1
|
Azouz AA, El komy MH, Elmowafy M, Mahmoud MO, Ali FE, Aboud HM. Crafting cationic lecithmer nanocomposites as promising wagons for brain targeting of cinnamaldehyde: Accentuated neuroprotection via downregulation of Aβ1-42/p-tau crosstalk. J Drug Deliv Sci Technol 2025; 106:106664. [DOI: 10.1016/j.jddst.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
|
2
|
Wu J, Sun H, Zhao Y, Lian L, Bian H, Guo Y, Li D, Huang L. The spectrum-efficacy correlation of Kai-Xin-San for cognition of Aβ 42 transgenic Drosophila and verification of its active ingredients. Front Pharmacol 2025; 16:1538837. [PMID: 39936091 PMCID: PMC11811076 DOI: 10.3389/fphar.2025.1538837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction This study aims to establish the fingerprint spectra of Kai-Xin-San (KXS) and investigate its spectrum-effect relationship in treating Alzheimer's disease (AD). Methods Initially, the fingerprints of 15 batches of KXS were established and analyzed using HPLC, with the method's precision, stability, and repeatability thoroughly evaluated. Subsequently, the effects of the 15 batches of KXS were assessed in an olfactory escape memory experiment, utilizing Aβ42 transgenic drosophila as a model. Finally, the spectrum-effect relationship between the KXS fingerprint and memory improvement was analyzed, with the active ingredients subjected to validation testing. Results The results identified seventeen common peaks in the fingerprint, and eight active components were determined: polygalaxanthone III, 3-6-disinapoylsucrose, ginsenoside Rg1, ginsenoside Rb1, β-asarone, α-asarone, dehydrotumulosic acid, and dehydropachymic acid. Treatment with KXS (1%, for 4 days) significantly enhanced the performance index of Aβ42 flies in the olfactory experiment. Both spectrum-effect analysis and validation tests indicated that polygalaxanthone III, ginsenoside Rg1, ginsenoside Rb1, β-asarone, and α-asarone were positively correlated with the performance index and improved the performance index in the olfactory experiment. The HPLC fingerprint method for KXS demonstrated excellent precision, accuracy, and reproducibility, making it suitable for quality evaluation and control of KXS. Polygalaxanthone III, ginsenoside Rg1, ginsenoside Rb1, β-asarone, and α-asarone are identified as potential active ingredients of KXS for anti-AD effects. Discussion These findings provide an experimental basis for developing new drugs based on KXS and its active ingredient combinations.
Collapse
Affiliation(s)
- Jinfu Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hang Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yiyang Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lian Lian
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongsheng Bian
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yong Guo
- Shineway Pharmaceutical Group Co., Ltd., Shijiazhuang, China
| | - Dan Li
- Shineway Pharmaceutical Group Co., Ltd., Shijiazhuang, China
| | - Lili Huang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Abd-El-Fatah SS, Fathy MA, Alabiad MA, Aljafil R, Gobran MA, Ahmad EA, Alsharidah AS, Alorini M, Alnasser SM, Awadh SA, Morgan EN. The Correlation of Serum Adropin with Cardiovascular Risk Factors in the Experimental Rat Model of Chronic Kidney Disease and Its Implication in the Ameliorative Effect of Angiotensin-Converting Enzyme Inhibitors. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:794-807. [PMID: 39840308 PMCID: PMC11743441 DOI: 10.30476/ijms.2024.99442.3152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 01/23/2025]
Abstract
Background The risk of cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) is estimated to be far greater than that in the general population. Adropin regulates endothelial function and may play a role in the pathogenesis of CVD. Angiotensin-converting enzyme inhibitor (ACEI) treatment was reported to have a protective effect on both renal and cardiovascular function. This study investigated whether adropin is associated with renal and cardiovascular outcomes after using ACEI treatment in CKD rats. Methods In 2021, in Zagazig, Egypt, rats were assigned to: GI, control group (n=8); GII, CKD group (n=8), and GIII, CKD+captopril group (n=8), in which CKD rats received 100 mg/Kg/day captopril orally. Adropin levels, renal function, blood pressure, and various CVD risk factors were measured. Renal, cardiac, and aortic tissues were examined histologically and immunohistochemically to detect the expression of vascular endothelial growth factor receptor-2 (VEGFR-2). To analyze data, ANOVA and Pearson's correlation tests were used (SPSS version 18, P<0.05 is significant). Results Adropin was significantly lower in GII than in GI and GIII (P<0.001). Adropin in GII and GIII was negatively correlated with atherogenic index (P=0.019 and P=0.001, respectively), atherogenic co-efficient (P=0.012 and P=0.013, respectively), troponin I (P=0.021 and P=0.043, respectively), and nitric oxide (P=0.025 and P=0.038, respectively). VEGFR-2 expression decreased in GII and was elevated in GIII (P<0.001). Conclusion Adropin levels were significantly correlated with most CVD risk factors in CKD and captopril-treated CKD rats, indicating a role for adropin in the pathogenesis of CVD in CKD. It also refers to its implication in the ameliorative effect of ACEI treatment, possibly by affecting VEGFR-2 and nitric oxide release.
