1
|
Lee H, Choi B, Oh S, Park H, Popova E, Paik MJ, Kim H. Dynamics of Organic Acids during the Droplet-Vitrification Cryopreservation Procedure Can Be a Signature of Oxidative Stress in Pogostemon yatabeanus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3489. [PMID: 37836228 PMCID: PMC10575133 DOI: 10.3390/plants12193489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cryopreservation in liquid nitrogen (LN, -196 °C) is a unique option for the long-term conservation of threatened plant species with non-orthodox or limitedly available seeds. In previous studies, a systematic approach was used to develop a droplet-vitrification (DV) cryopreservation protocol for Postemon yatabeanus shoot tips that includes preculture with 10% sucrose, osmoprotection with C4-35%, cryoprotection with A3-80% vitrification solution, and a three-step regrowth starting with the ammonium-free medium. The tricarboxylic acid (TCA) cycle is a crucial component of plant cell metabolism as it is involved in redox state regulation and energy provision. We hypothesized that organic acids (OAs) associated with the TCA and its side reactions indirectly indicate metabolism intensity and oxidative stress development in shoot tips under the cryopreservation procedure. In this study, the contents of 14 OAs were analyzed using gas chromatography-tandem mass spectrometry (GC-MS/MS) in P. yatabeanus shoot tips in a series of treatments including individual steps of the DV procedure, additional stress imposed by non-optimum protocol conditions (no preculture, no osmoprotection, various vitrification solution composition, using vials instead of aluminum foils, etc.) and regrowth on different media with or without ammonium or growth regulators. The possible relation of OA content with the total cryoprotectant (CPA) concentration and shoot tips regeneration percentage was also explored. Regeneration of cryopreserved shoot tips reduced in descending order as follows: standard protocol condition (91%) > non-optimum vitrification solution (ca. 68%) > non-optimum preculture (60-62%) > regrowth medium (40-64%) > no osmoprotection, cryopreservation in vials (28-30%). Five OAs (glycolic, malic, citric, malonic, and lactic) were the most abundant in the fresh (control) shoot tips. The dynamic pattern of OAs during the DV procedure highly correlated (r = 0.951) with the total CPA concentration employed: it gradually increased through the preculture, osmoprotection, and cryoprotection, peaked at cooling/rewarming (6.38-fold above control level), and returned to the fresh control level after 5 days of regrowth (0.89-fold). The contents of four OAs (2-hydroxybutyric, 3-hydroxypropionic, lactic, and glycolic) showed the most significant (10-209-fold) increase at the cooling/rewarming step. Lactic and glycolic acids were the major OAs at cooling/rewarming, accounting for 81% of the total OAs content. The OAs were categorized into three groups based on their dynamics during the cryopreservation protocol, and these groups were differently affected by protocol step modifications. However, there was no straightforward relationship between the dynamics of OAs and shoot tip regeneration. The results suggest that active modulation of OAs metabolism may help shoot tips to cope with osmotic stress and the chemical cytotoxicity\ of CPAs. Further intensive studies are needed to investigate the effect of cryopreservation on cell primarily metabolism and identify oxidative stress-related biomarkers in plant materials.
Collapse
Affiliation(s)
- Hyoeun Lee
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea; (H.L.); (H.P.)
| | - Byeongchan Choi
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (B.C.); (S.O.)
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (B.C.); (S.O.)
| | - Hana Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea; (H.L.); (H.P.)
| | - Elena Popova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia;
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (B.C.); (S.O.)
| | - Haenghoon Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea; (H.L.); (H.P.)
| |
Collapse
|
2
|
Son AR, Kim SH, Islam M, Oh SJ, Paik MJ, Lee SS, Lee SS. Higher Concentration of Dietary Selenium, Zinc, and Copper Complex Reduces Heat Stress-Associated Oxidative Stress and Metabolic Alteration in the Blood of Holstein and Jersey Steers. Animals (Basel) 2022; 12:ani12223104. [PMID: 36428332 PMCID: PMC9686896 DOI: 10.3390/ani12223104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
This study investigated the influence of high concentrations of dietary minerals on reducing heat stress (HS)-associated oxidative stress and metabolic alterations in the blood of Holstein and Jersey steers. Holstein steers and Jersey steers were separately maintained under a 3 × 3 Latin square design during the summer conditions. For each trial, the treatments included Control (Con; fed basal TMR without additional mineral supplementation), NM (NRC recommended mineral supplementation group; [basal TMR + (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm) as DM basis]), and HM (higher than NRC recommended mineral supplementation group; [basal TMR + (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm) as DM basis]). Blood samples were collected at the end of each 20-day feeding trial. In both breeds, a higher superoxide dismutase concentration (U/mL) along with lower HSP27 (μg/L) and HSP70 (μg/L) concentrations were observed in both mineral-supplemented groups compared to the Con group (p < 0.05). The HM group had significantly higher lactic acid levels in Jersey steers (p < 0.05), and tended to have higher alanine levels in Holstein steers (p = 0.051). Based on star pattern recognition analysis, the levels of succinic acid, malic acid, γ-linolenic acid, 13-methyltetradecanoic acid, and tyrosine decreased, whereas palmitoleic acid increased with increasing mineral concentrations in both breeds. Different treatment groups of both breeds were separated according to the VIP scores of the top 15 metabolites through PLS−DA analysis; however, their metabolic trend was mostly associated with the glucose homeostasis. Overall, the results suggested that supplementation with a higher-than-recommended concentration of dietary minerals rich in organic Se, as was the case in the HM group, would help to prevent HS-associated oxidative stress and metabolic alterations in Holstein and Jersey steers.
