1
|
Malungo IB, Mokale R, Bertelsen MF, Manger PR. Cholinergic, catecholaminergic, serotonergic, and orexinergic neuronal populations in the brain of the lesser hedgehog tenrec (Echinops telfairi). Anat Rec (Hoboken) 2023; 306:844-878. [PMID: 36179372 DOI: 10.1002/ar.25092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
The current study provides an analysis of the cholinergic, catecholaminergic, serotonergic, and orexinergic neuronal populations, or nuclei, in the brain of the lesser hedgehog tenrec, as revealed with immunohistochemical techniques. For all four of these neuromodulatory systems, the nuclear organization was very similar to that observed in other Afrotherian species and is broadly similar to that observed in other mammals. The cholinergic system shows the most variation, with the lesser hedgehog tenrec exhibiting palely immunopositive cholinergic neurons in the ventral portion of the lateral septal nucleus, and the possible absence of cholinergic neurons in the parabigeminal nucleus and the medullary tegmental field. The nuclear complement of the catecholaminergic, serotonergic and orexinergic systems showed no specific variances in the lesser hedgehog tenrec when compared to other Afrotherians, or broadly with other mammals. A striking feature of the lesser hedgehog tenrec brain is a significant mesencephalic flexure that is observed in most members of the Tenrecoidea, as well as the closely related Chrysochlorinae (golden moles), but is not present in the greater otter shrew, a species of the Potomogalidae lineage currently incorporated into the Tenrecoidea. In addition, the cholinergic neurons of the ventral portion of the lateral septal nucleus are observed in the golden moles, but not in the greater otter shrew. This indicates that either complex parallel evolution of these features occurred in the Tenrecoidea and Chrysochlorinae lineages, or that the placement of the Potomogalidae within the Tenrecoidea needs to be re-examined.
Collapse
Affiliation(s)
- Illke B Malungo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Reabetswe Mokale
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
2
|
Oddes D, Ngwenya A, Malungo IB, Burkevica A, Hård T, Bertelsen MF, Spocter MA, Scantlebury DM, Manger PR. Orexinergic neurons in the hypothalami of an Asiatic lion, an African lion, and a Southeast African cheetah. J Comp Neurol 2022; 531:366-389. [PMID: 36354959 PMCID: PMC10099269 DOI: 10.1002/cne.25431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022]
Abstract
Employing orexin-A immunohistochemistry, we describe the distribution, morphology, and nuclear parcellation of orexinergic neurons within the hypothalami of an Asiatic lion (Panthera leo subsp. persica), an African lion (Panthera leo subsp. melanochaita), and a Southeast African cheetah (Acinonyx jubatus subsp. jubatus). In all three felids, the clustering of large, bipolar, and multipolar hypothalamic orexinergic neurons primarily follows the pattern observed in other mammals. The orexinergic neurons were found, primarily, to form three distinct clusters-the main, zona incerta, and optic tract clusters. In addition, large orexinergic neurons were observed in the ventromedial supraoptic region of the hypothalamus, where they are not typically observed in other species. As has been observed in cetartiodactyls and the African elephant, a cluster of small, multipolar orexinergic neurons, the parvocellular cluster, was observed in the medial zone of the hypothalamus in all three felids, although this parvocellular cluster has not been reported in other carnivores. In both subspecies of lions, but not the cheetah, potential orexin-immunopositive neurons were observed in the paraventricular hypothalamic nucleus, supraoptic nucleus, the lateral part of the retrochiasmatic area, and the inner layer of the median eminence. The distribution and parcellation of orexinergic neurons in the hypothalami of the three felids studied appear to be more complex than observed in many other mammals and for the two subspecies of lion may be even more complex. These findings are discussed in terms of potential technical concerns, phylogenetic variations of this system, and potentially associated functional aspects of the orexinergic system.