Collapse
Affiliation(s)
- Samaa Salah Abd-El-Fatah
- Department of Anatomy and Embryology, College of Medicine, Zagazig University, Al-Sharquia, Egypt
| | - Maha A. Fathy
- Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Raja Aljafil
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Mai Ahmed Gobran
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enssaf A. Ahmad
- Department of Anatomy and Embryology, College of Medicine, Zagazig University, Al-Sharquia, Egypt
| | - Ashwag S. Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | | | - Sara A. Awadh
- Department of Biochemistry, College of Science and Art, King Abdelaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Enas N. Morgan
- Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, Egypt
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
4
|
Shalaby AM, Hassan SMA, Abdelnour HM, Alnasser SM, Alorini M, Jaber FA, Alabiad MA, Abdullatif A, Elshaer MMA, Aziz SAMA, Abdelghany EMA. Ameliorative Potential of Bone Marrow-Derived Mesenchymal Stem Cells Versus Prednisolone in a Rat Model of Lung Fibrosis: A Histological, Immunohistochemical, and Biochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:539-551. [PMID: 38758132 DOI: 10.1093/mam/ozae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown origin with limited treatment options and poor prognosis. The encouraging findings from preclinical investigations utilizing mesenchymal stem cells (MSCs) indicated that they could serve as a promising therapeutic alternative for managing chronic lung conditions, such as IPF. The objective of this study was to compare the efficiency of bone marrow-derived MSCs (BM-MSCs) versus prednisolone, the standard anti-inflammatory medication, in rats with bleomycin (BLM)-induced lung fibrosis. Four groups were created: a control group, a BLM group, a prednisolone-treated group, and a BM-MSCs-treated group. To induce lung fibrosis, 5 mg/kg of BLM was administered intratracheally. BLM significantly increased serum levels of pro-inflammatory cytokines and oxidative stress markers. The disturbed lung structure was also revealed by light and transmission electron microscopic studies. Upregulation in the immune expression of alpha-smooth muscle actin, transforming growth factor beta-1, and Bax was demonstrated. Interestingly, all findings significantly regressed on treatment with prednisolone and BM-MSCs. However, treatment with BM-MSCs showed better results than with prednisolone. In conclusion, BM-MSCs could be a promising approach for managing lung fibrosis.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Shaimaa Mohamed Abdelfattah Hassan
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin El Koum 32511, Egypt
- Department of Anatomy, General Medicine Practice Program, Batterjee Medical College, Aseer 61961, Saudi Arabia
| | - Hanim Magdy Abdelnour
- Department of Medical Biochemistry, Faculty of Human Medicine, Zagazig University, 44519Egypt
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah 51911, Saudi Arabia
| | - Fatima A Jaber
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa Abdullatif
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | | | - Eman M A Abdelghany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Alabiad MA, Elhasadi I, Aljafil R, Shalaby AM, Alshaikh ABA, Edris FE, Heraiz AI, Alorini M, Aboregela AM, Mohamed AH. A novel triad for the diagnosis of endometriosis, the short anogenital distance combines with high endometrial BCL2 and low endometrial FASL. Int J Gynaecol Obstet 2024; 166:297-304. [PMID: 38358296 DOI: 10.1002/ijgo.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/26/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE To investigate the anogenital distance from the upper verge of the anus to the posterior fourchette (AGDAF), FASL, and BCL2 combination as a reliable and non-invasive tool for the diagnosis of endometriosis. METHODS This study included 100 women with endometriosis and 50 women without endometriosis as the control group. All cases underwent history taking, body mass index (BMI) measurement, AGD measurement, and FASL and BCL2 immunohistochemical staining of the eutopic endometrial tissue. RESULTS This study included 150 women divided into endometriosis and control groups. Endometriosis cases significantly had shorter AGDAF, 22.9 ± 2.6 mm, compared with the control group, 27.3 ± 3.5 mm (P < 0.001). Lower FASL and higher BCL2 expression were associated with endometriosis (P < 0.001). The combined measurement of AGDAF (cut-off point 24.55 mm) with FASL and BCL2 was associated with endometriosis (P < 0.001). The combined diagnostic sensitivity, specificity, positive predictive value, and negative predictive value of AGDAF, FASL, and BCL2 were 83%, 78%, 87.3%, and 69.6%, respectively. The area under the curve was greater for AGDAF, FASL, and BCL2 in combination than for individual measurements. CONCLUSION Combining short AGDAF with high BCL2 and low FASL is a highly sensitive, non-invasive diagnostic tool for endometriosis.