Collapse
Affiliation(s)
- A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Song-Jin Oh
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea
| | - Sung-Sill Lee
- Institute of Agriculture and Life Science and University-Centered Laboratory, Gyeongsang National University, Jinju 52828, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
- Correspondence: ; Tel./Fax: +82-61-750-3237
| |
Collapse
|
3
|
Wang L, Cui YR, Oh S, Paik MJ, Je JG, Heo JH, Lee TK, Fu X, Xu J, Gao X, Jeon YJ. Arsenic removal from the popular edible seaweed Sargassum fusiforme by sequential processing involving hot water, citric acid, and fermentation. CHEMOSPHERE 2022; 292:133409. [PMID: 34953872 DOI: 10.1016/j.chemosphere.2021.133409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Higher quantities of arsenic (As) in Sargassum fusiforme limit its use as a food ingredient. The present study aimed to reduce As in S. fusiforme using sequential processing involving hot water, citric acid, and fermentation. The As content in S. fusiforme of 76.18 mg/kg was reduced to 30.47 mg/kg and 24.45 mg/kg using hot water and citric acid processing, respectively. However, the As content in S. fusiforme was reduced to 9.09 mg/kg by sequential processing with hot water and citric acid. Using response surface methodology, optimal processing conditions for S. fusiforme were determined to be treatment with hot water at 60 °C for 120 min followed by treatment with 0.4% citric acid. To further reduce the As content, the processed S. fusiforme was fermented by Lactobacillus rhamnosus, and the As content was further reduced to 1.64 mg/kg. In addition, the levels of organic acids and amino acids in S. fusiforme pre- and post-fermentation were significantly altered. These results indicated that the As content in S. fusiforme could be effectively reduced using the sequential processing with hot water, citric acid, and L. rhamnosus fermentation, and the organic acid and amino acid levels were significantly altered by L. rhamnosus fermentation.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yong Ri Cui
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Kangmaichen Biotechnology Co., Ltd., Qingdao, 266114, China
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jun-Ho Heo
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Tae-Ki Lee
- Department of Hotel Cuisine & Baking, Jeonnam State University, Damyang-Gun, Jeonnam, 57337, Republic of Korea
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
4
|
Metabolic Alterations Associated with γ-Hydroxybutyric Acid and the Potential of Metabolites as Biomarkers of Its Exposure. Metabolites 2021; 11:metabo11020101. [PMID: 33578991 PMCID: PMC7916753 DOI: 10.3390/metabo11020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous short chain fatty acid that acts as a neurotransmitter and neuromodulator in the mammalian brain. It has often been illegally abused or misused due to its strong anesthetic effect, particularly in drug-facilitated crimes worldwide. However, proving its ingestion is not straightforward because of the difficulty in distinguishing between endogenous and exogenous GHB, as well as its rapid metabolism. Metabolomics and metabolism studies have recently been used to identify potential biomarkers of GHB exposure. This mini-review provides an overview of GHB-associated metabolic alterations and explores the potential of metabolites for application as biomarkers of GHB exposure. For this, we discuss the biosynthesis and metabolism of GHB, analytical issues of GHB in biological samples, alterations in metabolic pathways, and changes in the levels of GHB conjugates in biological samples from animal and human studies. Metabolic alterations in organic acids, amino acids, and polyamines in urine enable discrimination between GHB-ingested animals or humans and controls. The potential of GHB conjugates has been investigated in a variety of clinical settings. Despite the recent growth in the application of metabolomics and metabolism studies associated with GHB exposure, it remains challenging to distinguish between endogenous and exogenous GHB. This review highlights the significance of further metabolomics and metabolism studies for the discovery of practical peripheral biomarkers of GHB exposure.
