1
|
Titoli S, Barra V, Gargano S, Di Leonardo A, Melfi R. RNA editing applied to cystic fibrosis: RESTORE can target G542X CFTR mRNA and revert the nonsense mutation. Gene 2025; 951:149384. [PMID: 40054708 DOI: 10.1016/j.gene.2025.149384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Nonsense mutations in the CFTR gene are responsible for approximately 8 % of cystic fibrosis (CF) cases worldwide. The consequent premature termination of translation leads to the production of a truncated and non-functional CFTR protein. Despite the intensive research in the field, these patients cannot benefit from specific and approved therapies yet. To address this issue, in this study we evaluated a potential therapeutic strategy to overcome the nonsense G542X (UGG > UGA) mutation in the CFF-16HBEge human bronchial epithelial cells by restoring the full-length CFTR protein. METHODS We applied the RESTORE (Recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing) approach, based on specifically designed antisense RNA oligonucleotides (ASOs) to recruit endogenous ADAR (adenosine deaminase acting on RNA) enzymes. The ADAR's recruitment to the target CFTR mRNA is expected to promote the deamination of adenosine (A) into inosine (I) within the premature termination codon (UGA). As the ribosome reads the inosine as guanosine (G), the stop codon could be recoded as a tryptophan (UGG), thereby allowing the synthesis of a full-length CFTR protein, albeit with a different amino acid. RESULTS Our results indicate that in the CFF-16HBEge G542X cell line, the transfection of a specific ASO allows the rescue of the CFTR transcript and protein expression, compared to the untransfected mutated cells. Next generation sequencing of CFTR cDNA also confirmed the occurrence of the expected RNA editing outcome. CONCLUSIONS The obtained results suggest that the RESTORE approach might be explored as a promising strategy to treating nonsense mutations in CFTR, potentially contributing to novel therapeutic options for CF patients.
Collapse
Affiliation(s)
- Simona Titoli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Serena Gargano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy; Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, Palermo 90128, Italy.
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| |
Collapse
|
2
|
Villella VR, Castaldo A, Scialò F, Castaldo G. How Effectively Can Oxidative Stress and Inflammation Be Reversed When CFTR Function Is Pharmacologically Improved? Antioxidants (Basel) 2025; 14:310. [PMID: 40227282 PMCID: PMC11939277 DOI: 10.3390/antiox14030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
A critical challenge in the age of advanced modulator therapies is to understand and determine how effectively chronic oxidative stress and oxidative stress-induced inflammation can be reversed and physiological balance restored when CFTR function is pharmacologically improved. The triple therapy with elexacaftor-tezacaftor-ivacaftor (ETI) suggests that CFTR activity in individuals with at least one F508del mutation can be partially restored to about 50% of normal levels. Although incomplete, the partial recovery of CFTR function has been shown to drastically lower sputum pathogen content, enhance microbiome diversity, and lower inflammation markers within the first year of treatment in adolescents and adults with cystic fibrosis. However, despite these advancements, residual airway infection, oxidative stress and inflammation persist, with levels similar to other chronic lung conditions, like non-CF bronchiectasis. This persistence highlights the necessity for innovative antioxidant and anti-inflammatory treatments, in particular for individuals with advanced lung disease. To address this issue, emerging multi-omics technologies offer valuable tools to investigate the impact of modulator therapies on various molecular pathways. By analyzing changes in gene expression, epigenetic modifications, protein profiles and metabolic processes in airway-derived samples, it could be possible to uncover the mechanisms driving persistent oxidative stress and inflammation. These insights could pave the way for identifying new therapeutic targets to fully restore airway health and overall physiological balance.
