ACC method was effective in detecting positive responses to interventions for all genotypes. There was a correlation between patient-specific drug responses measured in cultures harbouring F508del, as measured using the Ussing chamber technique and the fluorescence-based assay (Fl-ACC). Finally, the fluorescence-based assay has the potential for greater sensitivity for detecting responses to pharmacological rescue strategies targeting W1282X.
Collapse
Affiliation(s)
- Tarini N A Gunawardena
- Program of Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Zoltán Bozóky
- Providence Health Care, Vancouver, BC V6Z 1Y6, Canada
| | - Claire Bartlett
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hong Ouyang
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Paul D W Eckford
- Program of Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Theo J Moraes
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatrics, Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Felix Ratjen
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatrics, Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Tanja Gonska
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christine E Bear
- Program of Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Jackson JJ, Mao Y, White TR, Foye C, Oliver KE. Features of CFTR mRNA and implications for therapeutics development. Front Genet 2023; 14:1166529. [PMID: 37168508 PMCID: PMC10165737 DOI: 10.3389/fgene.2023.1166529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease impacting ∼100,000 people worldwide. This lethal disorder is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-binding cassette-class C protein. More than 2,100 variants have been identified throughout the length of CFTR. These defects confer differing levels of severity in mRNA and/or protein synthesis, folding, gating, and turnover. Drug discovery efforts have resulted in recent development of modulator therapies that improve clinical outcomes for people living with CF. However, a significant portion of the CF population has demonstrated either no response and/or adverse reactions to small molecules. Additional therapeutic options are needed to restore underlying genetic defects for all patients, particularly individuals carrying rare or refractory CFTR variants. Concerted focus has been placed on rescuing variants that encode truncated CFTR protein, which also harbor abnormalities in mRNA synthesis and stability. The current mini-review provides an overview of CFTR mRNA features known to elicit functional consequences on final protein conformation and function, including considerations for RNA-directed therapies under investigation. Alternative exon usage in the 5'-untranslated region, polypyrimidine tracts, and other sequence elements that influence splicing are discussed. Additionally, we describe mechanisms of CFTR mRNA decay and post-transcriptional regulation mediated through interactions with the 3'-untranslated region (e.g. poly-uracil sequences, microRNAs). Contributions of synonymous single nucleotide polymorphisms to CFTR transcript utilization are also examined. Comprehensive understanding of CFTR RNA biology will be imperative for optimizing future therapeutic endeavors intended to address presently untreatable forms of CF.
Collapse
Affiliation(s)
- JaNise J. Jackson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Yiyang Mao
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Tyshawn R. White
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Catherine Foye
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
- *Correspondence: Kathryn E. Oliver,
| |
Collapse
|
14
|
Editorial overview - 2022 respiratory issue: Cystic fibrosis pathophysiology, models, and novel therapies. Curr Opin Pharmacol 2022; 67:102289. [PMID: 36152600 DOI: 10.1016/j.coph.2022.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Lee RE, Lewis CA, He L, Bulik-Sullivan EC, Gallant SC, Mascenik TM, Dang H, Cholon DM, Gentzsch M, Morton LC, Minges JT, Theile JW, Castle NA, Knowles MR, Kimple AJ, Randell SH. Small molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough. J Clin Invest 2022; 132:154571. [PMID: 35900863 PMCID: PMC9479597 DOI: 10.1172/jci154571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed 2 non-CF and 6 CF airway epithelial cell lines, 3 of which were homozygous for the W1282X PTC variant. The Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The 2 F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors’ clinical response. Cereblon E3 ligase modulators targeting eukaryotic release factor 3a (eRF3a) rescued W1282X-CFTR function to approximately 20% of WT levels and, when paired with G418, rescued G542X-CFTR function to approximately 50% of WT levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirrored primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lihua He
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Emily C Bulik-Sullivan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Samuel C Gallant
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Teresa M Mascenik
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Martina Gentzsch
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lisa C Morton
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - John T Minges
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | | | - Neil A Castle
- Research and Development, Icagen, Durham, United States of America
| | - Michael R Knowles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Adam J Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| |
Collapse
|
16
|
Laselva O, Criscione ML, Allegretta C, Di Gioia S, Liso A, Conese M. Insulin-Like Growth Factor Binding Protein (IGFBP-6) as a Novel Regulator of Inflammatory Response in Cystic Fibrosis Airway Cells. Front Mol Biosci 2022; 9:905468. [PMID: 35903151 PMCID: PMC9322660 DOI: 10.3389/fmolb.2022.905468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cystic Fibrosis (CF) patients are prone to contracting bacterial lung infections with opportunistic pathogens, especially Pseudomonas aeruginosa. Prolonged P. aeruginosa infections have been linked to chronic inflammation in the CF lung, whose hallmarks are increased levels of cytokines (i.e., TNF-α, IL-1β, IL-6) and neutrophil attraction by chemokines, like IL-8. Recently, insulin-like growth factor binding protein 6 (IGFBP-6) has been shown to play a putative role in the immune system and was found at higher levels in the sera and synovial tissue of rheumatoid arthritis patients. Moreover, it has been demonstrated that IGFBP-6 has chemoattractant properties towards cells of the innate (neutrophils, monocytes) and adaptive (T cells) immunity. However, it is not known whether IGFBP-6 expression is dysregulated in airway epithelial cells under infection/inflammatory conditions. Therefore, we first measured the basal IGFBP-6 mRNA and protein levels in bronchial epithelial cells lines (Wt and F508del-CFTR CFBE), finding they both are upregulated in F508del-CFTR CFBE cells. Interestingly, LPS and IL-1β+TNFα treatments increased the IGFBP-6 mRNA level, that was reduced after treatment with an anti-inflammatory (Dimethyl Fumarate) in CFBE cell line and in patient-derived nasal epithelial cultures. Lastly, we demonstrated that IGFBP-6 reduced the level of pro-inflammatory cytokines in both CFBE and primary nasal epithelial cells, without affecting rescued CFTR expression and function. The addition of a neutralizing antibody to IGFBP-6 increased pro-inflammatory cytokines expression under challenge with LPS. Together, these data suggest that IGFBP-6 may play a direct role in the CF-associated inflammation.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| | - Maria Laura Criscione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Caterina Allegretta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| |
Collapse
|
17
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
18
|
Abstract
Dominant missense mutations in RanBP2/Nup358 cause Acute Necrotizing Encephalopathy (ANE), a pediatric disease where seemingly healthy individuals develop a cytokine storm that is restricted to the central nervous system in response to viral infection. Untreated, this condition leads to seizures, coma, long-term neurological damage and a high rate of mortality. The exact mechanism by which RanBP2 mutations contribute to the development of ANE remains elusive. In November 2021, a number of clinicians and basic scientists presented their work on this disease and on the interactions between RanBP2/Nup358, viral infections, the innate immune response and other cellular processes.