Collapse
|
5
|
Discrimination of Lycium chinense and L. barbarum Based on Metabolite Analysis and Hepatoprotective Activity. Molecules 2020; 25:molecules25245835. [PMID: 33321994 PMCID: PMC7764731 DOI: 10.3390/molecules25245835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Lycii Fructus is a traditional medicine used to prevent liver and kidney diseases, which commonly derives from Lycium chinense and Lycium barbarum. Here, the extracts and ethyl acetate-soluble fractions of L. chinense fruits exhibited better hepatoprotective effects than those of L. barbarum, which was likely due to differences in their composition. Therefore, GC-MS and HPLC analyses were conducted to characterize the metabolite differences between L. chinense and L. barbarum. Based on amino acid (AA) and phenolic acid (PA) profiling, 24 AAs and 9 PAs were identified in the two species. Moreover, each species exhibited unique and readily distinguishable AA and PA star graphic patterns. HPLC analysis elucidated composition differences between the ethyl acetate-soluble layers of the two compounds. Further, NMR analysis identified their chemical structures as 4-(2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl)butanoic acid and p-coumaric acid. The higher content of 4-(2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl)butanoic acid was detected in L. chinense, whereas the content of p-coumaric acid was higher in L. barbarum. Therefore, the differences in the relative contents of these two secondary metabolites in the ethyl acetate-soluble layer of Lycii Fructus could be a good marker to discriminate between L. chinense and L. barbarum.
Collapse
|
6
|
Kim Y, Kim SH, Oh SJ, Lee HS, Ji M, Choi S, Lee SS, Paik MJ. Metabolomic analysis of organic acids, amino acids, and fatty acids in plasma of Hanwoo beef on a high-protein diet. Metabolomics 2020; 16:114. [PMID: 33047270 DOI: 10.1007/s11306-020-01737-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Ketoacidosis of metabolic disease showed in beef cattle although body weight was increased by high-grain diets (HGDs). However, few studies have examined for health status related with metabolic disease of ketoacidosis following high-protein diet (HPD). OBJECTIVES Metabolomic analysis was performed for the monitoring of health status associated with metabolic disease of ketoacidosis in the plasma of Hanwoo heifers following a HPD. METHODS Hanwoo heifers of 24 months with 459 ± 42 kg weight were used under a 2 × 2 crossover design. The plasma was collected from control (n = 5) and HPD group (n = 5) on day 21 following diet adaptation for 20 days. Metabolic profiling analysis of organic acids (OAs), amino acids (AAs) and fatty acids (FAs) by gas chromatography-tandem mass spectrometry combined with star pattern analysis was performed in plasma. Levels of OAs, AAs and FAs were evaluated by Mann-Whitney test, PCA and PLS-DA. RESULTS In HPD group, ketoacidosis as metabolic disease was monitored by elevated acetoacetic acid and 3-hydroxybutyric acid. In addition, the elevation of ketogenic AAs, reduction of medium chain FAs and OAs with energy metabolism in TCA cycle were monitored in HPD group. Star graphic pattern was characteristic and readily distinguished between control and HPD groups. In PLS-DA, two groups were separated with VIP score of top-ranked 10 FAs as important metabolites for discrimination. CONCLUSION Elevation of ketone body including ketogenic AAs and reduced energy metabolism of FAs and OAs may useful for evaluation of health states associated with ketoacidosis from metabolic event by HPD in beef cattle.
Collapse
Affiliation(s)
- Youngbae Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Korea
| | - Song-Jin Oh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Hyeon-Seong Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Subin Choi
- Laboratories of Marine New Drugs, Redone Tech, Seoul, Republic of Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Korea.
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea.
| |
Collapse
|
7
|
Comparison of allelopathic effects of two typical invasive plants: Mikania micrantha and Ipomoea cairica in Hainan island. Sci Rep 2020; 10:11332. [PMID: 32647288 PMCID: PMC7347892 DOI: 10.1038/s41598-020-68234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/08/2020] [Indexed: 11/08/2022] Open
Abstract
Mikania micrantha and Ipomoea cairica are two invasive plants widely distribute and seriously damage in Hainan island. In this study, the leaves extracts of two weeds were collected and determined for their allelopathic potentials on Chrysanthemum coronarium. The phytotoxicity bioassay showed that when the extract concentration was 50 and 100 mg/ml, the inhibited effects of M. micrantha on growth of C. coronarium were greater than by I. cairica. However, when the extract concertation at 400 mg/ml, the opposite inhibited effects were observed. We speculated this phenomenon was caused by different allelopathic compounds. Therefore, using gas chromatography-mass spectrometry, 19 and 23 compounds were identified respectively, benzoic acid and cinnamic acid were the main components in the two leaves extracts, which were selected to carry out the further bioassays. Subsequent bioassay results showed the effects of two allelochemicals on morphological index and chlorophyll content and POD activity were all negative to C. coronarium, whereas the content of MDA and activity of SOD, CAT represented adverse changes. Moreover, the inhibitions by cinnamic acid were generally greater than those by benzoic acid. Thus, the phenolic acids played the most crucial roles in the allelopathic effccts of M. micrantha and I. cairica leaves extracts.