Collapse
Affiliation(s)
| | - Alice Castaldo
- SC di Pneumologia e UTSIR, AORN Santobono-Pausilipon, 80122 Naples, Italy;
- Dipartimento di Scienze Mediche Traslazionali, Sezione di Pediatria, Università di Napoli Federico II, 80131 Naples, Italy
| | - Filippo Scialò
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (V.R.V.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (V.R.V.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
3
|
Michicich M, Traylor Z, McCoy C, Valerio DM, Wilson A, Schneider M, Davis S, Barabas A, Mann RJ, LePage DF, Jiang W, Drumm ML, Kelley TJ, Conlon RA, Hodges CA. A W1282X cystic fibrosis mouse allows the study of pharmacological and gene-editing therapeutics to restore CFTR function. J Cyst Fibros 2025; 24:164-174. [PMID: 39532588 PMCID: PMC11788034 DOI: 10.1016/j.jcf.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND People with cystic fibrosis carrying two nonsense alleles lack CFTR-specific treatment. Growing evidence supports the hypothesis that nonsense mutation identity affects therapeutic response, calling for mutation-specific CF models. We describe a novel W1282X mouse model and compare it to an existing G542X mouse. METHODS The W1282X mouse was created using CRISPR/Cas9 to edit mouse Cftr. In this model, Cftr transcription was assessed using qRT-PCR and CFTR function was measured in the airway by nasal potential difference and in the intestine by short circuit current. Growth, survival, and intestinal motility were examined as well. Correction of W1282X CFTR was assessed pharmacologically and by gene-editing using a forskolin-induced swelling (FIS) assay in small intestine-derived organoids. RESULTS Homozygous W1282X mice demonstrate decreased Cftr mRNA, little to no CFTR function, and reduced survival, growth, and intestinal motility. W1282X organoids treated with various combinations of pharmacologic correctors display a significantly different amount of CFTR function than that of organoids from G542X mice. Successful gene editing of W1282X to wildtype sequence in intestinal organoids was achieved leading to restoration of CFTR function. CONCLUSIONS The W1282X mouse model recapitulates common human manifestations of CF similar to other CFTR null mice. Despite the similarities between the congenic W1282X and G542X models, they differ meaningfully in their response to identical pharmacological treatments. This heterogeneity highlights the importance of studying therapeutics across genotypes.
Collapse
Affiliation(s)
- Margaret Michicich
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Zachary Traylor
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Caitlan McCoy
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Dana M Valerio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Alma Wilson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Molly Schneider
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Sakeena Davis
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Amanda Barabas
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Rachel J Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - David F LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Weihong Jiang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States.
| |
Collapse
|
4
|
Premchandar A, Ming R, Baiad A, Da Fonte DF, Xu H, Faubert D, Veit G, Lukacs GL. Readthrough-induced misincorporated amino acid ratios guide mutant-specific therapeutic approaches for two CFTR nonsense mutations. Front Pharmacol 2024; 15:1389586. [PMID: 38725656 PMCID: PMC11079177 DOI: 10.3389/fphar.2024.1389586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Premature termination codons (PTCs) represent ∼9% of CF mutations that typically cause severe expression defects of the CFTR anion channel. Despite the prevalence of PTCs as the underlying cause of genetic diseases, understanding the therapeutic susceptibilities of their molecular defects, both at the transcript and protein levels remains partially elucidated. Given that the molecular pathologies depend on the PTC positions in CF, multiple pharmacological interventions are required to suppress the accelerated nonsense-mediated mRNA decay (NMD), to correct the CFTR conformational defect caused by misincorporated amino acids, and to enhance the inefficient stop codon readthrough. The G418-induced readthrough outcome was previously investigated only in reporter models that mimic the impact of the local sequence context on PTC mutations in CFTR. To identify the misincorporated amino acids and their ratios for PTCs in the context of full-length CFTR readthrough, we developed an affinity purification (AP)-tandem mass spectrometry (AP-MS/MS) pipeline. We confirmed the incorporation of Cys, Arg, and Trp residues at the UGA stop codons of G542X, R1162X, and S1196X in CFTR. Notably, we observed that the Cys and Arg incorporation was favored over that of Trp into these CFTR PTCs, suggesting that the transcript sequence beyond the proximity of PTCs and/or other factors can impact the amino acid incorporation and full-length CFTR functional expression. Additionally, establishing the misincorporated amino acid ratios in the readthrough CFTR PTCs aided in maximizing the functional rescue efficiency of PTCs by optimizing CFTR modulator combinations. Collectively, our findings contribute to the understanding of molecular defects underlying various CFTR nonsense mutations and provide a foundation to refine mutation-dependent therapeutic strategies for various CF-causing nonsense mutations.
Collapse
Affiliation(s)
| | - Ruiji Ming
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Abed Baiad
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Denis Faubert
- IRCM Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
5
|
Zandanell J, Wießner M, Bauer JW, Wagner RN. Stop codon readthrough as a treatment option for epidermolysis bullosa-Where we are and where we are going. Exp Dermatol 2024; 33:e15042. [PMID: 38459626 DOI: 10.1111/exd.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
In the context of rare genetic diseases caused by nonsense mutations, the concept of induced stop codon readthrough (SCR) represents an attractive avenue in the ongoing search for improved treatment options. Epidermolysis bullosa (EB)-exemplary for this group of diseases-describes a diverse group of rare, blistering genodermatoses. Characterized by extreme skin fragility upon minor mechanical trauma, the most severe forms often result from nonsense mutations that lead to premature translation termination and loss of function of essential proteins at the dermo-epidermal junction. Since no curative interventions are currently available, medical care is mainly limited to alleviating symptoms and preventing complications. Complementary to attempts of gene, cell and protein therapy in EB, SCR represents a promising medical alternative. While gentamicin has already been examined in several clinical trials involving EB, other potent SCR inducers, such as ataluren, may also show promise in treating the hitherto non-curative disease. In addition to the extensively studied aminoglycosides and their derivatives, several other substance classes-non-aminoglycoside antibiotics and non-aminoglycoside compounds-are currently under investigation. The extensive data gathered in numerous in vitro experiments and the perspectives they reveal in the clinical setting will be discussed in this review.