Collapse
Affiliation(s)
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital, and the Department of Women and Children's Health, King's College London, London, UK
| | - Kiran T Thakur
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York
| |
Collapse
|
19
|
Abstract
Cystic fibrosis (CF), the most common genetic disease among the Caucasian population, is caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR), a chloride epithelial channel whose dysfunction results in severe airway obstruction and inflammation, eventually leading to respiratory failure. The discovery of the CFTR gene in 1989 provided new insights into the basic genetic defect of CF and allowed the study of potential therapies targeting the aberrant protein. In recent years, the approval of “CFTR modulators”, the first molecules designed to selectively target the underlying molecular defects caused by specific CF-causing mutations, marked the beginning of a new era in CF treatment. These drugs have been demonstrated to significantly improve lung function and ameliorate the quality of life of many patients, especially those bearing the most common CFTR mutatant F508del. However, a substantial portion of CF subjects, accounting for ~20% of the European CF population, carry rare CFTR mutations and are still not eligible for CFTR modulator therapy, partly due to our limited understanding of the molecular defects associated with these genetic alterations. Thus, the implementation of models to study the phenotype of these rare CFTR mutations and their response to currently approved drugs, as well as to compounds under research and clinical development, is of key importance. The purpose of this review is to summarize the current knowledge on the potential of CFTR modulators in rescuing the function of rare CF-causing CFTR variants, focusing on both investigational and clinically approved molecules.
Collapse
|
20
|
Carlile GW, Yang Q, Matthes E, Liao J, Birault V, Sneddon HF, Poole DL, Hall CJ, Hanrahan JW, Thomas DY. The NSAID glafenine rescues class 2 CFTR mutants via cyclooxygenase 2 inhibition of the arachidonic acid pathway. Sci Rep 2022; 12:4595. [PMID: 35302062 PMCID: PMC8930988 DOI: 10.1038/s41598-022-08661-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Most cases of cystic fibrosis (CF) are caused by class 2 mutations in the cystic fibrosis transmembrane regulator (CFTR). These proteins preserve some channel function but are retained in the endoplasmic reticulum (ER). Partial rescue of the most common CFTR class 2 mutant, F508del-CFTR, has been achieved through the development of pharmacological chaperones (Tezacaftor and Elexacaftor) that bind CFTR directly. However, it is not clear whether these drugs will rescue all class 2 CFTR mutants to a medically relevant level. We have previously shown that the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen can correct F508del-CFTR trafficking. Here, we utilized RNAi and pharmacological inhibitors to determine the mechanism of action of the NSAID glafenine. Using cellular thermal stability assays (CETSAs), we show that it is a proteostasis modulator. Using medicinal chemistry, we identified a derivative with a fourfold increase in CFTR corrector potency. Furthermore, we show that these novel arachidonic acid pathway inhibitors can rescue difficult-to-correct class 2 mutants, such as G85E-CFTR > 13%, that of non-CF cells in well-differentiated HBE cells. Thus, the results suggest that targeting the arachidonic acid pathway may be a profitable way of developing correctors of certain previously hard-to-correct class 2 CFTR mutations.
Collapse
Affiliation(s)
- Graeme W Carlile
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada.
| | - Qi Yang
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Elizabeth Matthes
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jie Liao
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Véronique Birault
- Translation Department, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Helen F Sneddon
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, Heslington, York, YO10 5DD, UK
| | - Darren L Poole
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Callum J Hall
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - John W Hanrahan
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - David Y Thomas
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
21
|
Iazzi M, Astori A, St-Germain J, Raught B, Gupta GD. Proximity Profiling of the CFTR Interaction Landscape in Response to Orkambi. Int J Mol Sci 2022; 23:2442. [PMID: 35269585 PMCID: PMC8910062 DOI: 10.3390/ijms23052442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.
Collapse
Affiliation(s)
- Melissa Iazzi
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Audrey Astori
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Jonathan St-Germain
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Gagan D. Gupta
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| |
Collapse
|
22
|
Michaels WE, Pena-Rasgado C, Kotaria R, Bridges RJ, Hastings ML. Open reading frame correction using splice-switching antisense oligonucleotides for the treatment of cystic fibrosis. Proc Natl Acad Sci U S A 2022; 119:e2114886119. [PMID: 35017302 PMCID: PMC8784102 DOI: 10.1073/pnas.2114886119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
CFTR gene mutations that result in the introduction of premature termination codons (PTCs) are common in cystic fibrosis (CF). This mutation type causes a severe form of the disease, likely because of low CFTR messenger RNA (mRNA) expression as a result of nonsense-mediated mRNA decay, as well as the production of a nonfunctional, truncated CFTR protein. Current therapeutics for CF, which target residual protein function, are less effective in patients with these types of mutations due in part to low CFTR protein levels. Splice-switching antisense oligonucleotides (ASOs), designed to induce skipping of exons in order to restore the mRNA open reading frame, have shown therapeutic promise preclinically and clinically for a number of diseases. We hypothesized that ASO-mediated skipping of CFTR exon 23 would recover CFTR activity associated with terminating mutations in the exon, including CFTR p.W1282X, the fifth most common mutation in CF. Here, we show that CFTR lacking the amino acids encoding exon 23 is partially functional and responsive to corrector and modulator drugs currently in clinical use. ASO-induced exon 23 skipping rescued CFTR expression and chloride current in primary human bronchial epithelial cells isolated from a homozygote CFTR-W1282X patient. These results support the use of ASOs in treating CF patients with CFTR class I mutations in exon 23 that result in unstable CFTR mRNA and truncations of the CFTR protein.