Collapse
Affiliation(s)
| | - Ibtesam Elhasadi
- Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Raja Aljafil
- Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | | | - Ahmed Baker A Alshaikh
- Department of Obstetrics and Gynecology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Fawaz E Edris
- Department of Obstetrics and Gynecology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Assisted Conception Unit at the International Medical Center, Jeddah, Saudi Arabia
| | - Ahmed Ismail Heraiz
- Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Adel Mohamed Aboregela
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Basic Medical Sciences Department, College of Medicine, Bisha University, Bisha, Saudi Arabia
| | | |
Collapse
|
6
|
Shalaby AM, Shalaby RH, Elshamy AM, Alnasser SM, Alorini M, Jaber FA, Alabiad MA, Alshaikh ABA, Hassan SMA, Aziz SAMA, Safa MA, Elkholy MR. Ameliorative potential of rosmarinic acid in a rat model of polycystic ovary syndrome: Targeting MCP-1 and VEGF: A histological, immunohistochemical, and biochemical study. Cell Biochem Funct 2024; 42:e4073. [PMID: 38863227 DOI: 10.1002/cbf.4073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multidisciplinary endocrinopathy that affects women of reproductive age. It is characterized by menstrual complications, hyperandrogenism, insulin resistance, and cardiovascular issues. The current research investigated the efficacy of rosmarinic acid in letrozole-induced PCOS in adult female rats as well as the potential underlying molecular mechanisms. Forty female rats were divided into the control group, the rosmarinic acid group (50 mg/kg per orally, po) for 21 days, PCOS group; PCOS was induced by administration of letrozole (1 mg/kg po) for 21 days, and rosmarinic acid-PCOS group, received rosmarinic acid after PCOS induction. PCOS resulted in a marked elevation in both serum luteinizing hormone (LH) and testosterone levels and LH/follicle-stimulating hormone ratio with a marked reduction in serum estradiol and progesterone levels. A marked rise in tumor necrosis factor-α (TNF-α), interleukin-1β, monocyte chemotactic protein-1, and vascular endothelial growth factor (messenger RNA) in the ovarian tissue was reported. The histological analysis displayed multiple cystic follicles in the ovarian cortex with markedly thin granulosa cell layer, vacuolated granulosa and theca cell layers, and desquamated granulosa cells. Upregulation in the immune expression of TNF-α and caspase-3 was demonstrated in the ovarian cortex. Interestingly, rosmarinic acid ameliorated the biochemical and histopathological changes. In conclusion, rosmarinic acid ameliorates letrozole-induced PCOS through its anti-inflammatory and antiangiogenesis effects.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rania H Shalaby
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Biomedical Sciences Department, Dubai Medical College for Girls, Dubai, United Arab Emirates
| | - Amira Mostafa Elshamy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Fatima A Jaber
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Baker A Alshaikh
- Department of Obstetrics and Gynecology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Shaimaa Mohamed Abdelfattah Hassan
- Histology and Cell Biology Department, Faculty of Medicine, Menoufia University, Shebin El Koum, Egypt
- Department of Anatomy, General Medicine Practice Program, Batterjee Medical College, Jeddah, Aseer, Saudi Arabia
| | | | - Mohamed A Safa
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mahmoud Ramadan Elkholy
