1
|
Maupas A, Muggeo A, Vermeulen P, Moussalih S, Sage E, Luczka-Majérus E, Coraux C, Guillard T. Roscovitine enhances the bactericidal activity of the airway surface liquid of the cystic fibrosis bronchial epithelium but does not protect against Pseudomonas aeruginosa infection. PLoS One 2025; 20:e0321996. [PMID: 40323902 PMCID: PMC12052092 DOI: 10.1371/journal.pone.0321996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/14/2025] [Indexed: 05/07/2025] Open
Abstract
Cystic fibrosis (CF) is the most common genetic diseases in the Caucasian population. CFTR defects, the most common being F508del, lead to abnormal mucus accumulation. Respiratory failure caused by the resulting chronic infections is the leading cause of death in people with cystic fibrosis (pwCF). Pseudomonas aeruginosa is a major pathogen in CF and is responsible for a deterioration of respiratory function in pwCF. The increase of antibiotic-resistant P. aeruginosa strains encourages the search for alternative therapeutics for treating P. aeruginosa infection. In vitro studies have shown an interest in (R)-roscovitine (roscovitine) in the fight against bacterial infection in pwCF. Here we show a nuanced effect of roscovitine on ASL bactericidal activity and CF bronchial epithelium protection against P. aeruginosa. Using a 3D model of fully differentiated and functional F508del-CFTR human bronchial epithelium, we evidenced (i) an enhancement of the bactericidal activity of the airway surface liquid for 25 μM roscovitine but (ii) no limitation of the dynamic of the epithelium destruction upon roscovitine treatment whatever the concentrations. Our findings shed light on reasons for the lack of beneficial effects to prevent P. aeruginosa infection in pwCF treated with roscovitine in the ROSCO-CF clinical trial. We anticipate that our findings would have significant therapeutic implications in seeking to optimize roscovitine analogs.
Collapse
Affiliation(s)
- Adrien Maupas
- Université de Reims Champagne-Ardenne, INSERM, P3Cell, U 1250, Reims, France
| | - Anaëlle Muggeo
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière, P3Cell, U 1250, Reims, France
| | - Pierre Vermeulen
- Université de Reims Champagne-Ardenne, INSERM, P3Cell, U 1250, Reims, France
| | - Sophie Moussalih
- Université de Reims Champagne-Ardenne, INSERM, P3Cell, U 1250, Reims, France
| | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | | | - Christelle Coraux
- Université de Reims Champagne-Ardenne, INSERM, P3Cell, U 1250, Reims, France
| | - Thomas Guillard
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière, P3Cell, U 1250, Reims, France
| |
Collapse
|
2
|
Chen W, Zhuang X, Chen Y, Yang H, Shen L, Feng S, Min W, Yuan K, Yang P. Recent advances in regulating the cell cycle through inhibiting CDKs for cancer treatment. Chin J Nat Med 2025; 23:286-298. [PMID: 40122659 DOI: 10.1016/s1875-5364(25)60846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 03/25/2025]
Abstract
The inhibition of cyclin-dependent kinases (CDKs) is considered a promising strategy for cancer treatment due to their role in cell cycle regulation. However, CDK inhibitors with no selectivity among CDK families have not been approved. A CDK inhibitor with high selectivity for CDK4/6 exhibited significant treatment effects on breast cancer and has become a heavy bomb on the market. Subsequently, resistance gradually decreased the efficacy of selective CDK4/6 inhibitors in breast cancer treatment. In this review, we first introduce the development of selective CDK4/6 inhibitors and then explain the role of CDK2 activation in inducing resistance to CDK4/6 inhibitors. Moreover, we focused on the development of CDK2/4/6 inhibitors and selective CDK2 inhibitors, which will aid in the discovery of novel CDK inhibitors targeting the cell cycle in the future.