Collapse
Affiliation(s)
- Wren E Michaels
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Cecilia Pena-Rasgado
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Rusudan Kotaria
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Robert J Bridges
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064;
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064;
| |
Collapse
|
23
|
Integrity and Stability of PTC Bearing CFTR mRNA and Relevance to Future Modulator Therapies in Cystic Fibrosis. Genes (Basel) 2021; 12:genes12111810. [PMID: 34828417 PMCID: PMC8621375 DOI: 10.3390/genes12111810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Major advances have recently been made in the development and application of CFTR (cystic fibrosis transmembrane conductance regulator) mutation class-specific modulator therapies, but to date, there are no approved modulators for Class I mutations, i.e., those introducing a premature termination codon (PTC) into the CFTR mRNA. Such mutations induce nonsense-mediated decay (NMD), a cellular quality control mechanism that reduces the quantity of PTC bearing mRNAs, presumably to avoid translation of potentially deleterious truncated CFTR proteins. The NMD-mediated reduction of PTC-CFTR mRNA molecules reduces the efficacy of one of the most promising approaches to treatment of such mutations, namely, PTC readthrough therapy, using molecules that induce the incorporation of near-cognate amino acids at the PTC codon, thereby enabling translation of a full-length protein. In this study, we measure the effect of three different PTC mutations on the abundance, integrity, and stability of respective CFTR mRNAs, using CFTR specific RT-qPCR-based assays. Altogether, our data suggest that optimized rescue of PTC mutations has to take into account (1) the different steady-state levels of the CFTR mRNA associated with each specific PTC mutation; (2) differences in abundance between the 3' and 5' regions of CFTR mRNA, even following PTC readthrough or NMD inhibition; and (3) variable effects on CFTR mRNA stability for each specific PTC mutation.
Collapse
|
24
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
25
|
Ogawa M, Jiang JX, Xia S, Yang D, Ding A, Laselva O, Hernandez M, Cui C, Higuchi Y, Suemizu H, Dorrell C, Grompe M, Bear CE, Ogawa S. Generation of functional ciliated cholangiocytes from human pluripotent stem cells. Nat Commun 2021; 12:6504. [PMID: 34764255 PMCID: PMC8586142 DOI: 10.1038/s41467-021-26764-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
The derivation of mature functional cholangiocytes from human pluripotent stem cells (hPSCs) provides a model for studying the pathogenesis of cholangiopathies and for developing therapies to treat them. Current differentiation protocols are not efficient and give rise to cholangiocytes that are not fully mature, limiting their therapeutic applications. Here, we generate functional hPSC-derived cholangiocytes that display many characteristics of mature bile duct cells including high levels of cystic fibrosis transmembrane conductance regulator (CFTR) and the presence of primary cilia capable of sensing flow. With this level of maturation, these cholangiocytes are amenable for testing the efficacy of cystic fibrosis drugs and for studying the role of cilia in cholangiocyte development and function. Transplantation studies show that the mature cholangiocytes generate ductal structures in the liver of immunocompromised mice indicating that it may be possible to develop cell-based therapies to restore bile duct function in patients with biliary disease.
Collapse
Affiliation(s)
- Mina Ogawa
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Jia-Xin Jiang
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Sunny Xia
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Donghe Yang
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Avrilynn Ding
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Onofrio Laselva
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Marcela Hernandez
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Changyi Cui
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Yuichiro Higuchi
- grid.452212.20000 0004 0376 978XCentral Institute for Experimental Animals, Kawasaki, Kanagawa Japan
| | - Hiroshi Suemizu
- grid.452212.20000 0004 0376 978XCentral Institute for Experimental Animals, Kawasaki, Kanagawa Japan
| | - Craig Dorrell
- grid.5288.70000 0000 9758 5690Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Markus Grompe
- grid.5288.70000 0000 9758 5690Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Christine E. Bear
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, Toronto, ON Canada
| | - Shinichiro Ogawa
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada. .,Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
A new platform for high-throughput therapy testing on iPSC-derived lung progenitor cells from cystic fibrosis patients. Stem Cell Reports 2021; 16:2825-2837. [PMID: 34678210 PMCID: PMC8581165 DOI: 10.1016/j.stemcr.2021.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
For those people with cystic fibrosis carrying rare CFTR mutations not responding to currently available therapies, there is an unmet need for relevant tissue models for therapy development. Here, we describe a new testing platform that employs patient-specific induced pluripotent stem cells (iPSCs) differentiated to lung progenitor cells that can be studied using a dynamic, high-throughput fluorescence-based assay of CFTR channel activity. Our proof-of-concept studies support the potential use of this platform, together with a Canadian bioresource that contains iPSC lines and matched nasal cultures from people with rare mutations, to advance patient-oriented therapy development. Interventions identified in the high-throughput, stem cell-based model and validated in primary nasal cultures from the same person have the potential to be advanced as therapies. A Canadian resource (CFIT) has CF donor-matched iPSCs and nasal epithelial cells Lung progenitor cells (LPCs) differentiated from iPSCs express CFTR LPCs from people with rare CFTR mutations enable high-throughput therapy testing Matching nasal cultures can validate patient-specific drug responses in LPCs
Collapse
|
27
|
Comprehensive Analysis of Combinatorial Pharmacological Treatments to Correct Nonsense Mutations in the CFTR Gene. Int J Mol Sci 2021; 22:ijms222111972. [PMID: 34769402 PMCID: PMC8584557 DOI: 10.3390/ijms222111972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.
Collapse
|
28
|
Therapeutic Approaches for Patients with Cystic Fibrosis Not Eligible for Current CFTR Modulators. Cells 2021; 10:cells10102793. [PMID: 34685773 PMCID: PMC8534516 DOI: 10.3390/cells10102793] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis is a severe autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, a chloride channel expressed in many epithelial cells. New drugs called CFTR modulators aim at restoring the CFTR protein function, and they will benefit many patients with cystic fibrosis in the near future. However, some patients bear rare mutations that are not yet eligible for CFTR modulators, although they might be amenable to these new disease-modifying drugs. Moreover, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. The purpose of this review is to provide an overview of different approaches pursued to treat patients bearing mutations ineligible for CFTR modulators. One approach is to broaden the numbers of mutations eligible for CFTR modulators. This requires developing strategies to evaluate drugs in populations bearing very rare genotypes. Other approaches aiming at correcting the CFTR defect develop new mutation-specific or mutation-agnostic therapies for mutations that do not produce a CFTR protein: readthrough agents for nonsense mutations, nucleic acid-based therapies, RNA- or DNA-based, and cell-based therapies. Most of these approaches are in pre-clinical development or, for some of them, early clinical phases. Many hurdles and challenges will have to be solved before they can be safely translated to patients.