Collapse
|
8
|
Seo C, Kim SH, Lee HS, Ji M, Min J, Son YJ, Kim IH, Lee K, Paik MJ. Metabolomic study on bleomycin and polyhexamethylene guanidine phosphate-induced pulmonary fibrosis mice models. Metabolomics 2019; 15:111. [PMID: 31422500 DOI: 10.1007/s11306-019-1574-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Polyhexamethylene guanidine phosphate (PHMG) has been used as a disinfectant and biocide, and was known to be harmless and non-toxic. However, in 2011, PHMG used as a humidifier disinfectant was reported to be associated with lung diseases, such as, fibrosis in the toxicant studies on pulmonary fibrosis by PHMG. However, no metabolomics study has been performed in PHMG-induced mouse models of pulmonary fibrosis. OBJECTIVES We performed a metabolomic study to understand the biochemical events that occur in bleomycin (BLM)- and PHMG-induced mouse models of pulmonary fibrosis using gas chromatography-mass spectrometry (GC-MS), LC-tandem MS, and GC-tandem MS. RESULTS The levels of 61 metabolites of 30 amino acids, 13 organic acids, 12 fatty acids, 5 polyamines, and oxidized glutathione were determined in the pulmonary tissues of mice with BLM- and PHMG-induced pulmonary fibrosis and in normal controls. Principal component analysis and partial least squares discriminant analysis used to compare level of these 61 metabolites in pulmonary tissues. Levels of metabolites were significantly different in the BLM and PHMG groups as compared with the control group. In particular, the BLM- and PHMG-induced pulmonary fibrosis models showed elevated collagen synthesis and oxidative stress and metabolic disturbance of TCA related organic acids including fumaric acid by NADPH oxidase. In addition, polyamine metabolism showed severe alteration in the PHMG group than that of the BLM group. CONCLUSION This result suggests PHMG will be able to induce pulmonary fibrosis by arginine metabolism and NADPH oxidase signaling.
Collapse
Affiliation(s)
- Chan Seo
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Sung-Hwan Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea
| | - Hyeon-Seong Lee
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Jeuk Min
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Young-Jin Son
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - In-Hyeon Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea.
| |
Collapse
|
9
|
Shin TH, Seo C, Lee DY, Ji M, Manavalan B, Basith S, Chakkarapani SK, Kang SH, Lee G, Paik MJ, Park CB. Silica-coated magnetic nanoparticles induce glucose metabolic dysfunction in vitro via the generation of reactive oxygen species. Arch Toxicol 2019; 93:1201-1212. [DOI: 10.1007/s00204-019-02402-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
|
10
|
Zenkevich IG, Todua NG, Mikaia AI. Unusual Regularity in GC Retention of Simple Amino Acid Derivatives. CURRENT CHROMATOGRAPHY 2019; 6:10.2174/2213240606666190709100858. [PMID: 31579276 PMCID: PMC6774356 DOI: 10.2174/2213240606666190709100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Application of simple regularities and general principles along with direct use of reference gas chromatography retention index data for reliable structure determination of compounds can be enhanced by determination of new regularities that are specific to certain structural elements. OBJECTIVE Revelation and interpretation of an anomaly in the elution order of alkyl esters of alkoxycarbonyl derivatives of glycine and alanine on standard and semi-standard non-polar phases. METHOD Preliminary derivatization of amino acids to alkyl esters of N-alkoxycarbonyl analogs and interpretation of their gas chromatographic characteristics. RESULTS Alkyl esters of N-alkoxycarbonyl derivatives of alanine (Alkyl = C2H5, n- and iso-C3H7) elute prior to the same derivatives of glycine, despite the presence of an additional methyl group at C(2) in the molecule. Elution order is reversed for methyl esters of N-methoxycarbonyl derivatives. CONCLUSION It is established that the peculiar behavior of alkyl esters of N-alkoxycarbonyl derivatives of glycine and alanine agrees with the concepts of gas chromatography and the known retention index regularities of organic compounds. A decrease of retention index values is a result of an introduction of an additional methyl group to a carbon atom connected to two polar fragments in a molecule like CH2XY. The dependence of the difference of retention index values for homologs of the types of CH3-CHXY and CH2XY vs. the total mass of fragments (X + Y) is similar to those for other sub-groups of analytes.