Collapse
Affiliation(s)
- Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xujie Zhuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanaoyu Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Linhu Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Sikai Feng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Abuhejail RM, Alzoman NZ, Darwish IA. Development and Validation of a New Eco-Friendly HPLC-PDA Bioanalytical Method for Studying Pharmacokinetics of Seliciclib. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1686. [PMID: 39459473 PMCID: PMC11509255 DOI: 10.3390/medicina60101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Seliciclib (SEL) is the first selective, orally bioavailable potential drug containing cyclin-dependent kinase inhibitors. Preclinical studies showed antitumor activity in a broad range of human tumor xenografts, neurodegenerative diseases, renal dysfunctions, viral infections, and chronic inflammatory disorders. To support the pharmacokinetics and aid in therapeutic monitoring of SEL following its administration for therapy, an efficient analytical tool capable of quantifying the concentrations of SEL in blood plasma is needed. In the literature, there is no existing method for quantifying SEL in plasma samples. This study introduces the first HPLC method with a photodiode array (PDA) detector for the quantitation of SEL in plasma. Materials and Methods: The chromatographic resolution of SEL and linifanib as an internal standard (IS) was achieved on Zorbax Eclipse Plus C18 HPLC column (150 mm length × 4.6 mm internal diameter, 5 µm particle size), with a mobile phase composed of acetonitrile-ammonium acetate, pH 5 (50:50, v/v) at a flow rate of 1.0 mL min-1. Both SEL and IS were detected by PDA at 230 nm. The method was validated according to the ICH guidelines for bioanalytical method validation. Results: The method exhibited linearity in concentrations ranging from 50 to 1000 ng mL-1, with a limit of quantitation of 66.1 ng mL-1. All remaining validation parameters satisfied the ICH validation criteria. The environmental sustainability of the method was verified using three extensive tools. The proposed HPLC-PDA method was effectively utilized to study the pharmacokinetics of SEL in rats after a single oral administration of 25 mg/kg. Conclusions: The proposed method stands as a valuable tool for studying SELs for pharmacokinetics in humans. It aids in achieving the targeted therapeutic advantages and safety of treatment with SEL by optimizing the SEL dosage and dosing schedule.
Collapse
Affiliation(s)
| | | | - Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Wang YT, Jiang SQ, Zhang SL. Synthetic Approaches and Clinical Application of Representative Small-Molecule Inhibitors of Cyclin-Dependent Kinase for Cancer Therapy. Molecules 2024; 29:3029. [PMID: 38998978 PMCID: PMC11243137 DOI: 10.3390/molecules29133029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
The regulation of the cancer cell cycle heavily relies on cyclin-dependent kinases (CDKs). Targeting CDKs has been identified as a promising approach for effective cancer therapy. In recent years, there has been significant attention paid towards developing small-molecule CDK inhibitors in the field of drug discovery. Notably, five such inhibitors have already received regulatory approval for the treatment of different cancers, including breast tumors, lung malignancies, and hematological malignancies. This review provides an overview of the synthetic routes used to produce 17 representative small-molecule CDK inhibitors that have obtained regulatory approval or are currently being evaluated through clinical trials. It also discusses their clinical applications for treating CDK-related diseases and explores the challenges and limitations associated with their use in a clinical setting, which will stimulate the further development of novel CDK inhibitors. By integrating therapeutic applications, synthetic methodologies, and mechanisms of action observed in various clinical trials involving these CDK inhibitors, this review facilitates a comprehensive understanding of the versatile roles and therapeutic potential offered by interventions targeting CDKs.