Collapse
|
29
|
Functional Restoration of CFTR Nonsense Mutations in Intestinal Organoids. J Cyst Fibros 2021; 21:246-253. [PMID: 34666947 DOI: 10.1016/j.jcf.2021.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pharmacotherapies for people with cystic fibrosis (pwCF) who have premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are under development. Thus far, clinical studies focused on compounds that induce translational readthrough (RT) at the mRNA PTC location. Recent studies using primary airway cells showed that PTC functional restoration can be achieved through combining compounds with multiple mode-of-actions. Here, we assessed induction of CFTR function in PTC-containing intestinal organoids using compounds targeting RT, nonsense mRNA mediated decay (NMD) and CFTR protein modulation. METHODS Rescue of PTC CFTR protein was assessed by forskolin-induced swelling of 12 intestinal organoid cultures carrying distinct PTC mutations. Effects of compounds on mRNA CFTR level was assessed by RT-qPCRs. RESULTS Whilst response varied between donors, significant rescue of CFTR function was achieved for most donors with the quintuple combination of a commercially available pharmacological equivalent of the RT compound (ELX-02-disulfate or ELX-02ds), NMD inhibitor SMG1i, correctors VX-445 and VX-661 and potentiator VX-770. The quintuple combination of pharmacotherapies reached swelling quantities higher than the mean swelling of three VX-809/VX-770-rescued F508del/F508del organoid cultures, indicating level of rescue is of clinical relevance as VX-770/VX-809-mediated F508del/F508del rescue in organoids correlate with substantial improvement of clinical outcome. CONCLUSIONS Whilst variation in efficacy was observed between genotypes as well as within genotypes, the data suggests that strong pharmacological rescue of PTC requires a combination of drugs that target RT, NMD and protein function.
Collapse
|
30
|
Three-Dimensional Airway Spheroids and Organoids for Cystic Fibrosis Research. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive multi-organ disease caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, with morbidity and mortality primacy related to the lung disease. The CFTR protein, a chloride/bicarbonate channel, is expressed at the apical side of airway epithelial cells and is mainly involved in appropriate ion and fluid transport across the epithelium. Although many animal and cellular models have been developed to study the pathophysiological consequences of the lack/dysfunction of CFTR, only the three-dimensional (3D) structures termed “spheroids” and “organoids” can enable the reconstruction of airway mucosa to model organ development, disease pathophysiology, and drug screening. Airway spheroids and organoids can be derived from different sources, including adult lungs and induced pluripotent stem cells (iPSCs), each with its advantages and limits. Here, we review the major features of airway spheroids and organoids, anticipating that their potential in the CF field has not been fully shown. Further work is mandatory to understand whether they can accomplish better outcomes than other culture conditions of airway epithelial cells for CF personalized therapies and tissue engineering aims.
Collapse
|
31
|
Mutyam V, Sharma J, Li Y, Peng N, Chen J, Tang LP, Falk Libby E, Singh AK, Conrath K, Rowe SM. Novel Correctors and Potentiators Enhance Translational Readthrough in CFTR Nonsense Mutations. Am J Respir Cell Mol Biol 2021; 64:604-616. [PMID: 33616476 DOI: 10.1165/rcmb.2019-0291oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Premature-termination codons (PTCs) in CFTR (cystic fibrosis [CF] transmembrane conductance regulator) result in nonfunctional CFTR protein and are the proximate cause of ∼11% of CF-causing alleles, for which no treatments exist. The CFTR corrector lumacaftor and the potentiator ivacaftor improve CFTR function with terminal PTC mutations and enhance the effect of readthrough agents. Novel correctors GLPG2222 (corrector 1 [C1]), GLPG3221 (corrector 2 [C2]), and potentiator GLPG1837 compare favorably with lumacaftor and ivacaftor in vitro. Here, we evaluated the effect of correctors C1a and C2a (derivatives of C1 and C2) and GLPG1837 alone or in combination with the readthrough compound G418 on CFTR function using heterologous Fischer rat thyroid (FRT) cells, the genetically engineered human bronchial epithelial (HBE) 16HBE14o- cell lines, and primary human cells with PTC mutations. In FRT lines pretreated with G418, GLPG1837 elicited dose-dependent increases in CFTR activity that exceeded those from ivacaftor in FRT-W1282X and FRT-R1162X cells. A three-mechanism strategy consisting of G418, GLPG1837, and two correctors (C1a + C2a) yielded the greatest functional improvements in FRT and 16HBE14o- PTC variants, noting that correction and potentiation without readthrough was sufficient to stimulate CFTR activity for W1282X cells. GLPG1837 + C1a + C2a restored substantial function in G542X/F508del HBE cells and restored even more function for W1282X/F508del cells, largely because of the corrector/potentiator effect, with no additional benefit from G418. In G542X/R553X or R1162X/R1162X organoids, enhanced forskolin-induced swelling was observed with G418 + GLPG1837 + C1a + C2a, although GLPG1837 + C1a + C2a alone was sufficient to improve forskolin-induced swelling in W1282X/W1282X organoids. Combination of CFTR correctors, potentiators, and readthrough compounds augments the functional repair of CFTR nonsense mutations, indicating the potential for novel correctors and potentiators to restore function to truncated W1282X CFTR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Steven M Rowe
- Department of Medicine.,Department of Pediatrics.,Department of Cell Developmental and Integrative Biology, and.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
33
|
Laselva O, Qureshi Z, Zeng ZW, Petrotchenko EV, Ramjeesingh M, Hamilton CM, Huan LJ, Borchers CH, Pomès R, Young R, Bear CE. Identification of binding sites for ivacaftor on the cystic fibrosis transmembrane conductance regulator. iScience 2021; 24:102542. [PMID: 34142049 PMCID: PMC8184517 DOI: 10.1016/j.isci.2021.102542] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Ivacaftor (VX-770) was the first cystic fibrosis transmembrane conductance regulator (CFTR) modulatory drug approved for the treatment of patients with cystic fibrosis. Electron cryomicroscopy (cryo-EM) studies of detergent-solubilized CFTR indicated that VX-770 bound to a site at the interface between solvent and a hinge region in the CFTR protein conferred by transmembrane (tm) helices: tm4, tm5, and tm8. We re-evaluated VX-770 binding to CFTR in biological membranes using photoactivatable VX-770 probes. One such probe covalently labeled CFTR at two sites as determined following trypsin digestion and analysis by tandem-mass spectrometry. One labeled peptide resides in the cytosolic loop 4 of CFTR and the other is located in tm8, proximal to the site identified by cryo-EM. Complementary data from functional and molecular dynamic simulation studies support a model, where VX-770 mediates potentiation via multiple sites in the CFTR protein.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Zafar Qureshi
