1
|
Edwards SJ, Farrar BG, Ennis K, Downes N, Wakefield V, Mackenzie I, Walters A, Jhita T. Ivacaftor-tezacaftor-elexacaftor, tezacaftor-ivacaftor and lumacaftor-ivacaftor for treating cystic fibrosis: a systematic review and economic evaluation. Health Technol Assess 2025; 29:1-111. [PMID: 40418577 DOI: 10.3310/cpld8546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Background Cystic fibrosis is a life-limiting genetic condition that affects over 9000 people in England. Cystic fibrosis is usually diagnosed through newborn screening and causes symptoms throughout the body, including the lungs and digestive system. Around 90% of individuals with cystic fibrosis have at least one copy of the F508del mutation on the cystic fibrosis transmembrane conductance regulator gene. Objectives To appraise the clinical effectiveness and cost-effectiveness of elexacaftor-tezacaftor-ivacaftor, tezacaftor-ivacaftor and lumacaftor-ivacaftor within their expected marketing authorisations for treating people with cystic fibrosis and at least one F508del mutation, compared with each other and with established clinical management before these treatments. Methods A de novo systematic literature review (search date February 2023) was conducted searching electronic databases (MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials), bibliographies of relevant systematic literature reviews, clinical trial registers, recent conferences and evidence provided by Vertex Pharmaceuticals (Boston, MA, USA). Data on the following outcomes were summarised: acute change in per cent predicted forced expiratory volume in 1 second (change in weight-for-age z-score; and change in pulmonary exacerbation frequency requiring intravenous antibiotics. Network meta-analyses were conducted where head-to-head data were not available. Data from clinical trials and real-world evidence were examined to assess long-term effectiveness. A patient-level simulation model was developed to assess the cost-effectiveness of the three modulator treatments. The model employed a lifetime horizon and was developed from the perspective of the National Health Service. Results Data from 19 primary studies and 7 open-label extension studies were prioritised in the systematic literature review. Elexacaftor/tezacaftor/ivacaftor was associated with a statistically significant increase in predicted forced expiratory volume in 1 second and weight-for-age z-score and a reduction in pulmonary exacerbations compared with established clinical management, lumacaftor/ivacaftor and tezacaftor/ivacaftor, and also led to a reduction in the rate of predicted forced expiratory volume in 1 second decline relative to established clinical management, although the magnitude of this decrease was uncertain. Lumacaftor/ivacaftor and tezacaftor/ivacaftor were also associated with a statistically significant increase in predicted forced expiratory volume in 1 second and reduction in pulmonary exacerbations relative to established clinical management, but with a smaller effect size than elexacaftor/tezacaftor/ivacaftor. There was some evidence that tezacaftor/ivacaftor reduced the rate of predicted forced expiratory volume in 1 second decline relative to established clinical management, but little evidence that lumacaftor/ivacaftor reduced the rate of predicted forced expiratory volume in 1 second decline relative to established clinical management. The incremental cost-effectiveness ratios from the economic analysis were confidential. However, for all genotypes studied the incremental cost-effectiveness ratios were above what would be considered cost-effective based on the National Institute for Health and Care Excellence threshold of £20,000-30,000 per quality-adjusted life-year gained. Conclusions Despite the improved clinical benefits observed, none of the cystic fibrosis transmembrane conductance regulator gene modulators assessed would be considered cost-effective based on the National Institute for Health and Care Excellence threshold of £20,000-30,000 per quality-adjusted life-year gained. This is largely driven by the high acquisition costs of cystic fibrosis transmembrane conductance regulator gene modulator treatments. Study registration This study is registered as PROSPERO CRD42023399583. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR135829) and is published in full in Health Technology Assessment; Vol. 29, No. 19. See the NIHR Funding and Awards website for further award information.
