1
|
Anido-Varela L, Aragón-Herrera A, González-Maestro A, Bellas CT, Tarazón E, Solé-González E, Martínez-Sellés M, Guerra-Ramos JM, Carrasquer A, Morán-Fernández L, García-Vega D, Seoane-Blanco A, Moure-González M, Seijas-Amigo J, Rodríguez-Penas D, García-Seara J, Moraña-Fernández S, Vázquez-Abuín X, Roselló-Lletí E, Portolés M, Eiras S, Agra RM, Álvarez E, González-Juanatey JR, Feijóo-Bandín S, Lago F. Meteorin-like protein plasma levels are associated with worse outcomes in de novo heart failure. Eur J Clin Invest 2025; 55:e14380. [PMID: 39834188 DOI: 10.1111/eci.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND AND AIMS Meteorin-like protein (Metrnl) has been recently suggested as a new adipokine with protective cardiovascular effects. Its circulating levels in patients seem to be associated with heart failure (HF), although with contradictory results. Our aim was to ascertain whether this adipokine could estimate the prognosis of HF in de novo HF (DNHF) patients. METHODS Metrnl plasma levels of 400 patients hospitalized with DNHF (55% of patients with HF with reduced ejection fraction, 17.3% HF with mid-range ejection fraction, 27.8% HF with preserved ejection fraction) were measured by enzyme-linked immunosorbent assay. We performed both sex-pooled and sex-specific analyses. A 12-month follow-up was conducted, during which clinical outcomes such as all-cause mortality, cardiovascular death and re-hospitalization due to HF were collected. RESULTS After a 12-month follow up, higher plasma Metrnl levels were associated with an increased risk for all-cause death and cardiovascular death after adjusting by sex, age, LVEF, hypertension, diabetes, ischemic aetiology, chronic renal failure, NT-proBNP and troponin (hazard ratio [HR] = 1.003, 95% confidence interval [CI] = 1.000-1.005; p-value<.05 and HR = 1.004, 95% CI = 1.001-1.007, p-value<.05, respectively). In line with this, DNHF patients with increased levels of circulating Metrnl had a higher number of occurrences of cardiovascular events. Regarding Metrnl associations with parameters implicated in the development and progression of HF, we found that Metrnl circulating levels were positively correlated with age (r = .322, p-value<.0001), NT-proBNP (r = .281, p-value<.0001) and with the renal dysfunction markers urea (r = .322, p-value<.0001) and creatinine (r = .353, p-value<.0001) and higher in women than men (473.7 [385.9-594.0] pg/mL vs. 428.7 [349.1-561.3] pg/mL, p-value<.006). Finally, concerning the subtype of HF, Metrnl plasma levels were higher in HF with preserved ejection fraction. CONCLUSION Patients with higher Metrnl levels have a worse prognosis in DNHF. Our results reinforce the association of Metrnl plasma levels with HF progression and outcomes.
Collapse
Affiliation(s)
- Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián González-Maestro
- Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Tilves Bellas
- Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Clinical and Translational Research in Cardiology Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Eduard Solé-González
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Heart Failure Unit, Cardiology Department, Hospital del Mar, Barcelona, Spain
| | - Manuel Martínez-Sellés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - José María Guerra-Ramos
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Department, Hospital Universitario Sant Pau de Barcelona, Barcelona, Spain
| | - Anna Carrasquer
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Department, Hospital Universitario Joan XXIII, Tarragona, Spain
| | - Laura Morán-Fernández
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - David García-Vega
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Heart Failure Unit, Cardiology Department, Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Seoane-Blanco
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Heart Failure Unit, Cardiology Department, Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Moure-González
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Heart Failure Unit, Cardiology Department, Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Seijas-Amigo
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier García-Seara
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Arrhytmia Unit, Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xocas Vázquez-Abuín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Clinical and Translational Research in Cardiology Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Clinical and Translational Research in Cardiology Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Sonia Eiras
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rosa M Agra
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ezequiel Álvarez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José R González-Juanatey
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Zhu XM, Xu Y, Zhang J. Cardiometabolic Index is associated with heart failure: a cross-sectional study based on NHANES. Front Med (Lausanne) 2024; 11:1507100. [PMID: 39717172 PMCID: PMC11663657 DOI: 10.3389/fmed.2024.1507100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Heart failure is a complex syndrome characterized by impaired cardiac function. Despite improvements in treatment, the prevalence of heart failure continues to rise. The Cardiometabolic Index (CMI), a novel measure combining abdominal obesity and lipid levels, has emerged as a potential predictor of cardiac metabolic risk. Methods We analyzed data from the National Health and Nutrition Examination Survey (NHANES) involving 22,586 participants to investigate the association between CMI and heart failure. Multivariable logistic regression models and RCS analysis were used to explore the association between heart failure and CMI after adjusting for potential confounders. Subgroup analyses were performed among populations with different demographic and clinical characteristics. Results Our results revealed a significant positive correlation between CMI and heart failure, with odds ratios of 2.77 and 1.87 for the highest quartile after adjusting for confounders. Subgroup analyses indicated heightened risks among older adults and those with hypertension or diabetes. ROC curve analysis demonstrated that CMI offers good diagnostic value for heart failure, surpassing traditional measures like BMI. Discussion Our findings suggest that CMI is a valuable tool for assessing the risk of heart failure, particularly in individuals with increased abdominal obesity or abnormal lipid profiles. This highlights the importance of addressing cardiac metabolic health in both prevention and treatment strategies for heart failure. Future research should focus on exploring causal relationships and refining predictive models that incorporate CMI to enhance early detection and intervention.