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Zhi-Wei Zeng
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Evgeniy V. Petrotchenko
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Mohabir Ramjeesingh
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | | | - Ling-Jun Huan
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Régis Pomès
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Robert Young
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Christine E. Bear
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Santos L, Mention K, Cavusoglu-Doran K, Sanz DJ, Bacalhau M, Lopes-Pacheco M, Harrison PT, Farinha CM. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros 2021; 21:181-187. [PMID: 34103250 DOI: 10.1016/j.jcf.2021.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND W1282X-CFTR variant (c.3846G>A) is the second most common nonsense cystic fibrosis (CF)-causing mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Even though remarkable breakthroughs have been done towards CF treatment with the approval of four CFTR protein modulators, none of these are approved for patients with nonsense mutations. CRISPR gene editing tools can be of great value to permanently correct the genetic defects caused by these mutations. METHODS We compared the capacity of homology-directed repair (HDR) mediated by Cas9 or Cas12a to correct W1282X CFTR mutation in the CFF-16HBEge W1282X CFTR cell line (obtained from CFF), using Cas9/gRNA and Cas12a/gRNA ribonucleoproteins (RNPs) and single strand DNA (ssODN) oligonucleotide donors. RESULTS Cas9 shows higher levels of correction than Cas12a as, by electroporating cells with Cas9 RNPs and ssODN donor, nearly 18% of precise editing was achieved compared to just 8% for Cas12a. Such levels of correction increase the abundance of CFTR mRNA and protein, and partially restore CFTR function in the pool of edited cells to 18% of WT CFTR function. Moreover, homozygous corrected clones produced levels of mRNA, protein, and function comparable to those of cells expressing WT CFTR. CONCLUSION Altogether, this work demonstrates the potential of gene editing as a therapeutic strategy for CF directly correcting the root cause of the disease.
Collapse
Affiliation(s)
- Lúcia Santos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal; Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Karen Mention
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | | | - David J Sanz
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Mafalda Bacalhau
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Miquéias Lopes-Pacheco
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Patrick T Harrison
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Carlos M Farinha
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.
| |
Collapse
|
35
|
Laselva O, Bartlett C, Gunawardena TNA, Ouyang H, Eckford PDW, Moraes TJ, Bear CE, Gonska T. Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator. Eur Respir J 2021; 57:2002774. [PMID: 33303536 PMCID: PMC8209484 DOI: 10.1183/13993003.02774-2020] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Physiology, University of Toronto, Toronto, ON, Canada
| | - Claire Bartlett
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tarini N A Gunawardena
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hong Ouyang
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul D W Eckford
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Christine E Bear
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Physiology, University of Toronto, Toronto, ON, Canada
- Dept of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tanja Gonska
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Silva IAL, Railean V, Duarte A, Amaral MD. Personalized Medicine Based on Nasal Epithelial Cells: Comparative Studies with Rectal Biopsies and Intestinal Organoids. J Pers Med 2021; 11:421. [PMID: 34065744 PMCID: PMC8156700 DOI: 10.3390/jpm11050421] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
As highly effective CFTR modulator therapies (HEMT) emerge, there is an unmet need to find effective drugs for people with CF (PwCF) with ultra-rare mutations who are too few for classical clinical trials and for whom there are no drug discovery programs. Therefore, biomarkers reliably predicting the benefit from CFTR modulator therapies are essential to find effective drugs for PwCF through personalized approaches termed theranostics. Here, we assess CFTR basal function and the individual responses to CFTR modulators in primary human nasal epithelial (pHNE) cells from PwCF carrying rare mutations and compare these measurements with those in native rectal biopsies and intestinal organoids, respectively, in the same individual. The basal function in pHNEs shows good correlation with CFTR basal function in rectal biopsies. In parallel, CFTR rescue in pHNEs by CFTR modulators correlates to that in intestinal organoids. Altogether, results show that pHNEs are a bona fide theranostic model to assess CFTR rescue by CFTR modulator drugs, in particular for PwCF and rare mutations.
Collapse
Affiliation(s)
| | | | | | - Margarida D. Amaral
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal; (I.A.L.S.); (V.R.); (A.D.)
| |
Collapse
|
37
|
Graeber SY, Vitzthum C, Mall MA. Potential of Intestinal Current Measurement for Personalized Treatment of Patients with Cystic Fibrosis. J Pers Med 2021; 11:jpm11050384. [PMID: 34066648 PMCID: PMC8151208 DOI: 10.3390/jpm11050384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Refinement of personalized treatment of cystic fibrosis (CF) with emerging medicines targeting the CF basic defect will likely benefit from biomarkers sensitive to detect improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function in individual patients. Intestinal current measurement (ICM) is a technique that enables quantitative assessment of CFTR chloride channel function in rectal tissues or other intestinal epithelia. ICM was originally developed to study the CF ion transport defect in the intestine and has been established as a sensitive biomarker of CFTR function and diagnostic test for CF. With the emergence of CFTR-directed therapeutics, ICM has become an important tool to estimate the level of rescue of CFTR function achieved by approved CFTR modulators, both at the level of CFTR genotype groups, as well as individual patients with CF. In combination with preclinical patient-derived cell culture models, ICM may aid the development of targeted therapies for patients with rare CFTR mutations. Here, we review the principles of ICM and examine how this CFTR biomarker may be used to support diagnostic testing and enhance personalized medicine for individual patients with common as well as rare CFTR mutations in the new era of medicines targeting the underlying cause of CF.
Collapse
Affiliation(s)
- Simon Y. Graeber
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
| | - Constanze Vitzthum
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
| | - Marcus A. Mall
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-(30)-450-566-182; Fax: +49-(30)-450-566-931
| |
Collapse
|
38
|
Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22094448. [PMID: 33923202 PMCID: PMC8123210 DOI: 10.3390/ijms22094448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.