Collapse
Affiliation(s)
- Ya-Tao Wang
- First People’s Hospital of Shangqiu, Shangqiu 476100, China
| | - Shi-Qi Jiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| |
Collapse
|
5
|
Heneghan M, Southern KW, Murphy J, Sinha IP, Nevitt SJ. Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del). Cochrane Database Syst Rev 2023; 11:CD010966. [PMID: 37983082 PMCID: PMC10659105 DOI: 10.1002/14651858.cd010966.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a common life-shortening genetic condition caused by a variant in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. A class II CFTR variant F508del is the commonest CF-causing variant (found in up to 90% of people with CF (pwCF)). The F508del variant lacks meaningful CFTR function - faulty protein is degraded before reaching the cell membrane, where it needs to be to effect transepithelial salt transport. Corrective therapy could benefit many pwCF. This review evaluates single correctors (monotherapy) and any combination of correctors (most commonly lumacaftor, tezacaftor, elexacaftor, VX-659, VX-440 or VX-152) and a potentiator (e.g. ivacaftor) (dual and triple therapies). OBJECTIVES To evaluate the effects of CFTR correctors (with or without potentiators) on clinically important benefits and harms in pwCF of any age with class II CFTR mutations (most commonly F508del). SEARCH METHODS We searched the Cochrane CF Trials Register (28 November 2022), reference lists of relevant articles and online trials registries (3 December 2022). SELECTION CRITERIA Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to control in pwCF with class II mutations. DATA COLLECTION AND ANALYSIS Two authors independently extracted data, assessed risk of bias and judged evidence certainty (GRADE); we contacted investigators for additional data. MAIN RESULTS We included 34 RCTs (4781 participants), lasting between 1 day and 48 weeks; an extension of two lumacaftor-ivacaftor studies provided additional 96-week safety data (1029 participants). We assessed eight monotherapy RCTs (344 participants) (4PBA, CPX, lumacaftor, cavosonstat and FDL169), 16 dual-therapy RCTs (2627 participants) (lumacaftor-ivacaftor or tezacaftor-ivacaftor) and 11 triple-therapy RCTs (1804 participants) (elexacaftor-tezacaftor-ivacaftor/deutivacaftor; VX-659-tezacaftor-ivacaftor/deutivacaftor; VX-440-tezacaftor-ivacaftor; VX-152-tezacaftor-ivacaftor). Participants in 21 RCTs had the genotype F508del/F508del, in seven RCTs they had F508del/minimal function (MF), in one RCT F508del/gating genotypes, in one RCT either F508del/F508del genotypes or F508del/residual function genotypes, in one RCT either F508del/gating or F508del/residual function genotypes, and in three RCTs either F508del/F508del genotypes or F508del/MF genotypes. Risk of bias judgements varied across different comparisons. Results from 16 RCTs may not be applicable to all pwCF due to age limits (e.g. adults only) or non-standard designs (converting from monotherapy to combination therapy). Monotherapy Investigators reported no deaths or clinically relevant improvements in quality of life (QoL). There was insufficient evidence to determine effects on lung function. No placebo-controlled monotherapy RCT demonstrated differences in mild, moderate or severe adverse effects (AEs); the clinical relevance of these events is difficult to assess due to their variety and few participants (all F508del/F508del). Dual therapy In a tezacaftor-ivacaftor group there was one death (deemed unrelated to the study drug). QoL scores (respiratory domain) favoured both lumacaftor-ivacaftor and tezacaftor-ivacaftor therapy compared to placebo at all time points (moderate-certainty evidence). At six months, relative change in forced expiratory volume in one second (FEV1) % predicted improved with all dual combination therapies compared to placebo (high- to moderate-certainty