Collapse
Affiliation(s)
| | | | - Jie Zhang
- Department of Cardiology, Xishan People's Hospital of Wuxi City, Wuxi, China
| |
Collapse
|
3
|
Ng YH, Koay YC, Marques FZ, Kaye DM, O’Sullivan JF. Leveraging metabolism for better outcomes in heart failure. Cardiovasc Res 2024; 120:1835-1850. [PMID: 39351766 PMCID: PMC11630082 DOI: 10.1093/cvr/cvae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 12/11/2024] Open
Abstract
Whilst metabolic inflexibility and substrate constraint have been observed in heart failure for many years, their exact causal role remains controversial. In parallel, many of our fundamental assumptions about cardiac fuel use are now being challenged like never before. For example, the emergence of sodium-glucose cotransporter 2 inhibitor therapy as one of the four 'pillars' of heart failure therapy is causing a revisit of metabolism as a key mechanism and therapeutic target in heart failure. Improvements in the field of cardiac metabolomics will lead to a far more granular understanding of the mechanisms underpinning normal and abnormal human cardiac fuel use, an appreciation of drug action, and novel therapeutic strategies. Technological advances and expanding biorepositories offer exciting opportunities to elucidate the novel aspects of these metabolic mechanisms. Methodologic advances include comprehensive and accurate substrate quantitation such as metabolomics and stable-isotope fluxomics, improved access to arterio-venous blood samples across the heart to determine fuel consumption and energy conversion, high quality cardiac tissue biopsies, biochemical analytics, and informatics. Pairing these technologies with recent discoveries in epigenetic regulation, mitochondrial dynamics, and organ-microbiome metabolic crosstalk will garner critical mechanistic insights in heart failure. In this state-of-the-art review, we focus on new metabolic insights, with an eye on emerging metabolic strategies for heart failure. Our synthesis of the field will be valuable for a diverse audience with an interest in cardiac metabolism.
Collapse
Affiliation(s)
- Yann Huey Ng
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, VIC 3800, Australia
| | - John F O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Department of Medicine, Technische Univeristat Dresden, 01062 Dresden, Germany
| |
Collapse
|
4
|
Chen S, Wang Q, Bakker D, Hu X, Zhang L, van der Made I, Tebbens AM, Kovácsházi C, Giricz Z, Brenner GB, Ferdinandy P, Schaart G, Gemmink A, Hesselink MKC, Rivaud MR, Pieper MP, Hollmann MW, Weber NC, Balligand JL, Creemers EE, Coronel R, Zuurbier CJ. Empagliflozin prevents heart failure through inhibition of the NHE1-NO pathway, independent of SGLT2. Basic Res Cardiol 2024; 119:751-772. [PMID: 39046464 PMCID: PMC11461573 DOI: 10.1007/s00395-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute the only medication class that consistently prevents or attenuates human heart failure (HF) independent of ejection fraction. We have suggested earlier that the protective mechanisms of the SGLT2i Empagliflozin (EMPA) are mediated through reductions in the sodium hydrogen exchanger 1 (NHE1)-nitric oxide (NO) pathway, independent of SGLT2. Here, we examined the role of SGLT2, NHE1 and NO in a murine TAC/DOCA model of HF. SGLT2 knockout mice only showed attenuated systolic dysfunction without having an effect on other signs of HF. EMPA protected against systolic and diastolic dysfunction, hypertrophy, fibrosis, increased Nppa/Nppb mRNA expression and lung/liver edema. In addition, EMPA prevented increases in oxidative stress, sodium calcium exchanger expression and calcium/calmodulin-dependent protein kinase II activation to an equal degree in WT and SGLT2 KO animals. In particular, while NHE1 activity was increased in isolated cardiomyocytes from untreated HF, EMPA treatment prevented this. Since SGLT2 is not required for the protective effects of EMPA, the pathway between NHE1 and NO was further explored in SGLT2 KO animals. In vivo treatment with the specific NHE1-inhibitor Cariporide mimicked the protection by EMPA, without additional protection by EMPA. On the other hand, in vivo inhibition of NOS with L-NAME deteriorated HF and prevented protection by EMPA. In conclusion, the data support that the beneficial effects of EMPA are mediated through the NHE1-NO pathway in TAC/DOCA-induced heart failure and not through SGLT2 inhibition.