Collapse
|
39
|
Maule G, Ensinck M, Bulcaen M, Carlon MS. Rewriting CFTR to cure cystic fibrosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:185-224. [PMID: 34175042 DOI: 10.1016/bs.pmbts.2020.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive monogenic disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Although F508del is the most frequent mutation, there are in total 360 confirmed disease-causing CFTR mutations, impairing CFTR production, function and stability. Currently, the only causal treatments available are CFTR correctors and potentiators that directly target the mutant protein. While these pharmacological advances and better symptomatic care have improved life expectancy of people with CF, none of these treatments provides a cure. The discovery and development of programmable nucleases, in particular CRISPR nucleases and derived systems, rekindled the field of CF gene therapy, offering the possibility of a permanent correction of the CFTR gene. In this review we will discuss different strategies to restore CFTR function via gene editing correction of CFTR mutations or enhanced CFTR expression, and address how best to deliver these treatments to target cells.
Collapse
Affiliation(s)
- Giulia Maule
- Department CIBIO, University of Trento, Trento, Italy; Institute of Biophysics, National Research Council, Trento, Italy
| | - Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Mattijs Bulcaen
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Marianne S Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium.
| |
Collapse
|
40
|
McHugh DR, Cotton CU, Hodges CA. Synergy between Readthrough and Nonsense Mediated Decay Inhibition in a Murine Model of Cystic Fibrosis Nonsense Mutations. Int J Mol Sci 2020; 22:ijms22010344. [PMID: 33396210 PMCID: PMC7794695 DOI: 10.3390/ijms22010344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Many heritable genetic disorders arise from nonsense mutations, which generate premature termination codons (PTCs) in transcribed mRNA. PTCs ablate protein synthesis by prematurely terminating the translation of mutant mRNA, as well as reducing mutant mRNA quantity through targeted degradation by nonsense-mediated decay (NMD) mechanisms. Therapeutic strategies for nonsense mutations include facilitating ribosomal readthrough of the PTC and/or inhibiting NMD to restore protein function. However, the efficacy of combining readthrough agents and NMD inhibitors has not been thoroughly explored. In this study, we examined combinations of known NMD inhibitors and readthrough agents using functional analysis of the CFTR protein in primary cells from a mouse model carrying a G542X nonsense mutation in Cftr. We observed synergy between an inhibitor of the NMD component SMG-1 (SMG1i) and the readthrough agents G418, gentamicin, and paromomycin, but did not observe synergy with readthrough caused by amikacin, tobramycin, PTC124, escin, or amlexanox. These results indicate that treatment with NMD inhibitors can increase the quantity of functional protein following readthrough, and that combining NMD inhibitors and readthrough agents represents a potential therapeutic option for treating nonsense mutations.
Collapse
Affiliation(s)
- Daniel R. McHugh
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
| | - Calvin U. Cotton
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Craig A. Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Correspondence:
| |
Collapse
|
41
|
Cao H, Ouyang H, Laselva O, Bartlett C, Zhou ZP, Duan C, Gunawardena T, Avolio J, Bear CE, Gonska T, Hu J, Moraes TJ. A helper-dependent adenoviral vector rescues CFTR to wild-type functional levels in cystic fibrosis epithelial cells harbouring class I mutations. Eur Respir J 2020; 56:13993003.00205-2020. [PMID: 32457197 DOI: 10.1183/13993003.00205-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting multiple organs, including the pancreas, hepatobiliary system and reproductive organs; however, lung disease is responsible for the majority of morbidity and mortality. Management of CF involves CF transmembrane conductance regulator (CFTR) modulator agents including corrector drugs to augment cellular trafficking of mutant CFTR as well as potentiators that open defective CFTR channels. These therapies are poised to help most individuals with CF, with the notable exception of individuals with class I mutations where full-length CFTR protein is not produced. For these mutations, gene replacement has been suggested as a potential solution.In this work, we used a helper-dependent adenoviral vector (HD-CFTR) to express CFTR in nasal epithelial cell cultures derived from CF subjects with class I CFTR mutations.CFTR function was significantly restored in CF cells by HD-CFTR and reached healthy control functional levels as detected by Ussing chamber and membrane potential (FLIPR) assay. A dose-response relationship was observed between the amount of vector used and subsequent functional outcomes; small amounts of HD-CFTR were sufficient to correct CFTR function. At higher doses, HD-CFTR did not increase CFTR function in healthy control cells above baseline values. This latter observation allowed us to use this vector to benchmark in vitro efficacy testing of CFTR-modulator drugs.In summary, we demonstrate the potential for HD-CFTR to inform in vitro testing and to restore CFTR function to healthy control levels in airway cells with class I or CFTR nonsense mutations.