Collapse
Affiliation(s)
- Igor G. Zenkevich
- Institute for Chemistry, St. Petersburg State University, Universtitetskii Prospect, 26, St. Petersburg 198504, Russia
- National Institute of Standards & Technology, Gaithersburg, 100 Bureau Drive, 221/A345, Gaithersburg, MD 20899-8362, USA
| | - Nino G. Todua
- National Institute of Standards & Technology, Gaithersburg, 100 Bureau Drive, 221/A345, Gaithersburg, MD 20899-8362, USA
- Strativia, LLC, 1401 Mercantile Ln #501, Largo, MD 20774, USA
| | - Anzor I. Mikaia
- National Institute of Standards & Technology, Gaithersburg, 100 Bureau Drive, 221/A345, Gaithersburg, MD 20899-8362, USA
| |
Collapse
|
11
|
Effective Soil Extraction Method for Cultivating Previously Uncultured Soil Bacteria. Appl Environ Microbiol 2018; 84:AEM.01145-18. [PMID: 30291118 DOI: 10.1128/aem.01145-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
Here, a new medium, named intensive soil extract medium (ISEM), based on new soil extract (NSE) using 80% methanol, was used to efficiently isolate previously uncultured bacteria and new taxonomic candidates, which accounted for 49% and 55% of the total isolates examined (n = 258), respectively. The new isolates were affiliated with seven phyla (Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Bacteroidetes). The result of chemical analysis showed that NSE included more diverse components of low-molecular-weight organic substances than two conventional soil extracts made using distilled water. Cultivation of previously uncultured bacteria is expected to extend knowledge through the discovery of new phenotypic, physiological, and functional properties and even roles of unknown genes.IMPORTANCE Both metagenomics and single-cell sequencing can detect unknown genes from uncultured microbial strains in environments, and either method may find the significant potential metabolites and roles of these strains. However, such gene/genome-based techniques do not allow detailed investigations that are possible with cultures. To solve this problem, various approaches for cultivation of uncultured bacteria have been developed, but there are still difficulties in maintaining pure cultures by subculture.
Collapse
|
12
|
Seo C, Na M, Jang J, Park M, Choi B, Lee S, Paik MJ. Monitoring of altered amino acid metabolic pattern in rat urine following intraperitoneal injection with γ-hydroxybutyric acid. Metabolomics 2018; 14:111. [PMID: 30830415 DOI: 10.1007/s11306-018-1409-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION γ-Hydroxybutyric acid is a well-known prescription medicine that is used for the clinical treatment of alcohol dependence and narcolepsy. However, the biochemical mechanism underlying γ-hydroxybutyric acid intoxication remains unclear, and metabolomic amino acid profiling and pattern analyses have not been attempted following treatment with γ-hydroxybutyric acid. OBJECTIVES We carried out urinary amino acid profiling and pattern analyses in rats to determine the biochemical events associated with altered amino acid metabolism and biomarker detection of intoxication following treatment with γ-hydroxybutyric acid. METHODS Metabolic profiling analysis of amino acids in rat urine samples was performed as ethoxycarbonyl/tert-butyldimethylsilyl derivatives by gas chromatography-mass spectrometry following intraperitoneal administration of γ-hydroxybutyric acid once per day for 1 and 10 consecutive days. RESULTS A total of 28 amino acids were positively identified in urine samples from the control, single and multiple groups treated with γ-hydroxybutyric acid. Their levels from the single and multiple treated groups were normalized to the corresponding mean control values. The star graphic pattern of the amino acids was characteristic and readily distinguishable for each group owing to its distorted nonacosagonal shape. In the principle component analysis, we monitored phenylalanine, glutamic acid, aspartic acid, asparagine, and methionine as contributing factors that discriminated the three groups. CONCLUSION The present metabolomic study may explain the altered metabolism of amino acids following administration, and intoxication with γ-hydroxybutyric acid.
Collapse
Affiliation(s)
- Chan Seo
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Myungjin Na
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Jiyeun Jang
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Meejung Park
- National Forensic Service, 10 Ipchoon-ro, Wonju, Kangwon-do, 220-170, Republic of Korea
| | - Boyeon Choi
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Taegu, 704-701, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Taegu, 704-701, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea.
| |
Collapse
|
13
|
Brunst KJ, Tignor N, Just A, Liu Z, Lin X, Hacker MR, Bosquet Enlow M, Wright RO, Wang P, Baccarelli AA, Wright RJ. Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics 2018; 13:665-681. [PMID: 30001177 DOI: 10.1080/15592294.2018.1497387] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions (i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1, TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.