Collapse
Affiliation(s)
- Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Roland N Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Benslimane N, Loret C, Chazelas P, Favreau F, Faye PA, Lejeune F, Lia AS. Readthrough Activators and Nonsense-Mediated mRNA Decay Inhibitor Molecules: Real Potential in Many Genetic Diseases Harboring Premature Termination Codons. Pharmaceuticals (Basel) 2024; 17:314. [PMID: 38543100 PMCID: PMC10975577 DOI: 10.3390/ph17030314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 11/12/2024] Open
Abstract
Nonsense mutations that generate a premature termination codon (PTC) can induce both the accelerated degradation of mutated mRNA compared with the wild type version of the mRNA or the production of a truncated protein. One of the considered therapeutic strategies to bypass PTCs is their "readthrough" based on small-molecule drugs. These molecules promote the incorporation of a near-cognate tRNA at the PTC position through the native polypeptide chain. In this review, we detailed the various existing strategies organized according to pharmacological molecule types through their different mechanisms. The positive results that followed readthrough molecule testing in multiple neuromuscular disorder models indicate the potential of this approach in peripheral neuropathies.
Collapse
Affiliation(s)
- Nesrine Benslimane
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
| | - Camille Loret
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
| | - Pauline Chazelas
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Frédéric Favreau
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Fabrice Lejeune
- University of Lille, Centre National de la Recherche Scientifique, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Anne-Sophie Lia
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Bioinformatics, F-87000 Limoges, France
| |
Collapse
|
7
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
8
|
Spelier S, de Winter-de Groot K, Keijzer-Nieuwenhuijze N, Liem Y, van der Ent K, Beekman J, Kamphuis LS. Organoid-guided synergistic treatment of minimal function CFTR mutations with CFTR modulators, roflumilast and simvastatin: a personalised approach. Eur Respir J 2024; 63:2300770. [PMID: 37857424 PMCID: PMC10809127 DOI: 10.1183/13993003.00770-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Highly effective cystic fibrosis transmembrane conductance regulator (CFTR) protein-targeting modulator therapies (HEMTs) facilitate strong clinical improvements in a large proportion of people with cystic fibrosis (CF) [1, 2]. More specifically, the European Medicines Agency and US Food and Drug Administration (FDA) approved combination of the CFTR modulators elexacaftor/tezacaftor/ivacaftor (ETI) for people with CF with at least one F508del allele, while the FDA extended eligibility for several rare genotypes [3, 4]. However, 10–15% of those with CF carry CFTR mutations that are unresponsive to HEMTs as monotherapy [1]; furthermore, some suffer from HEMT intolerance, and HEMTs are sometimes not accessible due to practical challenges, such as lack of access due to high costs or legislation and approval challenges. Consequently, the focus in the CF research field has shifted towards filling the unmet clinical need for the people with CF that will not benefit from HEMTs. This study describes how preclinical research has guided a successful personalised clinical treatment regimen in a person with minimal function CFTR, upon a synergistic treatment regimen consisting of CFTR modulators, simvastatin and roflumilast https://bit.ly/3rDTHZL
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Karin de Winter-de Groot
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Natascha Keijzer-Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Yves Liem
- Department of Clinical Pharmacy, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Kors van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
- J. Beekman and L.S. Kamphuis contributed equally to this article as lead authors and supervised the work
| | - Lieke S Kamphuis
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- J. Beekman and L.S. Kamphuis contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
9
|
Graeber SY, Mall MA. The future of cystic fibrosis treatment: from disease mechanisms to novel therapeutic approaches. Lancet 2023; 402:1185-1198. [PMID: 37699417 DOI: 10.1016/s0140-6736(23)01608-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
With the 2019 breakthrough in the development of highly effective modulator therapy providing unprecedented clinical benefits for over 90% of patients with cystic fibrosis who are genetically eligible for treatment, this rare disease has become a front runner of transformative molecular therapy. This success is based on fundamental research, which led to the identification of the disease-causing CFTR gene and our subsequent understanding of the disease mechanisms underlying the pathogenesis of cystic fibrosis, working together with a continuously evolving clinical research and drug development pipeline. In this Series paper, we focus on advances since 2018, and remaining knowledge gaps in our understanding of the molecular mechanisms of CFTR dysfunction in the airway epithelium and their links to mucus dysfunction, impaired host defences, airway infection, and chronic inflammation of the lungs of people with cystic fibrosis. We review progress in (and the remaining obstacles to) pharmacological approaches to rescue CFTR function, and novel strategies for improved symptomatic therapies for cystic fibrosis, including how these might be applicable to common lung diseases, such as bronchiectasis and chronic obstructive pulmonary disease. Finally, we discuss the promise of genetic therapies and gene editing approaches to restore CFTR function in the lungs of all patients with cystic fibrosis independent of their CFTR genotype, and the unprecedented opportunities to transform cystic fibrosis from a fatal disease to a treatable and potentially curable one.