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Alorini M, Alnasser SM, Elhasadi I, El-Nagdy SA. Trigonelline Chloride Ameliorated Triphenyltin-Induced Testicular Autophagy, Inflammation, and Apoptosis: Role of Recovery. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:133-150. [PMID: 38156731 DOI: 10.1093/micmic/ozad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Triphenyltin chloride (TPT-Cl) is an organometallic organotin. This study aimed to investigate the role of trigonelline (TG) along with the impact of TPT withdrawal on the testicular toxicity induced by TPT-Cl. Thirty-six adult male albino rats were divided into control, TG (40 mg/kg/day), TPT-Cl (0.5 mg/kg/day), TG + TPT-Cl, and recovery groups. Animals were daily gavaged for 12 weeks. Both TG and TPT-Cl withdrawal improved TPT-Cl-induced testicular toxicity features involving testis and relative testis weight reduction, luteinizing hormone, follicular stimulating hormone, and sex hormone-binding globulin elevation, reduction of inhibin B, free testosterone levels, and sperm count reduction with increased abnormal sperm forms. Moreover, both TG and TPT-Cl withdrawal reduced inflammatory activin A, follistatin, tumor necrosis factor α, interleukin-1β, and proapoptotic Bax and elevated antiapoptotic Bcl2 in testicular tissues mediated by TPT-Cl. TG and TPT-Cl withdrawal restored the excessive autophagy triggered by TPT-Cl via elevation of mTOR, AKT, PI3K, and P62/SQSTM1 and reduction of AMPK, ULK1, Beclin1, and LC3 mRNA gene expressions and regained the deteriorated testicular structure. In conclusion, TG and TPT-Cl withdrawal had an ameliorative role in partially reversing TPT-Cl-induced testicular toxicity. However, the findings indicated that the use of TG as an adjunctive factor is more favorable than TPT-Cl withdrawal, suggesting the capability of the testis for partial self-improvement.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 51911, Saudi Arabia
| | - Ibtesam Elhasadi
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Samah A El-Nagdy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Harb OA, Elfeky MA, Alabiad MA, Hemeda R, Allam AS, El Hawary AT, Elbaz M, Sharaf AL, Gertallah LM, Abdelaziz AM, Shalaby AM, Alorini M, Yahia AIO, Negm M. PYCR1, BANF1, and STARD8 Expression in Gastric Carcinoma: A Clinicopathologic, Prognostic, and Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2024; 32:102-110. [PMID: 37982568 DOI: 10.1097/pai.0000000000001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND It will be important to understand the molecular pathways of gastric cancer (GC) occurrence and progression, thus detecting predictive and prognostic biomarkers of GC. Pyrroline-5-carboxylate reductase 1 (PYCR1) was upregulated in many cancers, suggesting its possible roles in carcinogenesis and tumor metastases. Barrier-of-autointegration factor 1 (BANF1) is a protein family that plays essential roles in maintaining the integrity of an intact cellular genome. Rho-GTPs are molecular switches that control many signal transduction pathways in normal cells, including 3 subgroups from 1 to 3 (DLC1-3). DLC-3, known as StAR-related lipid transfer domain protein 8 (STARD8), and its role in cancers were not sufficiently studied. The study aimed to investigate the significance of PYCR1, BANF1, and STARD8 protein expression in GC tissues and normal gastric mucosa retrieved from patients with GC to detect prognostic roles of expression. PATIENTS AND METHODS Specimens were collected from 100 patients with gastric carcinoma. After the application of the inclusion criteria of the study, we prepared 100 paraffin blocks from samples of the 100 included patients; each block included samples from gastric carcinoma and adjacent non-neoplastic gastric mucosa. We assessed the expression of PYCR1, BANF1, and STARD8 using immunohistochemistry in all studied samples. We followed patients for the detection of disease progression and survival rates. We correlate PYCR1, BANF1, and STARD8 expression with clinical, pathologic, and prognostic parameters. RESULTS Overexpression of PYCR1 and BANF1 and decreased expression of STARD8 was found in gastric carcinoma tissues than adjacent non-neoplastic gastric mucosa ( P <0.001), and was positively associated with high grade ( P =0.006), depth of tumor invasion, presence of lymph nodes metastases and advanced stage ( P =0.001), high incidence of GC progression, recurrence, unfavorable disease-free survival ( P =0.003) and unfavorable overall survival rates ( P <0.001). Thus, it was revealed that; in univariate and multivariate analyses, levels of PYCR1, BANF1, and STARD8 are associated with the overall survival rate of GC patients. CONCLUSIONS We showed that overexpression of PYCR1 and BANF1 and decreased expression of STARD8 in GC tissues was associated with poor prognosis and GC progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohammed Elbaz