Collapse
Affiliation(s)
- Huibi Cao
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Both authors contributed equally to this work
| | - Hong Ouyang
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Both authors contributed equally to this work
| | - Onofrio Laselva
- Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Physiology, University of Toronto, Toronto, ON, Canada
| | - Claire Bartlett
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Zhichang Peter Zhou
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Cathleen Duan
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Tarini Gunawardena
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Christine E Bear
- Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Physiology, University of Toronto, Toronto, ON, Canada.,Dept of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tanja Gonska
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Jim Hu
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Both senior authors contributed equally to this article as lead authors and jointly supervised the work
| | - Theo J Moraes
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada .,Dept of Paediatrics, University of Toronto, Toronto, ON, Canada.,Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Both senior authors contributed equally to this article as lead authors and jointly supervised the work
| |
Collapse
|
42
|
Laselva O, McCormack J, Bartlett C, Ip W, Gunawardena TNA, Ouyang H, Eckford PDW, Gonska T, Moraes TJ, Bear CE. Preclinical Studies of a Rare CF-Causing Mutation in the Second Nucleotide Binding Domain (c.3700A>G) Show Robust Functional Rescue in Primary Nasal Cultures by Novel CFTR Modulators. J Pers Med 2020; 10:jpm10040209. [PMID: 33167369 PMCID: PMC7712331 DOI: 10.3390/jpm10040209] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The combination therapies ORKAMBITM and TRIKAFTATM are approved for people who have the F508del mutation on at least one allele. In this study we examine the effects of potentiator and corrector combinations on the rare mutation c.3700A>G. This mutation produces a cryptic splice site that deletes six amino acids in NBD2 (I1234-R1239del). Like F508del it causes protein misprocessing and reduced chloride channel function. We show that a novel cystic fibrosis transmembrane conductance regulator CFTR modulator triple combination (AC1, corrector, AC2-2, co-potentiator and AP2, potentiator), rescued I1234-R1239del-CFTR activity to WT-CFTR level in HEK293 cells. Moreover, we show that although the response to ORKAMBI was modest in nasal epithelial cells from two individuals homozygous for I1234-R1239del-CFTR, a substantial functional rescue was achieved with the novel triple combination. Interestingly, while both the novel CFTR triple combination and TRIKAFTATM treatment showed functional rescue in gene-edited I1234-R1239del-CFTR-expressing HBE cells and in nasal cells from two CF patients heterozygous for I1234-R1239del/W1282X, nasal cells homozygous for I1234-R1239del-CFTR showed no significant response to the TRIKAFTATM combination. These data suggest a potential benefit of CFTR modulators on the functional rescue of I1234-R1239del -CFTR, which arises from the rare CF-causing mutation c.3700A>G, and highlight that patient tissues are crucial to our full understanding of functional rescue in rare CFTR mutations.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
- Department of Physiology, University of Toronto, Toronto, ON M5G 8X4, Canada
| | - Jacqueline McCormack
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
| | - Claire Bartlett
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
| | - Wan Ip
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
| | - Tarini N. A. Gunawardena
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
| | - Hong Ouyang
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
| | - Paul D. W. Eckford
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
| | - Tanja Gonska
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 8X4, Canada
| | - Theo J. Moraes
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 8X4, Canada
| | - Christine E. Bear
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
- Department of Physiology, University of Toronto, Toronto, ON M5G 8X4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 8X4, Canada
- Correspondence: ; Tel.: +1-416-816-5981
| |
Collapse
|
43
|
Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells 2020; 9:cells9092137. [PMID: 32967385 PMCID: PMC7565948 DOI: 10.3390/cells9092137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro cultures of primary human airway epithelial cells (hAECs) grown at air–liquid interface have become a valuable tool to study airway biology under normal and pathologic conditions, and for drug discovery in lung diseases such as cystic fibrosis (CF). An increasing number of different differentiation media, are now available, making comparison of data between studies difficult. Here, we investigated the impact of two common differentiation media on phenotypic, transcriptomic, and physiological features of CF and non-CF epithelia. Cellular architecture and density were strongly impacted by the choice of medium. RNA-sequencing revealed a shift in airway cell lineage; one medium promoting differentiation into club and goblet cells whilst the other enriched the growth of ionocytes and multiciliated cells. Pathway analysis identified differential expression of genes involved in ion and fluid transport. Physiological assays (intracellular/extracellular pH, Ussing chamber) specifically showed that ATP12A and CFTR function were altered, impacting pH and transepithelial ion transport in CF hAECs. Importantly, the two media differentially affected functional responses to CFTR modulators. We argue that the effect of growth conditions should be appropriately determined depending on the scientific question and that our study can act as a guide for choosing the optimal growth medium for specific applications.
Collapse
|
44
|
Farinha CM. From disease mechanisms to novel therapies and back. J Cyst Fibros 2020; 19:673-674. [DOI: 10.1016/j.jcf.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Erwood S, Laselva O, Bily TM, Brewer RA, Rutherford AH, Bear CE, Ivakine EA. Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Mol Ther Methods Clin Dev 2020; 17:1118-1128. [PMID: 32490033 PMCID: PMC7256445 DOI: 10.1016/j.omtm.2020.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated decay (NMD) is a major pathogenic mechanism underlying a diversity of genetic disorders. Nonsense variants tend to lead to more severe disease phenotypes and are often difficult targets for small molecule therapeutic development as a result of insufficient protein production. The treatment of cystic fibrosis (CF), an autosomal recessive disease caused by mutations in the CFTR gene, exemplifies the challenge of therapeutically addressing nonsense mutations in human disease. Therapeutic development in CF has led to multiple, highly successful protein modulatory interventions, yet no targeted therapies have been approved for nonsense mutations. Here, we have designed a CRISPR-Cas9-based strategy for the targeted prevention of NMD of CFTR transcripts containing the second most common nonsense variant listed in CFTR2, W1282X. By introducing a deletion of the downstream genic region following the premature stop codon, we demonstrate significantly increased protein expression of this mutant variant. Notably, in combination with protein modulators, genome editing significantly increases the potentiated channel activity of W1282X-CFTR in human bronchial epithelial cells. Furthermore, we show how the outlined approach can be modified to permit allele-specific editing. The described approach can be extended to other late-occurring nonsense mutations in the CFTR gene or applied as a generalized approach for gene-specific prevention of NMD in disorders where a truncated protein product retains full or partial functionality.
Collapse
Affiliation(s)
- Steven Erwood
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Onofrio Laselva
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Teija M.I. Bily
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Reid A. Brewer
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Alexandra H. Rutherford
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Christine E. Bear
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Cuevas-Ocaña S, Laselva O, Avolio J, Nenna R. The era of CFTR modulators: improvements made and remaining challenges. Breathe (Sheff) 2020; 16:200016. [PMID: 33304402 PMCID: PMC7714553 DOI: 10.1183/20734735.0016-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The entry into the clinic of CFTR modulators such as TRIKAFTA has significantly improved life for ∼90% CF patients carrying one or two F508del mutations but challenges remain for rare CFTR mutations and the management of lung infections @SaraOcana1 https://bit.ly/3aRafQF.