Collapse
Affiliation(s)
- Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research, associated partner site, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research, associated partner site, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Twynam-Perkins J, Fall A, Lefferts JW, Urquhart DS. An innovative strategy for personalised medicine in a CFSPID case that evolved with time. Paediatr Respir Rev 2023; 47:23-26. [PMID: 37407313 DOI: 10.1016/j.prrv.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
We present a challenging case that illustrates how the clinical manifestations in children with CFTR mutations of uncertain significance may change over time. This case highlights the evolution of confirming a diagnosis of CF and emphasises the importance of regular review and monitoring of this patient cohort.
Collapse
Affiliation(s)
- J Twynam-Perkins
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK; Department of Child Life and Health, University of Edinburgh, UK
| | - A Fall
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
| | - J W Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands
| | - D S Urquhart
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK; Department of Child Life and Health, University of Edinburgh, UK.
| |
Collapse
|
11
|
Benslimane N, Miressi F, Loret C, Richard L, Nizou A, Pyromali I, Faye PA, Favreau F, Lejeune F, Lia AS. Amlexanox: Readthrough Induction and Nonsense-Mediated mRNA Decay Inhibition in a Charcot-Marie-Tooth Model of hiPSCs-Derived Neuronal Cells Harboring a Nonsense Mutation in GDAP1 Gene. Pharmaceuticals (Basel) 2023; 16:1034. [PMID: 37513945 PMCID: PMC10385573 DOI: 10.3390/ph16071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Nonsense mutations are involved in multiple peripheral neuropathies. These mutations induce the presence of a premature termination codon (PTC) at the mRNA level. As a result, a dysfunctional or truncated protein is synthesized, or even absent linked to nonsense-mediated mRNA degradation (NMD) system activation. Readthrough molecules or NMD inhibitors could be innovative therapies in these hereditary neuropathies, particularly molecules harboring the dual activity as amlexanox. Charcot-Marie-Tooth (CMT) is the most common inherited pathology of the peripheral nervous system, affecting 1 in 2500 people worldwide. Nonsense mutations in the GDAP1 gene have been associated with a severe form of CMT, prompting us to investigate the effect of readthrough and NMD inhibitor molecules. Although not clearly defined, GDAP1 could be involved in mitochondrial functions, such as mitophagy. We focused on the homozygous c.581C>G (p.Ser194*) mutation inducing CMT2H using patient human induced pluripotent stem cell (hiPSC)-derived neuronal cells. Treatment during 20 h with 100 µM of amlexanox on this cell model stabilized GDAP1 mRNAs carrying UGA-PTC and induced a restoration of the mitochondrial morphology. These results highlight the potential of readthrough molecules associated to NMD inhibitors for the treatment of genetic alterations in CMT, opening the way for future investigations and a potential therapy.