Collapse
Affiliation(s)
- Demi Oddes
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Ayanda Ngwenya
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Illke B. Malungo
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | | | | | - Mads. F. Bertelsen
- Centre for Zoo and Wild Animal Health Copenhagen Zoo Frederiksberg Denmark
| | - Muhammad A. Spocter
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
- Department of Anatomy Des Moines University Des Moines Iowa USA
| | | | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
3
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Sherwood CC, Manger PR. Distribution of cholinergic neurons in the brains of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1516-1535. [PMID: 34837339 DOI: 10.1002/ar.24844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 11/07/2022]
Abstract
Using choline acetyltransferase immunohistochemistry, we describe the nuclear parcellation of the cholinergic system in the brains of two apes, a lar gibbon (Hylobates lar) and a chimpanzee (Pan troglodytes). The cholinergic nuclei observed in both apes studied are virtually identical to that observed in humans and show very strong similarity to the cholinergic nuclei observed in other primates and mammals more generally. One specific difference between humans and the two apes studied is that, with the specific choline acetyltransferase antibody used, the cholinergic pyramidal neurons observed in human cerebral cortex were not labeled. When comparing the two apes studied and humans to other primates, the presence of a greatly expanded cholinergic medullary tegmental field, and the presence of cholinergic neurons in the intermediate and dorsal horns of the cervical spinal cord are notable variations of the distribution of cholinergic neurons in apes compared to other primates. These neurons may play an important role in the modulation of ascending and descending neural transmissions through the spinal cord and caudal medulla, potentially related to the differing modes of locomotion in apes compared to other primates. Our observations also indicate that the average soma volume of the neurons forming the laterodorsal tegmental nucleus (LDT) is larger than those of the pedunculopontine nucleus (PPT) in both the lar gibbon and chimpanzee. This variability in soma volume appears to be related to the size of the adult derivatives of the alar and basal plate across mammalian species.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
The Mammalian Locus Coeruleus Complex-Consistencies and Variances in Nuclear Organization. Brain Sci 2021; 11:brainsci11111486. [PMID: 34827485 PMCID: PMC8615727 DOI: 10.3390/brainsci11111486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Descriptions of the nuclear parcellation of the locus coeruleus complex have been provided in approximately 80 mammal species spanning the phylogenetic breadth of this class. Within the mammalian rostral hindbrain, noradrenergic neurons (revealed with tyrosine hydroxylase and dopamine-ß-hydroxylase immunohistochemistry) have been observed within the periventricular grey matter (A4 and A6 nuclei) and parvicellular reticular nucleus (A5 and A7 nuclei), with the one exception to date being the tree pangolin, where no A4/A6 neurons are observed. The alphanumeric nomenclature system, developed in laboratory rodent brains, has been adapted to cover the variation observed across species. Cross-species homology is observed regarding the nuclear organization of noradrenergic neurons located in the parvicellular reticular nucleus (A5 and A7). In contrast, significant variations are observed in the organization of the A6 neurons of the locus coeruleus proper. In most mammals, the A6 is comprised of a moderate density of neurons, but in Murid rodents, primates, and megachiropteran bats, the A6 exhibits a very high density of neurons. In primates and megachiropterans, there is an additional moderate density of A6 neurons located rostromedial to the high-density portion. These variations are of importance in understanding the translation of findings in laboratory rodents to humans.
Collapse
|
5
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
6
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Thannickal TC, Siegel JM, Sherwood CC, Manger PR. Nuclear organization of orexinergic neurons in the hypothalamus of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1459-1475. [PMID: 34535040 DOI: 10.1002/ar.24775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
Employing orexin-A immunohistochemical staining we describe the nuclear parcellation of orexinergic neurons in the hypothalami of a lar gibbon and a chimpanzee. The clustering of orexinergic neurons within the hypothalamus and the terminal networks follow the patterns generally observed in other mammals, including laboratory rodents, strepsirrhine primates and humans. The orexinergic neurons were found within three distinct clusters in the ape hypothalamus, which include the main cluster, zona incerta cluster and optic tract cluster. In addition, the orexinergic neurons of the optic tract cluster appear to extend to a more rostral and medial location than observed in other species, being observed in the tuberal region in the anterior ventromedial aspect of the hypothalamus. While orexinergic terminal networks were observed throughout the brain, high density terminal networks were observed within the hypothalamus, medial and intralaminar nuclei of the dorsal thalamus, and within the serotonergic and noradrenergic regions of the midbrain and pons, which is typical for mammals. The expanded distribution of orexinergic neurons into the tuberal region of the ape hypothalamus, is a feature that needs to be investigated in other primate species, but appears to correlate with orexin gene expression in the same region of the human hypothalamus, but these neurons are not revealed with immunohistochemical staining in humans. Thus, it appears that apes have a broader distribution of orexinergic neurons compared to other primate species, but that the neurons within this extension of the optic tract cluster in humans, while expressing the orexin gene, do not produce the neuropeptide.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Thomas C Thannickal
- Department of Psychiatry, School of Medicine, and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, Neurobiology Research, Sepulveda VA Medical Center, Los Angeles, California, USA
| | - Jerome M Siegel
- Department of Psychiatry, School of Medicine, and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, Neurobiology Research, Sepulveda VA Medical Center, Los Angeles, California, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
7
|
Marcos P, Coveñas R. Immunohistochemical study of the brainstem cholinergic system in the alpaca (<em>Lama pacos</em>) and colocalization with CGRP. Eur J Histochem 2021; 65. [PMID: 34346665 PMCID: PMC8314389 DOI: 10.4081/ejh.2021.3266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Several cholinergic regions have been detected in the brainstem of mammals. In general, these regions are constant among different species, and the nuclear complement is maintained in animals belonging to the same order. The cholinergic system of the brainstem has been partially described in Cetartiodactyla, except for the medulla oblongata. In this work carried out in the alpaca, the description of the cholinergic regions in this order is completed by the immunohistochemical detection of the enzyme choline acetyltransferase (ChAT). In addition, using double immunostaining techniques, the relationship between the cholinergic system and the distribution of calcitonin gene-related peptide (CGRP) previously described is analysed. Although these two substances are found in several brainstem regions, the coexistence in the same cell bodies was observed only in the laterodorsal tegmental nucleus, the nucleus ambiguus and the reticular formation. These results suggest that the interaction between ChAT and CGRP may be important in the regulation of voluntary movements, the control of rapid eye movement sleep and states of wakefulness as well as in reward mechanisms. Comparing the present results with others previously obtained by our group regarding the catecholaminergic system in the alpaca brainstem, it seems that CGRP may be more functionally related to the latter system than to the cholinergic system.