Collapse
|
2
|
Felipe Montiel A, Fernández AÁ, Amigo MC, Traversi L, Clofent Alarcón D, Reyes KL, Polverino E. The ageing of people living with cystic fibrosis: what to expect now? Eur Respir Rev 2024; 33:240071. [PMID: 39477350 PMCID: PMC11522972 DOI: 10.1183/16000617.0071-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
The prognosis of people with cystic fibrosis (pwCF) has improved dramatically with the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators (CFTRm). The ageing of the cystic fibrosis (CF) population is changing the disease landscape with the emergence of different needs and increasing comorbidities related to both age and long-term exposure to multiple treatments including CFTRm. Although the number of pwCF eligible for this treatment is expected to increase, major disparities in care and outcomes still exist in this population. Moreover, the long-term impact of the use of CFTRm is still partly unknown due to the current short follow-up and experience with their use, thus generating some uncertainties. The future spread and initiation of these drugs at an earlier stage of the disease is expected to reduce the systemic burden of systemic inflammation and its consequences on health. However, the prolonged life expectancy is accompanied by an increasing burden of age-related comorbidities, especially in the context of chronic disease. The clinical manifestations of the comorbidities directly or indirectly associated with CFTR dysfunction are changing, along with the disease dynamics and outcomes. Current protocols used to monitor slow disease progression will need continuous updates, including the composition of the multidisciplinary team for CF care, with a greater focus on the needs of the adult population.
Collapse
Affiliation(s)
- Almudena Felipe Montiel
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Antonio Álvarez Fernández
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Culebras Amigo
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Letizia Traversi
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - David Clofent Alarcón
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karina Loor Reyes
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Eva Polverino
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Kim J, Lyman B, Savant AP. Cystic fibrosis year in review 2022. Pediatr Pulmonol 2023; 58:3013-3022. [PMID: 37594137 DOI: 10.1002/ppul.26641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Remarkable medical advancements have been made for people with cystic fibrosis (CF) in recent years, with an abundance of research continuing to be conducted worldwide. With concern for limitations in access to highly effective CFTR modulators, as well as the recent Coronavirus Disease-19 pandemic, there has been a consistent effort to understand and improve CF screening, disease burden, diagnosis, and management. Our aim in this review is to present articles from 2022 with an emphasis on clinically relevant studies. We hope this will serve as a broad overview of the research published in the past year.
Collapse
Affiliation(s)
- Jeeyeon Kim
- Department of Pediatrics, Children's Hospital of New Orleans, New Orleans, Louisiana, USA
- Department of Pediatrics, Tulane University, New Orleans, Louisiana, USA
| | - Benjamin Lyman
- Department of Pediatrics, Children's Hospital of New Orleans, New Orleans, Louisiana, USA
- Department of Pediatrics, Louisiana State University, New Orleans, Louisiana, USA
| | - Adrienne P Savant
- Department of Pediatrics, Children's Hospital of New Orleans, New Orleans, Louisiana, USA
- Department of Pediatrics, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Mailhot G, Denis MH, Beauchamp-Parent C, Jomphe V. Nutritional management of people living with cystic fibrosis throughout life and disease continuum: Changing times, new challenges. J Hum Nutr Diet 2023; 36:1675-1691. [PMID: 37515397 DOI: 10.1111/jhn.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding for the ion channel cystic fibrosis transmembrane conductance regulator (CFTR). The management of CF disease has evolved in recent decades from treating downstream disease manifestations affecting the airways, the lungs and the gastrointestinal system to addressing the CFTR gene defect. The advent of CFTR modulators, which correct the functionality of the defective CFTR, contributes to reshaping the landscape of CF demographics, prognosis and therapies, including nutritional management. A spectrum of clinical manifestations is emerging within the same patient population where undernutrition and nutritional deficiencies coexist with excessive weight gain and metabolic derangements. Such contrasting presentations challenge current practices, require adjustments to traditional approaches, and involve more individualised interventions. This narrative review examines the current state of knowledge on the nutritional management of people living with cystic fibrosis from early life to adulthood in the era of CFTR modulation.