Collapse
Affiliation(s)
- Nesrine Benslimane
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Federica Miressi
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Camille Loret
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Laurence Richard
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Angélique Nizou
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Ioanna Pyromali
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Frédéric Favreau
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Fabrice Lejeune
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
| | - Anne-Sophie Lia
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
- Centre Hospitalo-Universitaire (CHU) Limoges, UF de Bioinformatique, F-87000 Limoges, France
| |
Collapse
|
12
|
Li S, Li J, Shi W, Nie Z, Zhang S, Ma F, Hu J, Chen J, Li P, Xie X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules 2023; 13:988. [PMID: 37371567 DOI: 10.3390/biom13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Around 11% of all known gene lesions causing human genetic diseases are nonsense mutations that introduce a premature stop codon (PTC) into the protein-coding gene sequence. Drug-induced PTC readthrough is a promising therapeutic strategy for treating hereditary diseases caused by nonsense mutations. To date, it has been found that more than 50 small-molecular compounds can promote PTC readthrough, known as translational readthrough-inducing drugs (TRIDs), and can be divided into two major categories: aminoglycosides and non-aminoglycosides. This review summarizes the pharmacodynamics and clinical application potential of the main TRIDs discovered so far, especially some newly discovered TRIDs in the past decade. The discovery of these TRIDs brings hope for treating nonsense mutations in various genetic diseases. Further research is still needed to deeply understand the mechanism of eukaryotic cell termination and drug-induced PTC readthrough so that patients can achieve the greatest benefit from the various TRID treatments.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ziyan Nie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianjun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Chen J, Thrasher K, Fu L, Wang W, Aghamohammadzadeh S, Wen H, Tang L, Keeling KM, Falk Libby E, Bedwell DM, Rowe SM. The synthetic aminoglycoside ELX-02 induces readthrough of G550X-CFTR producing superfunctional protein that can be further enhanced by CFTR modulators. Am J Physiol Lung Cell Mol Physiol 2023; 324:L756-L770. [PMID: 37014818 PMCID: PMC10202470 DOI: 10.1152/ajplung.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ten percent of cystic fibrosis (CF) patients carry a premature termination codon (PTC); no mutation-specific therapies exist for these individuals. ELX-02, a synthetic aminoglycoside, suppresses translation termination at PTCs (i.e., readthrough) by promoting the insertion of an amino acid at the PTC and restoring expression of full-length CFTR protein. The identity of amino acids inserted at PTCs affects the processing and function of the resulting full-length CFTR protein. We examined readthrough of the rare G550X-CFTR nonsense mutation due to its unique properties. We found that forskolin-induced swelling in G550X patient-derived intestinal organoids (PDOs) was significantly higher than in G542X PDOs (both UGA PTCs) with ELX-02 treatment, indicating greater CFTR function from the G550X allele. Using mass spectrometry, we identified tryptophan as the sole amino acid inserted in the G550X position during ELX-02- or G418-mediated readthrough, which differs from the three amino acids (cysteine, arginine, and tryptophan) inserted in the G542X position after treatment with G418. Compared with wild-type CFTR, Fischer rat thyroid (FRT) cells expressing the G550W-CFTR variant protein exhibited significantly increased forskolin-activated Cl- conductance, and G550W-CFTR channels showed increased PKA sensitivity and open probability. After treatment with ELX-02 and CFTR correctors, CFTR function rescued from the G550X allele in FRTs reached 20-40% of the wild-type level. These results suggest that readthrough of G550X produces greater CFTR function because of gain-of-function properties of the CFTR readthrough product that stem from its location in the signature LSGGQ motif found in ATP-binding cassette (ABC) transporters. G550X may be a particularly sensitive target for translational readthrough therapy.NEW & NOTEWORTHY We found that forskolin-induced swelling in G550X-CFTR patient-derived intestinal organoids (PDOs) was significantly higher than in G542X-CFTR PDOs after treatment with ELX-02. Tryptophan (W) was the sole amino acid inserted in the G550X position after readthrough. Resulting G550W-CFTR protein exhibited supernormal CFTR activity, PKA sensitivity, and open probability. These results show that aminoglycoside-induced readthrough of G550X produces greater CFTR function because of the gain-of-function properties of the CFTR readthrough product.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kari Thrasher
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Wei Wang
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Hui Wen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Emily Falk Libby
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
14
|
Birimberg-Schwartz L, Ip W, Bartlett C, Avolio J, Vonk AM, Gunawardena T, Du K, Esmaeili M, Beekman JM, Rommens J, Strug L, Bear CE, Moraes TJ, Gonska T. Validating organoid-derived human intestinal monolayers for personalized therapy in cystic fibrosis. Life Sci Alliance 2023; 6:e202201857. [PMID: 37024122 PMCID: PMC10079552 DOI: 10.26508/lsa.202201857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Highly effective drugs modulating the defective protein encoded by the CFTR gene have revolutionized cystic fibrosis (CF) therapy. Preclinical drug-testing on human nasal epithelial (HNE) cell cultures and 3-dimensional human intestinal organoids (3D HIO) are used to address patient-specific variation in drug response and to optimize individual treatment for people with CF. This study is the first to report comparable CFTR functional responses to CFTR modulator treatment among patients with different classes of CFTR gene variants using the three methods of 2D HIO, 3D HIO, and HNE. Furthermore, 2D HIO showed good correlation to clinical outcome markers. A larger measurable CFTR functional range and access to the apical membrane were identified as advantages of 2D HIO over HNE and 3D HIO, respectively. Our study thus expands the utility of 2D intestinal monolayers as a preclinical drug testing tool for CF.