evidence). More pwCF reported early transient breathlessness with lumacaftor-ivacaftor (odds ratio (OR) 2.05, 99% confidence interval (CI) 1.10 to 3.83; I2 = 0%; 2 studies, 739 participants; high-certainty evidence). Over 120 weeks (initial study period and follow-up), systolic blood pressure rose by 5.1 mmHg and diastolic blood pressure by 4.1 mmHg with twice-daily 400 mg lumacaftor-ivacaftor (80 participants). The tezacaftor-ivacaftor RCTs did not report these adverse effects. Pulmonary exacerbation rates decreased in pwCF receiving additional therapies to ivacaftor compared to placebo (all moderate-certainty evidence): lumacaftor 600 mg (hazard ratio (HR) 0.70, 95% CI 0.57 to 0.87; I2 = 0%; 2 studies, 739 participants); lumacaftor 400 mg (HR 0.61, 95% CI 0.49 to 0.76; I2 = 0%; 2 studies, 740 participants); and tezacaftor (HR 0.64, 95% CI 0.46 to 0.89; 1 study, 506 participants). Triple therapy No study reported any deaths (high-certainty evidence). All other evidence was low- to moderate-certainty. QoL respiratory domain scores probably improved with triple therapy compared to control at six months (six studies). There was probably a greater relative and absolute change in FEV1 % predicted with triple therapy (four studies each across all combinations). The absolute change in FEV1 % predicted was probably greater for F508del/MF participants taking elexacaftor-tezacaftor-ivacaftor compared to placebo (mean difference 14.30, 95% CI 12.76 to 15.84; 1 study, 403 participants; moderate-certainty evidence), with similar results for other drug combinations and genotypes. There was little or no difference in adverse events between triple therapy and control (10 studies). No study reported time to next pulmonary exacerbation, but fewer F508del/F508del participants experienced a pulmonary exacerbation with elexacaftor-tezacaftor-ivacaftor at four weeks (OR 0.17, 99% CI 0.06 to 0.45; 1 study, 175 participants) and 24 weeks (OR 0.29, 95% CI 0.14 to 0.60; 1 study, 405 participants); similar results were seen across other triple therapy and genotype combinations. AUTHORS' CONCLUSIONS There is insufficient evidence of clinically important effects from corrector monotherapy in pwCF with F508del/F508del. Additional data in this review reduced the evidence for efficacy of dual therapy; these agents can no longer be considered as standard therapy. Their use may be appropriate in exceptional circumstances (e.g. if triple therapy is not tolerated or due to age). Both dual therapies (lumacaftor-ivacaftor, tezacaftor-ivacaftor) result in similar small improvements in QoL and respiratory function with lower pulmonary exacerbation rates. While the effect sizes for QoL and FEV1 still favour treatment, they have reduced compared to our previous findings. Lumacaftor-ivacaftor was associated with an increase in early transient shortness of breath and longer-term increases in blood pressure (not observed for tezacaftor-ivacaftor). Tezacaftor-ivacaftor has a better safety profile, although data are lacking in children under 12 years. In this population, lumacaftor-ivacaftor had an important impact on respiratory function with no apparent immediate safety concerns, but this should be balanced against the blood pressure increase and shortness of breath seen in longer-term adult data when considering lumacaftor-ivacaftor. Data from triple therapy trials demonstrate improvements in several key outcomes, including FEV1 and QoL. There is probably little or no difference in adverse events for triple therapy (elexacaftor-tezacaftor-ivacaftor/deutivacaftor; VX-659-tezacaftor-ivacaftor/deutivacaftor; VX-440-tezacaftor-ivacaftor; VX-152-tezacaftor-ivacaftor) in pwCF with one or two F508del variants aged 12 years or older (moderate-certainty evidence). Further RCTs are required in children under 12 years and those with more severe lung disease.