Collapse
Affiliation(s)
- Geneviève Mailhot
- Department of Nutrition, Faculty of Medicine, Montreal, QC, Canada
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | | | | | - Valérie Jomphe
- Lung Transplant Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
5
|
Taylor-Cousar JL, Robinson PD, Shteinberg M, Downey DG. CFTR modulator therapy: transforming the landscape of clinical care in cystic fibrosis. Lancet 2023; 402:1171-1184. [PMID: 37699418 DOI: 10.1016/s0140-6736(23)01609-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Following discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989 and subsequent elucidation of the varied CFTR protein abnormalities that result, a new era of cystic fibrosis management has emerged-one in which scientific principles translated from the bench to the bedside have enabled us to potentially treat the basic defect in the majority of children and adults with cystic fibrosis, with a resultant burgeoning adult cystic fibrosis population. However, the long-term effects of these therapies on the multiple manifestations of cystic fibrosis are still under investigation. Understanding the effects of modulators in populations excluded from clinical trials is also crucial. Furthermore, establishing appropriate disease measures to assess efficacy in the youngest potential trial participants and in those whose post-modulator lung function is in the typical range for people without chronic lung disease is essential for continued drug development. Finally, recognising that a health outcome gap has been created for some people and widened for others who are not eligible for, cannot tolerate, or do not have access to modulators is important.
Collapse
Affiliation(s)
- Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA; Division of Pediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA; Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA.
| | - Paul D Robinson
- Department of Respiratory Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia; Children's Health and Environment Program, Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; B Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
6
|
Streibel C, Willers CC, Pusterla O, Bauman G, Stranzinger E, Brabandt B, Bieri O, Curdy M, Bullo M, Frauchiger BS, Korten I, Krüger L, Casaulta C, Ratjen F, Latzin P, Kieninger E. Effects of elexacaftor/tezacaftor/ivacaftor therapy in children with cystic fibrosis - a comprehensive assessment using lung clearance index, spirometry, and functional and structural lung MRI. J Cyst Fibros 2023; 22:615-622. [PMID: 36635199 DOI: 10.1016/j.jcf.2022.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND With improvement in supportive therapies and the introduction of cystic fibrosis transmembrane conductance regulator (CFTR)-modulator treatment in patients with cystic fibrosis (CF), milder disease courses are expected. Therefore, sensitive parameters are needed to monitor disease course and effects of CFTR-modulators. Functional lung MRI using matrix-pencil decomposition (MP-MRI) is a promising tool for assessing ventilation and perfusion quantitatively. This study aimed to assess the treatment effect of elexacaftor/tezacaftor/ivacaftor combination regimen (ELX/TEZ/IVA) on measures of structural and functional lung abnormalities. METHODS 24 children with CF underwent lung function tests (multiple breath washout, spirometry), functional and structural MRI twice (one year apart) before and once after at least two weeks (mean 4.7 ± 2.6 months) on ELX/TEZ/IVA. Main outcomes were changes (Δ) upon ELX/TEZ/IVA in lung function, defect percentage of ventilation (VDP) and perfusion (QDP), defect distribution index of ventilation and perfusion (DDIV, DDIQ), and Eichinger score. Statistical analyses were performed using paired t-tests and multilevel regression models with bootstrapping. RESULTS We observed a significant improvement in lung function, structural and functional MRI parameters upon ELX/TEZ/IVA treatment (mean; 95%-CI): ΔLCI2.5 (TO) -0.84 (-1.62 to -0.06); ΔFEV1 (z-score) 1.05 (0.56 to 1.55); ΔVDP (% of impairment) -6.00 (-8.44 to -3.55); ΔQDP (% of impairment) -3.90 (-5.90 to -1.90); ΔDDIV -1.38 (-2.22 to -0.53); ΔDDIQ -0.31 (-0.73 to 0.12); ΔEichinger score -3.89 (-5.05 to -2.72). CONCLUSIONS Besides lung function tests, functional and structural MRI is a suitable tool to monitor treatment response of ELX/TEZ/IVA therapy, and seems promising as outcome marker in the future.
Collapse
Affiliation(s)
- Carmen Streibel
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Corin C Willers
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Departement of Paediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | - Orso Pusterla
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Grzegorz Bauman
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Enno Stranzinger
- Department of Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ben Brabandt
- Department of Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Marion Curdy
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Marina Bullo
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Bettina Sarah Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Linn Krüger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Prentice B, Nicholson M, Lam GY. Cystic fibrosis related diabetes (CFRD) in the era of modulators: A scoping review. Paediatr Respir Rev 2023; 46:23-29. [PMID: 36581478 DOI: 10.1016/j.prrv.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is a common complication of CF that increases in incidence as patients age. Poor glycemic control has been shown to negatively impact lung function and weight, resulting in higher risk of recurrent pulmonary exacerbations. With the advent of highly effective modulator therapies (HEMT), patients with CF are living longer and healthier lives. Consequently, CFRD and its microvascular complications are rising in prominence, becoming one of the most urgent clinical concerns. As HEMT were developed with the primary focus of improving pulmonary outcomes, it is not clear from the original phase III studies what the short- or long-term benefits of modulators might be on CFRD development and trajectory. In this review, we will examine the pathophysiology of CFRD, summarize and synthesize the available evidence of HEMT impact on CFRD and describe the emerging research needs in this field.