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo
| | - Ahmed L Sharaf
- Tropical Medicine, Faculty of Medicine, Zagazig University, Zagazig
| | | | | | - Amany Mohamed Shalaby
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah
| | - Amar Ibrahim Omer Yahia
- Department of Pathology, College of Medicine, University of Bisha, Bisha, Kingdom of Saudi Arabia
- Department of Pathology, Faculty of Medicine and Health Sciences, University of Kordofan, Elobeid, Sudan
| | | |
Collapse
|
9
|
Ling G, Zhang M, Chen C, Wang Y, Gao Q, Li J, Yuan H, Jin W, Lin W, Yang L. Progress of Ginsenoside Rb1 in neurological disorders. Front Pharmacol 2024; 15:1280792. [PMID: 38327982 PMCID: PMC10847293 DOI: 10.3389/fphar.2024.1280792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Ginseng is frequently used in traditional Chinese medicine to treat neurological disorders. The primary active component of ginseng is ginsenoside, which has been classified into more than 110 types based on their chemical structures. Ginsenoside Rb1 (GsRb1)-a protopanaxadiol saponin and a typical ginseng component-exhibits anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-autophagy properties in the nervous system. Neurological disorders remain a leading cause of death and disability globally. GsRb1 effectively treats neurological disorders. To contribute novel insights to the understanding and treatment of neurological disorders, we present a comprehensive review of the pharmacokinetics, actions, mechanisms, and research development of GsRb1 in neurological disorders.
Collapse
Affiliation(s)
- Gongxia Ling
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chizhang Chen
- Department of Clinical Medicine, Pingyang County Traditional Chinese Medicine Hospital, Meizhou, Zhejiang, China
| | - Yan Wang
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingrong Yang
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Gu Z, Lv X, Guo Y, Qi M, Ge B. Total flavonoids of Cynomorium songaricum attenuates cognitive defects in an Aβ 1-42 -induced Alzheimer's disease rat model by activating BDNF/TrkB signaling transduction. Neuroreport 2023; 34:825-833. [PMID: 37851367 PMCID: PMC10609675 DOI: 10.1097/wnr.0000000000001960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disorder characterized by cognitive dysfunction and BDNF/TrkB is a well-conceived anti-AD signaling. Cynomorium songaricum Rupr. ( C. songaricum ) is a herb with promising neuroprotective effects and the function is majorly attributed to flavonoids. The current study attempted to explore the effects of total flavonoids of C. songaricum (CS) on AD model by focusing on changes in BDNF/TrkB axis. AD model was induced in rats via transcranial injection of Aβ 1-42 and AD symptoms treated with CS of three doses. Donepezil was used as the positive control. Changes in rat memory and learning abilities, brain histological, apoptosis, production of neurotransmitters, BDNF/TrkB axis, and apoptosis-related markers were measured. The injection of Aβ 1-42 induced cognitive dysfunction in AD rats. The integrity of brain tissue structure was destructed and apoptosis was induced in AD rats, in which was found the increased production of AChE and Aβ 1-42 , and decreased production of ChAT, ACH. At the molecular level, the expression of BDNF, TrkB, and Bcl-2 was suppressed, while the expression of Bax, caspase-3, and caspase-9 was induced. After the administration of CS, the memory and learning abilities of rats were improved, the production of neurotransmitter was restored, ordered arrangement of pyramidal cells was retained, and neuron apoptosis was inhibited. The attenuation of Aβ 1-42 -indcued impairments was associated with the activation of BDNF/TrkB axis and blockade of apoptosis-related pathways. Collectively, CS can improve learning and memory abilities in Aβ 1-42 -induced AD model rats. which may depend on the activation of the hippocampal BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Zhirong Gu
- Department of Pharmacy, Gansu Provincial People’s Hospital
| | - Xin Lv