Collapse
Affiliation(s)
- Kelly J Brunst
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Nicole Tignor
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Allan Just
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Zhonghua Liu
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Xihong Lin
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Michele R Hacker
- e Department of Obstetrics and Gynecology , Beth Israel Deaconess Medical Center , Boston , MA , USA.,f Department of Obstetrics , Gynecology and Reproductive Biology, Harvard Medical School , Boston , MA , USA
| | - Michelle Bosquet Enlow
- g Department of Psychiatry, Program for Behavioral Science, Boston Children's Hospital and Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Robert O Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Pei Wang
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Andrea A Baccarelli
- h Department of Environmental Health Sciences , Mailman School of Public Health, Columbia University , New York , NY , USA
| | - Rosalind J Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA.,i Department of Pediatrics , Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
14
|
Metabolomic study for monitoring of biomarkers in mouse plasma with asthma by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:156-162. [PMID: 28865332 DOI: 10.1016/j.jchromb.2017.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/26/2017] [Indexed: 01/28/2023]
Abstract
Asthma is a multifaceted chronic disease caused by an alteration of various genetic and environmental factors that is increasing in incidence worldwide. However, the biochemical mechanisms regarding asthma are not completely understood. Thus, we performed of metabolomic study for understanding of the biochemical events by monitoring of altered metabolism and biomarkers in asthma. In mice plasma, 27 amino acids(AAs), 24 fatty acids(FAs) and 17 organic acids(OAs) were determined by ethoxycarbonyl(EOC)/methoxime(MO)/tert-butyldimethylsilyl(TBDMS) derivatives with GC-MS. Their percentage composition normalized to the corresponding mean levels of control group. They then plotted as star symbol patterns for visual monitoring of altered metabolism, which were characteristic and readily distinguishable in control and asthma groups. The Mann-Whitney test revealed 25 metabolites, including eight AAs, nine FAs and eight OAs, which were significantly different (p<0.05), and orthogonal partial least-squares-discriminant analysis revealed a clear separation of the two groups. In classification analysis, palmitic acid and methionine were the main metabolites for discrimination between asthma and the control followed by pipecolic, lactic, α-ketoglutaric, and linoleic acids for high classification accuracy as potential biomarkers. These explain the metabolic disturbance in asthma for AAs and FAs including intermediate OAs related to the energy metabolism in the TCA cycle.
Collapse
|
15
|
Seo C, Hwang YH, Kim Y, Joo BS, Yee ST, Kim CM, Paik MJ. Metabolomic study of aging in mouse plasma by gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1025:1-6. [DOI: 10.1016/j.jchromb.2016.04.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/19/2016] [Accepted: 04/30/2016] [Indexed: 11/16/2022]
|
16
|
Hur H, Paik MJ, Xuan Y, Nguyen DT, Ham IH, Yun J, Cho YK, Lee G, Han SU. Quantitative measurement of organic acids in tissues from gastric cancer patients indicates increased glucose metabolism in gastric cancer. PLoS One 2014; 9:e98581. [PMID: 24911788 PMCID: PMC4049586 DOI: 10.1371/journal.pone.0098581] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022] Open
Abstract
The levels of organic acids representing metabolic pathway end products are important indicators of physiological status, and may be associated with metabolic changes in cancer. The aim of this study is to investigate the levels of organic acids in cancerous and normal tissues from gastric cancer patients and to confirm the role of metabolic alterations in gastric carcinogenesis. Organic acids in normal and cancerous tissues from forty-five patients with gastric adenocarcinoma were investigated by gas chromatography-mass spectrometry in selected ion monitoring mode as methoxime/tert-butyldimethylsilyl derivatives. We analysed the significant differences in the levels of organic acids in normal and cancer tissues and investigated the correlation of these levels in cancer tissues with clinicopathological features. The levels of Krebs cycle components, including α-ketoglutaric acid, succinic acid, fumaric acid, malic acid and oxaloacetic acid, were significantly increased in cancer tissues compared to normal tissues. In addition, the levels of glycolytic products, including pyruvic acid and lactic acid, as well as the levels of ketone bodies, including 3-hydroxybutyric acid, were also significantly increased in cancer tissues compared to normal tissues. The levels of ketone bodies in cancer tissues with differentiated histology and in intestinal-type cancer tissues were significantly increased. The organic acid profiling analysis described here may be a generally useful clinical tool for understanding the complexity of metabolic events in gastric adenocarcinoma, and organic acids may have potential as metabolic markers for the future discovery of diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Suncheon National University, Suncheon, Republic of Korea
| | - Yi Xuan
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Duc-Toan Nguyen
- National Institute of Drug Quality Control, Hoan Kiem, Ha Noi, Vietnam
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jisoo Yun
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yong Kwan Cho
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Gwang Lee
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
17
|
Seo C, Yoon J, Rhee Y, Kim JJ, Nam SJ, Lee W, Lee G, Yee ST, Paik MJ. Simultaneous analysis of seven 2-hydroxy fatty acids as tert-butyldimethylsilyl derivatives in plasma by gas chromatography-mass spectrometry. Biomed Chromatogr 2014; 29:156-60. [PMID: 24898098 DOI: 10.1002/bmc.3251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/09/2014] [Accepted: 04/20/2014] [Indexed: 11/07/2022]
Abstract
An efficient method for the simultaneous analysis of seven 2-hydroxy fatty acids (2-HFAs) as tert-butyldimethylsilyl (TBDMS) derivative was developed by gas chromatography-mass spectrometry in selected ion monitoring mode. New mass spectral data on 2-hydroxycapric, 2-hydroxypalmitic, 2-hydroxystearic and 2-hydroxybehenic acids as di-TBDMS derivatives for hydroxyl and carboxyl groups were built. Under the optimal conditions, the present method showed a good correlation coefficient (r ≥ 0.999) in the range of 0.01-0.5 µg. The precision showed low relative standard deviation of <10%, and the accuracy (percentage relative error) varied from -5.2 to 0.3 for the seven 2-HFAs studied. Recovery rates of all 2-HFAs were ≥ 93.2% with good precision. When applied to normal human plasma, seven 2-HFAs were positively identified. Therefore, the present efficient method will be useful for simultaneous analysis of 2-HFAs in plasma.