Collapse
Affiliation(s)
- Bernadette Prentice
- Department of Respiratory Medicine, Sydney Children's Hospital, Randwick Australia; Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, Randwick, Australia; Discipline of Paediatrics and Child Health, School of Clinical Medicine, University of New South Wales, Randwick, Australia
| | - Michael Nicholson
- Division of Respirology, Department of Medicine, Western University, Ontario, Canada
| | - Grace Y Lam
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Alberta, Canada.
| |
Collapse
|
8
|
Dillenhoefer S, Grogono D, Morales-Tirado A. A year in review (2022): Modulators and COVID19, the story goes on…. J Cyst Fibros 2023; 22:188-192. [PMID: 36906393 PMCID: PMC9986130 DOI: 10.1016/j.jcf.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Stefanie Dillenhoefer
- Department of Pediatric Pulmonology, Cystic Fibrosis Center, University Children's Hospital of Ruhr University Bochum at St. Josef-Hospital, 44791 Bochum, Germany
| | - Dorothy Grogono
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, CB2 0AY, UK.
| | - Ana Morales-Tirado
- Cystic Fibrosis Unit, Pediatric Pulmonology Department, Ramon y Cajal Hospital, Madrid, Spain. Universidad de Alcalá
| |
Collapse
|
9
|
Yu C, Kotsimbos T. Respiratory Infection and Inflammation in Cystic Fibrosis: A Dynamic Interplay among the Host, Microbes, and Environment for the Ages. Int J Mol Sci 2023; 24:ijms24044052. [PMID: 36835487 PMCID: PMC9966804 DOI: 10.3390/ijms24044052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The interplay between airway inflammation and infection is now recognized as a major factor in the pathobiology in cystic fibrosis (CF). A proinflammatory environment is seen throughout the CF airway resulting in classic marked and enduring neutrophilic infiltrations, irreversibly damaging the lung. Although this is seen to occur early, independent of infection, respiratory microbes arising at different timepoints in life and the world environment perpetuate this hyperinflammatory state. Several selective pressures have allowed for the CF gene to persist until today despite an early mortality. Comprehensive care systems, which have been a cornerstone of therapy for the past few decades, are now revolutionized by CF transmembrane conductance regulator (CTFR) modulators. The effects of these small-molecule agents cannot be overstated and can be seen as early as in utero. For an understanding of the future, this review looks into CF studies spanning the historical and present period.