Collapse
Affiliation(s)
- Liron Birimberg-Schwartz
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Wan Ip
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Claire Bartlett
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Julie Avolio
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Annelotte M Vonk
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherland
| | - Tarini Gunawardena
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Kai Du
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Mohsen Esmaeili
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jeffrey M Beekman
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherland
| | - Johanna Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lisa Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Statistical Sciences and Computer Science, University of Toronto, Toronto, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Christine E Bear
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Theo J Moraes
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Tanja Gonska
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
15
|
Leroy C, Spelier S, Essonghe NC, Poix V, Kong R, Gizzi P, Bourban C, Amand S, Bailly C, Guilbert R, Hannebique D, Persoons P, Arhant G, Prévotat A, Reix P, Hubert D, Gérardin M, Chamaillard M, Prevarskaya N, Rebuffat S, Shapovalov G, Beekman J, Lejeune F. Use of 2,6-diaminopurine as a potent suppressor of UGA premature stop codons in cystic fibrosis. Mol Ther 2023; 31:970-985. [PMID: 36641622 PMCID: PMC10124085 DOI: 10.1016/j.ymthe.2023.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/10/2022] [Accepted: 01/12/2023] [Indexed: 01/16/2023] Open
Abstract
Nonsense mutations are responsible for around 10% of cases of genetic diseases, including cystic fibrosis. 2,6-diaminopurine (DAP) has recently been shown to promote efficient readthrough of UGA premature stop codons. In this study, we show that DAP can correct a nonsense mutation in the Cftr gene in vivo in a new CF mouse model, in utero, and through breastfeeding, thanks, notably, to adequate pharmacokinetic properties. DAP turns out to be very stable in plasma and is distributed throughout the body. The ability of DAP to correct various endogenous UGA nonsense mutations in the CFTR gene and to restore its function in mice, in organoids derived from murine or patient cells, and in cells from patients with cystic fibrosis reveals the potential of such readthrough-stimulating molecules in developing a therapeutic approach. The fact that correction by DAP of certain nonsense mutations reaches a clinically relevant level, as judged from previous studies, makes the use of this compound all the more attractive.
Collapse
Affiliation(s)
- Catherine Leroy
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France
| | - Sacha Spelier
- Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands; Center for Living Technologies, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Nadège Charlene Essonghe
- University Lille, INSERM, U1003-PHYCEL-Physiologie Cellulaire, 59000 Lille, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Virginie Poix
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France
| | - Rebekah Kong
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France
| | - Patrick Gizzi
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286 CNRS-Université de Strasbourg, 67404 Illkirch, France
| | - Claire Bourban
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286 CNRS-Université de Strasbourg, 67404 Illkirch, France
| | - Séverine Amand
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Christine Bailly
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Romain Guilbert
- Institut Pasteur de Lille-PLEHTA (Plateforme d'Expérimentation et de Haute Technologie Animale), 59019 Lille, France
| | - David Hannebique
- Institut Pasteur de Lille-PLEHTA (Plateforme d'Expérimentation et de Haute Technologie Animale), 59019 Lille, France
| | - Philippe Persoons
- Institut Pasteur de Lille-PLEHTA (Plateforme d'Expérimentation et de Haute Technologie Animale), 59019 Lille, France
| | - Gwenaëlle Arhant
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France
| | - Anne Prévotat
- University Lille, Clinique des Maladies Respiratoires, CRCM Hôpital Calmette, CHRU Lille, 59000 Lille, France
| | - Philippe Reix
- CRCM Pédiatrique Lyon, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, UMR 5558 (EMET), CNRS, LBBE, Université de Lyon, 69622 Villeurbanne, France
| | - Dominique Hubert
- Pulmonary Department and Adult CF Centre, Cochin Hospital, AP-HP, Paris, France
| | - Michèle Gérardin
- CF Pediatric Centre, Robert Debré Hospital, AP-HP, 75019 Paris, France
| | - Mathias Chamaillard
- University Lille, INSERM, U1003-PHYCEL-Physiologie Cellulaire, 59000 Lille, France
| | - Natalia Prevarskaya
- University Lille, INSERM, U1003-PHYCEL-Physiologie Cellulaire, 59000 Lille, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - George Shapovalov
- University Lille, INSERM, U1003-PHYCEL-Physiologie Cellulaire, 59000 Lille, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Jeffrey Beekman
- Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands; Center for Living Technologies, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Fabrice Lejeune
- University Lille, CNRS, INSERM, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France; Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, 59000 Lille, France.
