1
|
Martínez-Molina E, Chocarro-Wrona C, Martínez-Moreno D, Marchal JA, Boulaiz H. Large-Scale Production of Lentiviral Vectors: Current Perspectives and Challenges. Pharmaceutics 2020; 12:pharmaceutics12111051. [PMID: 33153183 PMCID: PMC7693937 DOI: 10.3390/pharmaceutics12111051] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs.
Collapse
Affiliation(s)
- Eduardo Martínez-Molina
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Carlos Chocarro-Wrona
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Daniel Martínez-Moreno
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Houria Boulaiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-271
| |
Collapse
|
2
|
Boudeffa D, Bertin B, Biek A, Mormin M, Leseigneur F, Galy A, Merten OW. Toward a Scalable Purification Protocol of GaLV-TR-Pseudotyped Lentiviral Vectors. Hum Gene Ther Methods 2020; 30:153-171. [PMID: 31516018 DOI: 10.1089/hgtb.2019.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lentiviral vectors (LV) that are used in research and development as well as in clinical trials are in majority vesicular stomatitis virus G glycoprotein (VSVg) pseudotyped. The predominance of this pseudotype choice for clinical gene therapy studies is largely due to a lack of purification schemes for pseudotypes other than VSVg. In this study, we report for the first time the development of a new downstream process protocol allowing high-yield production of stable and infectious gibbon ape leukemia virus (GaLV)-TR-LV particles. We identified critical conditions in tangential flow filtration (TFF) and chromatographic steps for preserving the infectivity/functionality of LV during purification. This was carried out by identifying for each step, the critical parameters affecting LV infectivity, including pH, salinity, presence of stabilizers, temperature, and by defining the optimal order of these steps. A three-step process was developed for GaLV-TR-LV purification consisting of one TFF and two chromatographic steps (ion-exchange chromatography and size exclusion chromatography) permitting recoveries of >27% of infectious particles. With this process, purified GaLV-pseudotyped LV enabled the transduction of 70% human CD34+ cells in the presence of the Vectofusin-1 peptide, whereas in the same conditions nonpurified vector transduced only 9% of the cells (multiplicity of infection 20). Our protocol will allow for the first time the purification of GaLV-TR-LV that are biologically active, stable, and with sufficient recovery in the perspective of preclinical studies and clinical applications. Obviously, further optimizations are required to improve final vector yields.
Collapse
Affiliation(s)
| | | | | | - Mirella Mormin
- Généthon, Evry, France.,Integrare Research Unit (UMR_S951), Généthon, Inserm, Université Evry Val-d'Essonne, Université Paris Saclay, EPHE, Evry, France
| | | | - Anne Galy
- Généthon, Evry, France.,Integrare Research Unit (UMR_S951), Généthon, Inserm, Université Evry Val-d'Essonne, Université Paris Saclay, EPHE, Evry, France
| | | |
Collapse
|
3
|
Nasimuzzaman M, Lynn D, Ernst R, Beuerlein M, Smith RH, Shrestha A, Cross S, Link K, Lutzko C, Nordling D, Russell DW, Larochelle A, Malik P, Van der Loo JC. Production and purification of high-titer foamy virus vector for the treatment of leukocyte adhesion deficiency. Mol Ther Methods Clin Dev 2016; 3:16004. [PMID: 27722179 PMCID: PMC5052019 DOI: 10.1038/mtm.2016.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/22/2023]
Abstract
Compared to other integrating viral vectors, foamy virus (FV) vectors have distinct advantages as a gene transfer tool, including their nonpathogenicity, the ability to carry larger transgene cassettes, and increased stability of virus particles due to DNA genome formation within the virions. Proof of principle of its therapeutic utility was provided with the correction of canine leukocyte adhesion deficiency using autologous CD34+ cells transduced with FV vector carrying the canine CD18 gene, demonstrating its long-term safety and efficacy. However, infectious titers of FV-human(h)CD18 were low and not suitable for manufacturing of clinical-grade product. Herein, we developed a scalable production and purification process that resulted in 60-fold higher FV-hCD18 titers from ~1.7 × 104 to 1.0 × 106 infectious units (IU)/ml. Process development improvements included use of polyethylenimine-based transfection, use of a codon-optimized gag, heparin affinity chromatography, tangential flow filtration, and ultracentrifugation, which reproducibly resulted in 5,000-fold concentrated and purified virus, an overall yield of 19 ± 3%, and final titers of 1-2 × 109 IU/ml. Highly concentrated vector allowed reduction of final dimethyl sulfoxide (DMSO) concentration, thereby avoiding DMSO-induced toxicity to CD34+ cells while maintaining high transduction efficiencies. This process development results in clinically relevant, high titer FV which can be scaled up for clinical grade production.