Collapse
Affiliation(s)
- Sha Chen
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Qian Wang
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Diane Bakker
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Xin Hu
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Liping Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna M Tebbens
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Csenger Kovácsházi
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
| | - Zoltán Giricz
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
- Pharmahungary Group, 6722, Szeged, Hungary
| | - Gábor B Brenner
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
| | - Peter Ferdinandy
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
- Pharmahungary Group, 6722, Szeged, Hungary
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mathilde R Rivaud
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael P Pieper
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Esther E Creemers
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Tuerhongjiang G, Guo M, Qiao X, Liu J, Xi W, Wei Y, Liu P, Lou B, Wang C, Sun L, Yuan X, Liu H, Xiong Y, Ma Y, Li H, Zhou B, Li L, Yuan Z, Wu Y, She J. Gut Microbiota Regulate Saturated Free Fatty Acid Metabolism in Heart Failure. SMALL SCIENCE 2024; 4:2300337. [PMID: 40212081 PMCID: PMC11935106 DOI: 10.1002/smsc.202300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/22/2024] [Indexed: 04/13/2025] Open
Abstract
AIMS Heart failure (HF) is associated with profound changes in cardiac metabolism. At present, there is still a lack of relevant research to explore the key microbiome and their metabolites affecting the progression of HF. Herein, the interaction of gut microbiota and circulating free fatty acid (FFA) in HF patients and mice is investigated. METHODS AND RESULTS In HF patients, by applying metagenomics analysis and targeted FFA metabolomics, enriched abundance of Clostridium sporogenes (C.sp) in early and late stage of HF patients, which negatively correlated to saturated free fatty acid (SFA) levels, is identified. KEGG analysis further indicates microbiota gene enrichment in FFA degradation in early HF, and decreased gene expression in FFA synthesis in late HF. In HF mice (C57BL/6J) induced by isoproterenol (ISO), impaired intestinal permeability is observed, and decreased fecal C.sp and increased SFA are further validated. At last, by supplementing C.sp to ISO-induced HF mice, the cardiac function, fibrosis, and myocardial size are partially rescued, together with decreased circulating SFA levels. CONCLUSIONS Clostridium abundance is increased in HF, compensating cardiac function deterioration via downregulation of circulating SFA levels. The results demonstrate that the gut microbiota-SFA axis plays an important role in HF protection, which may provide a strategic advantage for the probiotic therapy development in HF.