Collapse
Affiliation(s)
- Sara Cuevas-Ocaña
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Onofrio Laselva
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
- Dept of Physiology, University of Toronto, Toronto, Canada
| | - Julie Avolio
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Raffaella Nenna
- Dept of Paediatrics, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
47
|
The CFTR Mutation c.3453G > C (D1152H) Confers an Anion Selectivity Defect in Primary Airway Tissue that Can Be Rescued by Ivacaftor. J Pers Med 2020; 10:jpm10020040. [PMID: 32414100 PMCID: PMC7354675 DOI: 10.3390/jpm10020040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene variant, c.3453G > C (D1152H), is associated with mild Cystic Fibrosis (CF) disease, though there is considerable clinical variability ranging from no detectable symptoms to lung disease with early acquisition of Pseudomonas aeruginosa. The approval extension of ivacaftor, the first CFTR modulator drug approved, to include D1152H was based on a positive drug response of defective CFTR-D1152H chloride channel function when expressed in FRT cells. Functional analyses of primary human nasal epithelial cells (HNE) from an individual homozygous for D1152H now revealed that while CFTR-D1152H demonstrated normal, wild-type level chloride conductance, its bicarbonate-selective conductance was impaired. Treatment with ivacaftor increased this bicarbonate-selective conductance. Extensive genetic, protein and functional analysis of the nasal cells of this D1152H/D1152H patient revealed a 90% reduction of CFTR transcripts due to the homozygous presence of the 5T polymorphism in the poly-T tract forming a complex allele with D1152H. Thus, we confirm previous observation in patient-derived tissue that 10% normal CFTR transcripts confer normal, wild-type level chloride channel activity. Together, this study highlights the benefit of patient-derived tissues to study the functional expression and pharmacological modulation of CF-causing mutations, in order to understand pathogenesis and therapeutic responses.
Collapse
|
48
|
Guerra L, Favia M, Di Gioia S, Laselva O, Bisogno A, Casavola V, Colombo C, Conese M. The preclinical discovery and development of the combination of ivacaftor + tezacaftor used to treat cystic fibrosis. Expert Opin Drug Discov 2020; 15:873-891. [PMID: 32290721 DOI: 10.1080/17460441.2020.1750592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The most common mutation, F508del, induces protein misprocessing and loss of CFTR function. The discovery through in vitro studies of the CFTR correctors (i.e. lumacaftor, tezacaftor) that partially rescue the misprocessing of F508del-CFTR with the potentiator ivacaftor is promising in giving an unprecedented clinical benefit in affected patients. AREAS COVERED Online databases were searched using key phrases for CF and CFTR modulators. Tezacaftor-ivacaftor treatment has proved to be safer than lumacaftor-ivacaftor, although clinical efficacy is similar. Further clinical efficacy has ensued with the introduction of triple therapy, i.e. applying second-generation correctors, such as VX-569 and VX-445 (elexacaftor) to tezacaftor-ivacaftor. The triple combinations will herald the availability of etiologic therapies for patients for whom no CFTR modulators are currently applied (i.e. F508del/minimal function mutations) and enhance CFTR modulator therapy for patients homozygous for F508del. EXPERT OPINION CF patient-derived tissue models are being explored to determine donor-specific response to current approved and future novel CFTR modulators for F508del and other rare mutations. The discovery and validation of biomarkers of CFTR modulation will complement these studies in the long term and in real-life world.
Collapse
Affiliation(s)
- Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia , Foggia, Italy
| | - Onofrio Laselva
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children , Toronto, Ontario, Canada.,Department of Physiology, University of Toronto , Toronto, Ontario, Canada
| | - Arianna Bisogno
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Regionale di Riferimento per la Fibrosi Cistica, Università degli Studi di Milano , Milan, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Carla Colombo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Regionale di Riferimento per la Fibrosi Cistica, Università degli Studi di Milano , Milan, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia , Foggia, Italy
| |
Collapse
|
49
|
Laselva O, Stone TA, Bear CE, Deber CM. Anti-Infectives Restore ORKAMBI ® Rescue of F508del-CFTR Function in Human Bronchial Epithelial Cells Infected with Clinical Strains of P. aeruginosa. Biomolecules 2020; 10:biom10020334. [PMID: 32092967 PMCID: PMC7072183 DOI: 10.3390/biom10020334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic infection and inflammation are the primary causes of declining lung function in Cystic Fibrosis (CF) patients. ORKAMBI® (Lumacaftor-Ivacaftor) is an approved combination therapy for Cystic Fibrosis (CF) patients bearing the most common mutation, F508del, in the cystic fibrosis conductance regulator (CFTR) protein. It has been previously shown that ORKAMBI®-mediated rescue of CFTR is reduced by a pre-existing Pseudomonas aeruginosa infection. Here, we show that the infection of F508del-CFTR human bronchial epithelial (HBE) cells with lab strain and four different clinical strains of P. aeruginosa, isolated from the lung sputum of CF patients, decreases CFTR function in a strain-specific manner by 48 to 88%. The treatment of infected cells with antibiotic tobramycin or cationic antimicrobial peptide 6K-F17 was found to decrease clinical strain bacterial growth on HBE cells and restore ORKAMBI®-mediated rescue of F508del-CFTR function. Further, 6K-F17 was found to downregulate the expression of pro-inflammatory cytokines, interleukin (IL)-8, IL-6, and tumor necrosis factor-α in infected HBE cells. The results provide strong evidence for a combination therapy approach involving CFTR modulators and anti-infectives (i.e., tobramycin and/or 6K-F17) to improve their overall efficacy in CF patients.
Collapse
Affiliation(s)
- Onofrio Laselva
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (O.L.); (T.A.S.); (C.E.B.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tracy A. Stone
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (O.L.); (T.A.S.); (C.E.B.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christine E. Bear
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (O.L.); (T.A.S.); (C.E.B.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Charles M. Deber
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (O.L.); (T.A.S.); (C.E.B.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-813-5924
| |
Collapse
|
50
|
Towards next generation therapies for cystic fibrosis: Folding, function and pharmacology of CFTR. J Cyst Fibros 2020; 19 Suppl 1:S25-S32. [PMID: 31902693 PMCID: PMC7052731 DOI: 10.1016/j.jcf.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cystic fibrosis (CF) has been transformed by orally-bioavailable small molecule modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), which restore function to CF mutants. However, CFTR modulators are not available to all people with CF and better modulators are required to prevent disease progression. Here, we review selectively recent advances in CFTR folding, function and pharmacology. We highlight ensemble and single-molecule studies of CFTR folding, which provide new insight into CFTR assembly, its perturbation by CF mutations and rescue by CFTR modulators. We discuss species-dependent differences in the action of the F508del-CFTR mutation on CFTR expression, stability and function, which might influence pharmacological studies of CFTR modulators in CF animal models. Finally, we illuminate the identification of combinations of two CFTR potentiators (termed co-potentiators), which restore therapeutically-relevant levels of CFTR activity to rare CF mutations. Thus, mechanistic studies of CFTR folding, function and pharmacology inform the development of highly effective CFTR modulators.
Collapse
|