Collapse
Affiliation(s)
- Christiaan Yu
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: ; Tel.: +61-3-9076-20000
| | - Tom Kotsimbos
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, Monash University, Alfred Campus, Melbourne, VIC 3004, Australia
| |
Collapse
|
10
|
Mayer-Hamblett N, Zemanick ET, Odem-Davis K, VanDevanter D, Warden M, Rowe SM, Young J, Konstan MW, For-The-Chec-Sc-Study-Group. Characterizing CFTR modulated sweat chloride response across the cf population: Initial results from the CHEC-SC study. J Cyst Fibros 2023; 22:79-88. [PMID: 35871974 PMCID: PMC10103635 DOI: 10.1016/j.jcf.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND CHEC-SC is an ongoing epidemiologic study characterizing modulator-induced sweat chloride (SC) responses across the CF population, with interim results available prior to the availability of triple combination modulator therapy. METHODS Eligible participants had been prescribed a modulator for ≥90 days with re-enrollment allowed upon establishment of a new modulator. Pre-modulator SC values were obtained from chart review; post-modulator sweat was collected and analyzed locally. SC changes were descriptively summarized with biologic sex effects adjusted for age, weight, and CFTR genotype. Heterogeneity in ivacaftor SC response was characterized in relation to published CFTR functional responses. RESULTS 1848 participants provided 2004 SC measurements, 26.2% on ivacaftor, 39.1% on lumacaftor/ivacaftor, and 34.7% on tezacaftor/ivacaftor. Average SC changes for all modulators were consistent with those reported in previous clinical studies, with greater variation in SC response observed among rarer mutations and notable shifts in the proportion with SC <60mmol/L independent of the magnitude of SC change. Ivacaftor induced in vitro CFTR functional change was significantly correlated with ivacaftor-modulated SC response (Pearson correlation= ‒0.52, 95% CI: ‒0.773, ‒0.129). Average SC change from ivacaftor to tezacaftor/ivacaftor was ‒4.9 mmol/L (n=17,95% CI:‒9.3, ‒0.5) and differed from those switching from lumacaftor/ivacaftor (10.0 mmol/L, n=139, 95% CI:7.8,12.3). Sex at birth was not associated with SC response. CONCLUSIONS CHEC-SC is the largest study characterizing modulator-induced SC changes across the CF population. There was a strong association between ivacaftor induced in vitro CFTR function and SC response across a genotypically heterogenous cohort. Biological sex was not associated with SC response.
Collapse
Affiliation(s)
- N Mayer-Hamblett
- University of Washington, Seattle, WA, United States; Seattle Children's Hospital, Seattle, WA, United States.
| | - E T Zemanick
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - K Odem-Davis
- Seattle Children's Hospital, Seattle, WA, United States
| | - D VanDevanter
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - M Warden
- Seattle Children's Hospital, Seattle, WA, United States
| | - S M Rowe
- University of Alabama at Birmingham, Birmingham, AL, England
| | - J Young
- Seattle Children's Hospital, Seattle, WA, United States
| | - M W Konstan
- Case Western Reserve University School of Medicine, Cleveland, OH, United States; Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | | |
Collapse
|
11
|
Li Q, Liu S, Ma X, Yu J. Effectiveness and Safety of Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Children With Cystic Fibrosis: A Meta-Analysis. Front Pediatr 2022; 10:937250. [PMID: 35844763 PMCID: PMC9276987 DOI: 10.3389/fped.2022.937250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIM Cystic fibrosis (CF) is a genetic disease that is difficult to treat and caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Small molecules have been used to treat the symptom caused by CFTR mutations by restoring CFTR protein function. However, the data on children with CF are scarce. This meta-analysis aimed to evaluate the effectiveness and safety of this therapy in children diagnosed with CF. MATERIALS AND METHODS Relevant studies were identified through searching medical databases before April 1, 2022. The primary outcomes of ppFEV1, lung clearance index2.5 (LCI2.5), sweat chloride concentration (SwCI), and Cystic Fibrosis Questionnaire-Revised (CFQ-R) score were pooled and analyzed. The secondary outcomes were nutritional status (weight, BMI, stature, and their z-score) and adverse events under therapy. RESULTS A total of twelve studies were included. Compared with the placebo group, the pooled outcome of the ppFEV1, LCI2.5, SwCI, and CFQ-R score were improved by 7.91 {[95% confidence interval (CI), 3.71-12.12], -1.00 (95% CI, -1.38 to -0.63), -35.22 (95% CI, -55.51 to -14.92), and 4.45 (95% CI, 2.31-6.59), respectively}. Compared with the placebo group, the pooled result of the change in weight was improved by 1.53 (95% CI, 0.42-2.63). All the aforementioned results were also improved in single-arm studies. No clear differences in adverse events were found between CFTR modulator therapy and the placebo group. CONCLUSION CFTR modulators could improve multiaspect function in children with CF and result in comparable adverse events.
Collapse
Affiliation(s)
- Qiyu Li
- Department of Pediatrics, General Hospital of Northern Theater Command, Shenyang, China
| | - Siyuan Liu
- Department of Pediatrics, General Hospital of Northern Theater Command, Shenyang, China
| | - Xuemei Ma
- Department of Pediatrics, General Hospital of Northern Theater Command, Shenyang, China
| | - Jiaping Yu
- Department of Pediatrics, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|