Collapse
Affiliation(s)
- Gulinigaer Tuerhongjiang
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Manyun Guo
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Xiangrui Qiao
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Junhui Liu
- Diagnostic DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Wen Xi
- Diagnostic DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Yuanyuan Wei
- Department of CardiologySecond Affiliated HospitalZhejiang UniversitySchool of MedicineHangzhou310058China
| | - Peining Liu
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Bowen Lou
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Chen Wang
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Lizhe Sun
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Xiao Yuan
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Hui Liu
- BiobankFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Ying Xiong
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Yunlong Ma
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Hongbing Li
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Bo Zhou
- Respiratory DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Lijuan Li
- Cardiovascular DepartmentWuzhong People's HospitalNingxia215128China
| | - Zuyi Yuan
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Yue Wu
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| | - Jianqing She
- Cardiovascular DepartmentFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi'anShaanxi710061China
| |
Collapse
|
6
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
7
|
Hørsdal OK, Moeslund N, Berg-Hansen K, Nielsen R, Møller N, Eiskjær H, Wiggers H, Gopalasingam N. Lactate infusion elevates cardiac output through increased heart rate and decreased vascular resistance: a randomised, blinded, crossover trial in a healthy porcine model. J Transl Med 2024; 22:285. [PMID: 38493167 PMCID: PMC10943846 DOI: 10.1186/s12967-024-05064-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Lactate is traditionally recognized as a by-product of anaerobic metabolism. However, lactate is a preferred oxidative substrate for stressed myocardium. Exogenous lactate infusion increases cardiac output (CO). The exact mechanism underlying this mechanism has yet to be elucidated. The aim of this study was to investigate the cardiovascular mechanisms underlying the acute haemodynamic effects of exogenous lactate infusion in an experimental model of human-sized pigs. METHODS In this randomised, blinded crossover study in eight 60-kg-pigs, the pigs received infusions with one molar sodium lactate and a control infusion of tonicity matched hypertonic saline in random order. We measured CO and pulmonary pressures using a pulmonary artery catheter. A pressure-volume admittance catheter in the left ventricle was used to measure contractility, afterload, preload and work-related parameters. RESULTS Lactate infusion increased circulating lactate levels by 9.9 mmol/L (95% confidence interval (CI) 9.1 to 11.0) and CO by 2.0 L/min (95% CI 1.2 to 2.7). Afterload decreased as arterial elastance fell by -1.0 mmHg/ml (95% CI -2.0 to -0.1) and systemic vascular resistance decreased by -548 dynes/s/cm5 (95% CI -261 to -835). Mixed venous saturation increased by 11 percentage points (95% CI 6 to 16), whereas ejection fraction increased by 16.0 percentage points (95% CI 1.1 to 32.0) and heart rate by 21 bpm (95% CI 8 to 33). No significant changes in contractility nor preload were observed. CONCLUSION Lactate infusion increased cardiac output by increasing heart rate and lowering afterload. No differences were observed in left ventricular contractility or preload. Lactate holds potential as a treatment in situations with lowered CO and should be investigated in future clinical studies.
Collapse
Affiliation(s)
- Oskar Kjærgaard Hørsdal
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Moeslund
- Department of Heart, Lung, and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kristoffer Berg-Hansen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Møller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Metabolism, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nigopan Gopalasingam
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Cardiology, Gødstrup Hospital, Herning, Denmark.
| |
Collapse
|
8
|
Oyetoro RO, Conners KM, Joo J, Turecamo S, Sampson M, Wolska A, Remaley AT, Otvos JD, Connelly MA, Larson NB, Bielinski SJ, Hashemian M, Shearer JJ, Roger VL. Circulating ketone bodies and mortality in heart failure: a community cohort study. Front Cardiovasc Med 2024; 11:1293901. [PMID: 38327494 PMCID: PMC10847221 DOI: 10.3389/fcvm.2024.1293901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Background The relationship between ketone bodies (KB) and mortality in patients with heart failure (HF) syndrome has not been well established. Objectives The aim of this study is to assess the distribution of KB in HF, identify clinical correlates, and examine the associations between plasma KB and all-cause mortality in a population-based HF cohort. Methods The plasma KB levels were measured by nuclear magnetic resonance spectroscopy. Multivariable linear regression was used to examine associations between clinical correlates and KB levels. Proportional hazard regression was employed to examine associations between KB (represented as both continuous and categorical variables) and mortality, with adjustment for several clinical covariates. Results Among the 1,382 HF patients with KB measurements, the median (IQR) age was 78 (68, 84) and 52% were men. The median (IQR) KB was found to be 180 (134, 308) μM. Higher KB levels were associated with advanced HF (NYHA class III-IV) and higher NT-proBNP levels (both P < 0.001). The median follow-up was 13.9 years, and the 5-year mortality rate was 51.8% [95% confidence interval (CI): 49.1%-54.4%]. The risk of death increased when KB levels were higher (HRhigh vs. low group 1.23; 95% CI: 1.05-1.44), independently of a validated clinical risk score. The association between higher KB and mortality differed by ejection fraction (EF) and was noticeably stronger among patients with preserved EF. Conclusions Most patients with HF exhibited KB levels that were consistent with those found in healthy adults. Elevated levels of KB were observed in patients with advanced HF. Higher KB levels were found to be associated with an increased risk of death, particularly in patients with preserved EF.
Collapse
Affiliation(s)
- Rebecca O. Oyetoro
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katherine M. Conners
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jungnam Joo
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sarah Turecamo
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maureen Sampson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - James D. Otvos
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Nicholas B. Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Suzette J. Bielinski
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Maryam Hashemian
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joseph J. Shearer
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Véronique L. Roger
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|