Collapse
Affiliation(s)
- Chan Seo
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lin Q, Wang M, Li J, Shi W, Wang H, Zhao C. Analysis of Fatty Acids, Aliphatic Esters, and In Vitro Studies of Antioxidant and Antimicrobial Activities for Recineckea carnea and Tupistra chinensis from the Guizhou Province. J Med Food 2014; 17:236-43. [DOI: 10.1089/jmf.2013.2855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Qisi Lin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmacy, Xuzhou Medical College, Xuzhou, China
| | - Miao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinghua Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wanping Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
19
|
Fatemi MH, Elyasi M. Quantitative structure-retention relationship prediction of Kováts retention index of some organic acids. ACTA CHROMATOGR 2013. [DOI: 10.1556/achrom.25.2013.3.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Nguyen DT, Lee G, Paik MJ. Keto acid profiling analysis as ethoxime/tert-butyldimethylsilyl derivatives by gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 913-914:48-54. [DOI: 10.1016/j.jchromb.2012.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
|
21
|
Nguyen DT, Cho IS, Kim JW, Kim KR, Lee G, Paik MJ. Acidic metabolite profiling analysis of catecholamine and serotonin asO-ethoxycarbonyl/tert-butyldimethylsilyl derivatives by gas chromatography-mass spectrometry. Biomed Chromatogr 2012; 27:216-21. [DOI: 10.1002/bmc.2778] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 05/17/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Duc-Toan Nguyen
- Department of Molecular Science and Technology; Ajou University; Suwon; 443-721; Republic of Korea
| | - In-Seon Cho
- College of Pharmacy; Sungkyunkwan University; Suwon; 440-746; Republic of Korea
| | - Jeong-Whun Kim
- Department of Otorhinolaryngology; Seoul National University Bundang Hospital; Seongnam; 463-707; Republic of Korea
| | - Kyoung-Rae Kim
- College of Pharmacy; Sungkyunkwan University; Suwon; 440-746; Republic of Korea
| | | | - Man-Jeong Paik
- College of Pharmacy; Sunchon National University; Suncheon; 540-950; Republic of Korea
| |
Collapse
|
22
|
Fatemi MH, Elyasi M. Prediction of gas chromatographic retention indices of some amino acids and carboxylic acids from their structural descriptors. J Sep Sci 2011; 34:3216-20. [DOI: 10.1002/jssc.201100544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 11/10/2022]
|
23
|
Paik MJ, Nguyen DT, Yoon JH, Chae HS, Kim KR, Lee G, Lee PC. Chiral Separation of Lactic Acid in Culture Media and Cells of Lactobacillus delbrueckii subsp. lactis as O-Pentafluoropropionylated (S)-(+)-3-Methyl-2-Butyl Ester by Achiral Gas Chromatography-Mass Spectrometry. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.7.2418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Paik MJ, Shin JY, Lee G, Ahn YH. Monitoring of Altered Free Fatty Acid Metabolic Patterns in Rat Plasma Following Hemorrhagic Stroke. ANAL LETT 2011. [DOI: 10.1080/00032719.2010.512678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Kauna-Czaplińska J. Current Applications of Gas Chromatography/Mass Spectrometry in the Study of Organic Acids in Urine. Crit Rev Anal Chem 2011. [DOI: 10.1080/10408347.2011.555242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Paik MJ, Nguyen DT, Yoon JH, Cho IS, Shim WY, Kim KR, Cho KH, Choi SD, Lee G. Selective 3,4-Dihydroxyphenylalanine Analysis in Human Urine as Ethoxycarbonyltert-butyldimethylsilyl Derivatives by Gas Chromatography-Mass Spectrometry. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.3.977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Fatemi MH, Ghorbanzad'e M, Baher E. Quantitative Structure Retention Relationship Modeling of Retention Time for Some Organic Pollutants. ANAL LETT 2010. [DOI: 10.1080/00032710903486294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Pasikanti KK, Ho P, Chan E. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871:202-11. [DOI: 10.1016/j.jchromb.2008.04.033] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/14/2008] [Accepted: 04/23/2008] [Indexed: 01/02/2023]
|
29
|