| |
Collapse
|
16
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Wagner RN, Wießner M, Friedrich A, Zandanell J, Breitenbach-Koller H, Bauer JW. Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond. Int J Mol Sci 2023; 24:6101. [PMID: 37047074 PMCID: PMC10093890 DOI: 10.3390/ijms24076101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Andreas Friedrich
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
18
|
Scott P, Wang S, Onyeaghala G, Pankratz N, Starr T, Prizment AE. Lower Expression of CFTR Is Associated with Higher Mortality in a Meta-Analysis of Individuals with Colorectal Cancer. Cancers (Basel) 2023; 15:989. [PMID: 36765944 PMCID: PMC9913301 DOI: 10.3390/cancers15030989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Individuals with cystic fibrosis (CF), caused by biallelic germline mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), have higher risk and earlier onset of colorectal cancer (CRC). A subset of CRC patients in the non-CF population expresses low levels of tumoral CFTR mRNA which may also cause decreased CFTR activity. To determine the consequences of reduced CFTR expression in this population, we investigated association of tumoral CFTR expression with overall and disease-specific mortality in CRC patients. CFTR mRNA expression, clinical factors and survival data from 1177 CRC patients reported in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus studies GSE39582 and GSE17538 were included. Log-transformed and z-normalized [mean = 0, standard deviation (SD) = 1] CFTR expression values were modeled as quartiles or dichotomized at the median. Univariate and multivariable Cox proportional hazards regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for overall and disease-specific mortality in individual studies and meta-analyses. Analyses of each of the three individual datasets showed a robust association of decreased CFTR expression with increased mortality. In meta-analyses adjusted for stage at diagnosis, age and sex, CFTR expression was inversely associated with risk of overall death [pooled HR (95% CI): 0.70 (0.57-0.86)] and disease-specific death [pooled HR (95% CI): 0.68 (0.47-0.99)]. Associations did not differ by stage at diagnosis, age, or sex. Meta-analysis of overall death stratified by microsatellite instable (MSI) versus microsatellite stable (MSS) status indicated potential interaction between MSI/MSS status and CFTR expression, (p-interaction: 0.06). The findings from these three datasets support the hypothesis that low CFTR expression is associated with increased CRC mortality.
Collapse
Affiliation(s)
- Patricia Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Shuo Wang
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - Guillaume Onyeaghala
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Timothy Starr
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Anna E. Prizment
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Spelier S, de Poel E, Ithakisiou GN, Suen SW, Hagemeijer MC, Muilwijk D, Vonk AM, Brunsveld JE, Kruisselbrink E, van der Ent CK, Beekman JM. High-throughput functional assay in cystic fibrosis patient-derived organoids allows drug repurposing. ERJ Open Res 2023; 9:00495-2022. [PMID: 36726369 PMCID: PMC9885274 DOI: 10.1183/23120541.00495-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cystic fibrosis (CF) is a rare hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Recent therapies enable effective restoration of CFTR function of the most common F508del CFTR mutation. This shifts the unmet clinical need towards people with rare CFTR mutations such as nonsense mutations, of which G542X and W1282X are most prevalent. CFTR function measurements in patient-derived cell-based assays played a critical role in preclinical drug development for CF and may play an important role to identify new drugs for people with rare CFTR mutations. Methods Here, we miniaturised the previously described forskolin-induced swelling (FIS) assay in intestinal organoids from a 96-well to a 384-well plate screening format. Using this novel assay, we tested CFTR increasing potential of a 1400-compound Food and Drug Administration (FDA)-approved drug library in organoids from donors with W1282X/W1282X CFTR nonsense mutations. Results The 384-well FIS assay demonstrated uniformity and robustness based on coefficient of variation and Z'-factor calculations. In the primary screen, CFTR induction was limited overall, yet interestingly, the top five compound combinations that increased CFTR function all contained at least one statin. In the secondary screen, we indeed verified that four out of the five statins (mevastatin, lovastatin, simvastatin and fluvastatin) increased CFTR function when combined with CFTR modulators. Statin-induced CFTR rescue was concentration-dependent and W1282X-specific. Conclusions Future studies should focus on elucidating genotype specificity and mode-of-action of statins in more detail. This study exemplifies proof of principle of large-scale compound screening in a functional assay using patient-derived organoids.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,These authors contributed equally to this work,Corresponding author: Sacha Spelier ()
| | - Eyleen de Poel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,These authors contributed equally to this work
| | - Georgia N. Ithakisiou
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Sylvia W.F. Suen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Marne C. Hagemeijer
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Annelotte M. Vonk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jesse E. Brunsveld
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Jackson JJ, Mao Y, White TR, Foye C, Oliver KE. Features of CFTR mRNA and implications for therapeutics development. Front Genet 2023; 14:1166529. [PMID: 37168508 PMCID: PMC10165737 DOI: 10.3389/fgene.2023.1166529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease impacting ∼100,000 people worldwide. This lethal disorder is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-binding cassette-class C protein. More than 2,100 variants have been identified throughout the length of CFTR. These defects confer differing levels of severity in mRNA and/or protein synthesis, folding, gating, and turnover. Drug discovery efforts have resulted in recent development of modulator therapies that improve clinical outcomes for people living with CF. However, a significant portion of the CF population has demonstrated either no response and/or adverse reactions to small molecules. Additional therapeutic options are needed to restore underlying genetic defects for all patients, particularly individuals carrying rare or refractory CFTR variants. Concerted focus has been placed on rescuing variants that encode truncated CFTR protein, which also harbor abnormalities in mRNA synthesis and stability. The current mini-review provides an overview of CFTR mRNA features known to elicit functional consequences on final protein conformation and function, including considerations for RNA-directed therapies under investigation. Alternative exon usage in the 5'-untranslated region, polypyrimidine tracts, and other sequence elements that influence splicing are discussed. Additionally, we describe mechanisms of CFTR mRNA decay and post-transcriptional regulation mediated through interactions with the 3'-untranslated region (e.g. poly-uracil sequences, microRNAs). Contributions of synonymous single nucleotide polymorphisms to CFTR transcript utilization are also examined. Comprehensive understanding of CFTR RNA biology will be imperative for optimizing future therapeutic endeavors intended to address presently untreatable forms of CF.