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yan Guo
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mei Qi
- Department of Pharmacy, Gansu Provincial People’s Hospital
| | - Bin Ge
- Department of Pharmacy, Gansu Provincial People’s Hospital
| |
Collapse
|
11
|
Wang Z, Chen Z, Tang Y, Zhang M, Huang M. Regulation of transcriptome networks that mediate ginsenoside biosynthesis by essential ecological factors. PLoS One 2023; 18:e0290163. [PMID: 37590202 PMCID: PMC10434944 DOI: 10.1371/journal.pone.0290163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Ginseng, a valuable Chinese medicinal herb, is renowned worldwide for its effectiveness in alleviating certain conditions and promoting overall health. In this study, we performed weighted gene co-expression network analysis (WGCNA) on the accumulation of essential saponins under the influence of 13 essential environmental factors (including air temperature, air bottom temperature, surface mean temperature, soil temperature, surface shortwave radiation, soil moisture, soil water content, rainfall, total precipitation, elevation, soil type, soil pH, and soil water potential). We identified a total of 40 transcript modules associated with typical environmental factors and the accumulation of essential saponins. Among these, 18 modules were closely related to the influence of typical environmental factors, whereas 22 modules were closely related to the accumulation of essential saponins. These results were verified by examining the transcriptome, saponin contents, environmental factor information and the published data and revealed the regulatory basis of saponin accumulation at the transcriptome level under the influence of essential environmental factors. We proposed a working model of saponin accumulation mediated by the transcriptional regulatory network that is affected by typical environmental factors. An isomorphic white-box neural network was constructed based on this model and the predicted results of the white-box neural network correlated with saponin accumulation. The effectiveness of our correlation-directed graph in predicting saponin contents was verified by bioinformatics analysis based on results obtained in this study and transcripts known to affect the biosynthesis of saponin Rb1. The directed graph represents a useful tool for manipulating saponin biosynthesis while considering the influence of essential environmental factors in ginseng and other medicinal plants.
Collapse
Affiliation(s)
- Zhongce Wang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Zhiguo Chen
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, China
| | - You Tang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Meiping Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Meng Huang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| |
Collapse
|
12
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
13
|
Zhang R, Zeng M, Zhang X, Zheng Y, Lv N, Wang L, Gan J, Li Y, Jiang X, Yang L. Therapeutic Candidates for Alzheimer's Disease: Saponins. Int J Mol Sci 2023; 24:10505. [PMID: 37445682 DOI: 10.3390/ijms241310505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Drug development for Alzheimer's disease, the leading cause of dementia, has been a long-standing challenge. Saponins, which are steroid or triterpenoid glycosides with various pharmacological activities, have displayed therapeutic potential in treating Alzheimer's disease. In a comprehensive review of the literature from May 2007 to May 2023, we identified 63 references involving 40 different types of saponins that have been studied for their effects on Alzheimer's disease. These studies suggest that saponins have the potential to ameliorate Alzheimer's disease by reducing amyloid beta peptide deposition, inhibiting tau phosphorylation, modulating oxidative stress, reducing inflammation, and antiapoptosis. Most intriguingly, ginsenoside Rg1 and pseudoginsenoside-F11 possess these important pharmacological properties and show the best promise for the treatment of Alzheimer's disease. This review provides a summary and classification of common saponins that have been studied for their therapeutic potential in Alzheimer's disease, showcasing their underlying mechanisms. This highlights the promising potential of saponins for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yawen Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|