Collapse
Affiliation(s)
- Pilar Marcos
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Medicine, University of Castilla-La Mancha, CRIB (Regional Centre of Biomedical Research), Albacete.
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems; Grupo GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca.
| |
Collapse
|
8
|
Malungo IB, Gravett N, Bhagwandin A, Davimes JG, Manger PR. A Preliminary Description of the Sleep-Related Neural Systems in the Brain of the Blue Wildebeest, Connochaetes taurinus. Anat Rec (Hoboken) 2019; 303:1977-1997. [PMID: 31513360 DOI: 10.1002/ar.24265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/12/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
The current study provides a detailed qualitative description of the organization of the cholinergic, catecholaminergic, serotonergic, orexinergic, and GABAergic sleep-related systems in the brain of the blue wildebeest (Connocheates taurinus), along with a quantitative analysis of the pontine cholinergic and noradrenergic neurons, and the hypothalamic orexinergic neurons. The aim of this study was to compare the nuclear organization of these systems to other mammalian species and specifically that reported for other Cetartiodactyla. In the brain of the blue wildebeest, from the basal forebrain to the pons, the nuclear organization of the cholinergic, catecholaminergic, serotonergic, and orexinergic systems, for the most part, showed a corresponding nuclear organization to that reported in other mammals and more specifically the Cetartiodactyla. Furthermore, the description and distribution of the GABAergic system, which was examined through immunostaining for the calcium binding proteins calbindin, calretinin, and parvalbumin, was also similar to that seen in other mammals. These findings indicate that sleep in the blue wildebeest is likely to show typically mammalian features in terms of the global brain activity of the generally recognized sleep states of mammals, but Cetartiodactyl-specific features of the orexinergic system may act to lower overall daily total sleep time in relation to similar sized non-Cetartiodactyl mammals. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1977-1997, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Illke B Malungo
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joshua G Davimes
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Totah NK, Logothetis NK, Eschenko O. Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Res 2019; 1709:50-66. [DOI: 10.1016/j.brainres.2018.12.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022]
|
10
|
Reid GA, Geula C, Darvesh S. The cholinergic system in the basal forebrain of the Atlantic white-sided dolphin (Lagenorhynchus acutus). J Comp Neurol 2018; 526:1910-1926. [PMID: 29700823 DOI: 10.1002/cne.24460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 11/12/2022]
Abstract
The basal forebrain (BFB) cholinergic neurotransmitter system is important in a number of brain functions including attention, memory, and the sleep-wake cycle. The size of this region has been linked to the increase in encephalization of the brain in a number of species. Cetaceans, particularly those belonging to the family Delphinidae, have a relatively large brain compared to its body size and it is expected that the cholinergic BFB in the dolphin would be a prominent feature. However, this has not yet been explored in detail. This study examines and maps the neuroanatomy and cholinergic chemoarchitecture of the BFB in the Atlantic white-sided dolphin (Lagenorhynchus acutus). As in some other mammals, the BFB in this species is a prominent structure along the medioventral surface of the brain. The parcellation and distribution of cholinergic neural elements of the dolphin BFB was comparable to that observed in other mammals in that it has a medial septal nucleus, a nucleus of the vertical limb of the diagonal band of Broca, a nucleus of the horizontal limb of the diagonal band of Broca, and a nucleus basalis of Meynert. The observed BFB cholinergic system of this dolphin is consistent with evolutionarily conserved and important functions for survival.
Collapse
Affiliation(s)
- George Andrew Reid
- Department of Medical Neuroscience, Halifax, Dalhousie University, Nova Scotia, Canada.,Marine Animal Response Society, Halifax, Nova Scotia, Canada
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Sultan Darvesh
- Department of Medical Neuroscience, Halifax, Dalhousie University, Nova Scotia, Canada.,Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|