Collapse
Affiliation(s)
- JaNise J. Jackson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Yiyang Mao
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Tyshawn R. White
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Catherine Foye
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
- *Correspondence: Kathryn E. Oliver,
| |
Collapse
|
21
|
Guimbellot JS, Nichols DP, Brewington JJ. Novel Applications of Biomarkers and Personalized Medicine in Cystic Fibrosis. Clin Chest Med 2022; 43:617-630. [PMID: 36344070 DOI: 10.1016/j.ccm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As routine care in cystic fibrosis (CF) becomes increasingly personalized, new opportunities to further focus care on the individual have emerged. These opportunities are increasingly filled through research in tools aiding drug selection, drug monitoring and titration, disease-relevant biomarkers, and evaluation of therapeutic benefits. Herein, we will discuss such research tools presently being translated into the clinic to improve the personalization of care in CF.
Collapse
Affiliation(s)
- Jennifer S Guimbellot
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; 1600 7th Avenue South, ACC 620, Birmingham, AL 35233, USA
| | - David P Nichols
- Department of Pediatrics, Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Building Cure, 1920 Terry Avenue, Office 4-209, Seattle, WA 98109, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH 45229, USA.
| |
Collapse
|
22
|
Fajac I, Sermet-Gaudelus I. Emerging medicines to improve the basic defect in cystic fibrosis. Expert Opin Emerg Drugs 2022; 27:229-239. [PMID: 35731915 DOI: 10.1080/14728214.2022.2092612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a severe autosomal recessive disorder featuring exocrine pancreatic insufficiency and bronchiectasis. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) encoding the CFTR protein, which is an anion channel. CF treatment has long been based only on intensive symptomatic treatment. During the last 10 years, new drugs called CFTR modulators aiming at restoring the CFTR protein function have become available, and they will benefit around 80% of patients with CF. However, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. AREAS COVERED The development of CFTR modulators and their effectiveness in patients with CF will be reviewed. Then, the different strategies to treat patients bearing mutations non-responsive to CFTR modulators will be covered. They comprise DNA- and RNA-based therapies, readthrough agents for nonsense mutations, and cell-based therapies. EXPERT OPINION CF disease has changed tremendously since the advent of CFTR modulators. For mutations that are not amenable to CFTR modulators, new approaches that are being developed benefit from advances in molecular therapy, but many challenges will have to be solved before they can be safely translated to patients.
Collapse
Affiliation(s)
- Isabelle Fajac
- AP-HP. Centre - Université Paris Cité; Hôpital Cochin, Centre de Référence Maladie Rare- Mucoviscidose, Paris, France.,Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- Faculté de Médecine, Université de Paris, Paris, France.,Institut Necker Enfants Malades, INSERM U 1151, Paris, France.,AP-HP. Centre - Université Paris Cité; Hôpital Necker Enfants Malades, Centre de Référence Maladie Rare - Mucoviscidose, Paris, France
| |
Collapse
|
23
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
24
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
25
|
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64:102210. [DOI: 10.1016/j.coph.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
26
|
Angyal D, Bijvelds MJC, Bruno MJ, Peppelenbosch MP, de Jonge HR. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells 2021; 11:cells11010054. [PMID: 35011616 PMCID: PMC8750324 DOI: 10.3390/cells11010054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride, bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Whereas severe mutations in CFTR cause fibrosis of the pancreas in utero, CFTR mutants with residual function, or CFTR variants with a normal chloride but defective bicarbonate permeability (CFTRBD), are associated with an enhanced risk of pancreatitis. Recent studies indicate that CFTR function is not only compromised in genetic but also in selected patients with an acquired form of pancreatitis induced by alcohol, bile salts or smoking. In this review, we summarize recent insights into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct, including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.
Collapse
|