Paik MJ, Cho EY, Kim H, Kim KR, Choi S, Ahn YH, Lee G. Simultaneous clinical monitoring of lactic acid, pyruvic acid and ketone bodies in plasma as methoxime/tert-butyldimethylsilyl derivatives by gas chromatography-mass spectrometry in selected ion monitoring mode. Biomed Chromatogr 2008; 22:450-3. [PMID: 18254151 DOI: 10.1002/bmc.966] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Simultaneous determination of lactic acid, pyruvic acid, 3-hydroxybutyric acid and acetoacetic acid for clinical monitoring of lactic acidosis and ketone body formation in human plasma (20 microL) was performed by gas chromatography-mass spectrometry in selected ion monitoring (SIM) mode after generating methoxime/tert-butyldimethylsilyl derivatives. All of the targeted carboxylic acids were detected by characteristic fragment ions, which permitted sensitive and selective identification in the presence of co-extracted free fatty acids and other acidic metabolites at much higher levels. The method was linear (r>or=0.9991), reproducible (% relative standard deviation=1.2-5.8), and accurate (% relative error=-7.2-7.6), with detection limits of 0.05-1.7 ng/mL. This rapid, accurate and selective method using minimal plasma samples (20 microL) is useful in the clinical monitoring of lactic acidosis and ketone body formation in plasma.
Collapse
Affiliation(s)
- Man-Jeong Paik
- Metabolomic Analysis Laboratory, Institute for Neuroregeneration and Stem Cell Research, Ajou University, Wonchon-dong, Yeongtong-gu, Suwon 443-721, South Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Paik MJ, Moon SM, Kim KR, Choi S, Ahn YH, Lee G. Target metabolic profiling analysis of free amino acids in plasma as EOC/TBDMS derivatives by GC-SIM-MS. Biomed Chromatogr 2008; 22:339-42. [DOI: 10.1002/bmc.939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Law WS, Zhao JH, Hauser PC, Yau Li SF. Capillary electrophoresis with capacitively coupled contactless conductivity detection for low molecular weight organic acids in different samples. J Sep Sci 2007; 30:3247-54. [DOI: 10.1002/jssc.200700306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogenactivated protein kinase (MAPK) kinase kinase that activates JNK and p38 kinases. ASK1 is activated by various stresses, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, lipopolysaccharide (LPS) and calcium influx which are thought to be responsible for the pathogenesis or exacerbations of various human diseases. Recent studies revealed the involvement of ASK1 in ROS- or ER stressrelated diseases, suggesting that ASK1 may be a potential therapeutic target of various human diseases. In this review, we focus on the current findings for the relationship between pathogenesis and ASK1-MAPK pathways.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
33
|
Paik MJ, Park KH, Park JJ, Kim KR, Ahn YH, Shin GT, Lee G. Patterns of Plasma Fatty Acids in Rat Models with Adenovirus Infection. BMB Rep 2007; 40:119-24. [PMID: 17244492 DOI: 10.5483/bmbrep.2007.40.1.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adenoviral vectors are among the most promising vectors available for human gene therapy. However, the use of recombinant adenoviral vectors, including replicationcompetent adenovirus (RCA), raises a variety of safety concerns in relation to the development of new therapies based on gene therapy. To examine how organic compounds change in rat plasma following the injection of adenovirus, beta-galactosidase expressing recombinant adenovirus (designated rAdLacZ) or RCA, we investigated the content of fatty acids (FAs), which are important biochemical indicators in pathological conditions. Pattern recognition analysis on the level of FAs in rat plasma is described for the visual discrimination of adenovirus infection groups from normal controls. Plasma FAs from four control rats (normal group), and from four rats with rAdLacZ infection and six rats with RCA infection (the two abnormal groups), were examined by gas chromatography-mass spectrometry in selected ion monitoring modes as their tert-butyldimethylsilyl derivatives. In total, 20 FAs were positively detected and quantified. The results of the Studentos t-test on the normal mean of two abnormal groups, the levels of three FAs (p< 0.05) from rAdLacZ group and eleven FAs (p < 0.05) from RCA group were significantly different. When star symbol plotting was applied to the group mean values of 20 FAs after normalization to the corresponding normal mean values, the resulting eicosagonal star patterns of the two infected groups were distorted into similar shapes, but were distinguishable from each other. Thus, these approaches will be useful for screening and monitoring of diagnostic markers for the effects of infection following the use of adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Man Jeong Paik
- Biometabolite Analysis Laboratory, College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|