Collapse
Affiliation(s)
- Matthew Heneghan
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | | | - Ian P Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Sarah J Nevitt
- Department of Health Data Science, University of Liverpool, Liverpool, UK
- Centre for Reviews and Dissemination, University of York, York, UK
| |
Collapse
|
6
|
Zhou Y, Yu L, Huang P, Zhao X, He R, Cui Y, Pan B, Liu C. Identification of afatinib-associated ADH1B and potential small-molecule drugs targeting ADH1B for hepatocellular carcinoma. Front Pharmacol 2023; 14:1166454. [PMID: 37229243 PMCID: PMC10203513 DOI: 10.3389/fphar.2023.1166454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Background: Afatinib is an irreversible epidermal growth factor receptor tyrosine kinase inhibitor, and it plays a role in hepatocellular carcinoma (LIHC). This study aimed to screen a key gene associated with afatinib and identify its potential candidate drugs. Methods: We screened afatinib-associated differential expressed genes based on transcriptomic data of LIHC patients from The Cancer Genome Atlas, Gene Expression Omnibus, and the Hepatocellular Carcinoma Database (HCCDB). By using the Genomics of Drug Sensitivity in Cancer 2 database, we determined candidate genes using analysis of the correlation between differential genes and half-maximal inhibitory concentration. Survival analysis of candidate genes was performed in the TCGA dataset and validated in HCCDB18 and GSE14520 datasets. Immune characteristic analysis identified a key gene, and we found potential candidate drugs using CellMiner. We also evaluated the correlation between the expression of ADH1B and its methylation level. Furthermore, Western blot analysis was performed to validate the expression of ADH1B in normal hepatocytes LO2 and LIHC cell line HepG2. Results: We screened eight potential candidate genes (ASPM, CDK4, PTMA, TAT, ADH1B, ANXA10, OGDHL, and PON1) associated with afatinib. Patients with higher ASPM, CDK4, PTMA, and TAT exhibited poor prognosis, while those with lower ADH1B, ANXA10, OGDHL, and PON1 had unfavorable prognosis. Next, ADH1B was identified as a key gene negatively correlated with the immune score. The expression of ADH1B was distinctly downregulated in tumor tissues of pan-cancer. The expression of ADH1B was negatively correlated with ADH1B methylation. Small-molecule drugs panobinostat, oxaliplatin, ixabepilone, and seliciclib were significantly associated with ADH1B. The protein level of ADH1B was significantly downregulated in HepG2 cells compared with LO2 cells. Conclusion: Our study provides ADH1B as a key afatinib-related gene, which is associated with the immune microenvironment and can be used to predict the prognosis of LIHC. It is also a potential target of candidate drugs, sharing a promising approach to the development of novel drugs for the treatment of LIHC.
Collapse
Affiliation(s)
- Yongxu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Liang Yu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Peng Huang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Pan
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN. Anti- Pseudomonas aeruginosa Vaccines and Therapies: An Assessment of Clinical Trials. Microorganisms 2023; 11:916. [PMID: 37110338 PMCID: PMC10144840 DOI: 10.3390/microorganisms11040916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes high morbidity and mortality in cystic fibrosis (CF) and immunocompromised patients, including patients with ventilator-associated pneumonia (VAP), severely burned patients, and patients with surgical wounds. Due to the intrinsic and extrinsic antibiotic resistance mechanisms, the ability to produce several cell-associated and extracellular virulence factors, and the capacity to adapt to several environmental conditions, eradicating P. aeruginosa within infected patients is difficult. Pseudomonas aeruginosa is one of the six multi-drug-resistant pathogens (ESKAPE) considered by the World Health Organization (WHO) as an entire group for which the development of novel antibiotics is urgently needed. In the United States (US) and within the last several years, P. aeruginosa caused 27% of deaths and approximately USD 767 million annually in health-care costs. Several P. aeruginosa therapies, including new antimicrobial agents, derivatives of existing antibiotics, novel antimicrobial agents such as bacteriophages and their chelators, potential vaccines targeting specific virulence factors, and immunotherapies have been developed. Within the last 2-3 decades, the efficacy of these different treatments was tested in clinical and preclinical trials. Despite these trials, no P. aeruginosa treatment is currently approved or available. In this review, we examined several of these clinicals, specifically those designed to combat P. aeruginosa infections in CF patients, patients with P. aeruginosa VAP, and P. aeruginosa-infected burn patients.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jane A. Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michael J. San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Honors College, Texas Tech University, Lubbock, TX 79409, USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
8
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
9
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
10
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|