Collapse
Affiliation(s)
- Md Nasimuzzaman
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
- University of Cincinnati College of
Medicine, Cincinnati, Ohio, USA
| | - Danielle Lynn
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
| | - Rebecca Ernst
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
| | - Michele Beuerlein
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
| | - Richard H. Smith
- Hematology Branch, National Heart, Lung, and
Blood Institute, National Institutes of Health, Bethesda,
Maryland, USA
| | - Archana Shrestha
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
- University of Cincinnati College of
Medicine, Cincinnati, Ohio, USA
| | - Scott Cross
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
| | - Kevin Link
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
| | - Carolyn Lutzko
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
- University of Cincinnati College of
Medicine, Cincinnati, Ohio, USA
- Division of Regenerative Medicine and
Cellular Therapies, Hoxworth Blood Center, University of Cincinnati,
Cincinnati, Ohio, USA
| | - Diana Nordling
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
| | - David W. Russell
- Division of Hematology, University of
Washington, Seattle, Washington, USA
| | - Andre Larochelle
- Hematology Branch, National Heart, Lung, and
Blood Institute, National Institutes of Health, Bethesda,
Maryland, USA
| | - Punam Malik
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
- University of Cincinnati College of
Medicine, Cincinnati, Ohio, USA
| | - Johannes C.M. Van der Loo
- Division of Experimental Hematology and
Cancer Biology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
- University of Cincinnati College of
Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Nestola P, Peixoto C, Silva RRJS, Alves PM, Mota JPB, Carrondo MJT. Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng 2015; 112:843-57. [PMID: 25677990 DOI: 10.1002/bit.25545] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 01/10/2023]
Abstract
The downstream processing of virus particles for vaccination or gene therapy is becoming a critical bottleneck as upstream titers keep improving. Moreover, the growing pressure to develop cost-efficient processes has brought forward new downstream trains. This review aims at analyzing the state-of-the-art in viral downstream purification processes, encompassing the classical unit operations and their recent developments. Emphasis is given to novel strategies for process intensification, such as continuous or semi-continuous systems based on multicolumn technology, opening up process efficiency. Process understanding in the light of the pharmaceutical quality by design (QbD) initiative is also discussed. Finally, an outlook of the upcoming breakthrough technologies is presented.
Collapse
Affiliation(s)
- Piergiuseppe Nestola
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
5
|
Gencoglu MF, Pearson E, Heldt CL. Porcine parvovirus flocculation and removal in the presence of osmolytes. J Biotechnol 2014; 186:83-90. [DOI: 10.1016/j.jbiotec.2014.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/16/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
6
|
McNally DJ, Darling D, Farzaneh F, Levison PR, Slater NKH. Optimised concentration and purification of retroviruses using membrane chromatography. J Chromatogr A 2014; 1340:24-32. [PMID: 24685165 PMCID: PMC4003387 DOI: 10.1016/j.chroma.2014.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/04/2014] [Accepted: 03/08/2014] [Indexed: 01/21/2023]
Abstract
An in investigation in to the use of membrane chromatography for the purification of a γ-retrovirus was undertaken. The first report of a capacity for γ-retrovirus binding to a membrane chromatography device is presented. A process that produces a large increase in concentration and purity of the studied γ-retrovirus was identified. Proteomic techniques were used to identify the protein impurities removed and co-purified with the virus containing eluate.
The ability of an anion exchange membrane to purify a γ-retrovirus was assessed and optimised with respect to different loading and wash buffers. Recoveries of infectious virus greater than 50% were consistently obtained, while specific titre was increased up to one thousand fold when compared to the material loaded. Specific proteins removed and retained by this optimised process were identified by mass spectrometry. It was possible to successfully bind and elute the equivalent of 1.27 × 108 Ifu/ml of ion exchange membrane. This could then be highly concentrated, with infectious virus concentrated to a maximum of 420-fold compared to the load.
Collapse
Affiliation(s)
- D J McNally
- Department of Chemical Engineering and Biotechnology, New Museums Site, Pembroke St, Cambridge CB2 3RA, UK.
| | - D Darling
- King's College London, 123 Coldharbour Lane, London SE5 9NU, UK
| | - F Farzaneh
- King's College London, 123 Coldharbour Lane, London SE5 9NU, UK
| | - P R Levison
- Pall Europe Limited, 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, Hampshire, UK
| | - N K H Slater
- Department of Chemical Engineering and Biotechnology, New Museums Site, Pembroke St, Cambridge CB2 3RA, UK
| |
Collapse
|
7
|
Vupputuri S, Karode S, Neely BJ, Ramsey JD. Protein impurities from cell culture dramatically impact transduction efficiency of polymer/virus hybrid vectors. J Virol Methods 2013; 192:1-11. [DOI: 10.1016/j.jviromet.2013.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 10/27/2022]
|
8
|
Segura MM, Mangion M, Gaillet B, Garnier A. New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 2013; 13:987-1011. [PMID: 23590247 DOI: 10.1517/14712598.2013.779249] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lentiviruses are a very potent class of viral vectors for which there is presently a rapidly growing interest for a number of gene therapy. However, their construction, production and purification need to be performed according to state-of-the-art techniques in order to obtain sufficient quantities of high purity material of any usefulness and safety. AREAS COVERED The recent advances in the field of recombinant lentivirus vector design, production and purification will be reviewed with an eye toward its utilization for gene therapy. Such a review should be helpful for the potential user of this technology. EXPERT OPINION The principal hurdles toward the use of recombinant lentivirus as a gene therapy vector are the low titer at which it is produced as well as the difficulty to purify it at an acceptable level without degrading it. The recent advances in the bioproduction of this vector suggest these issues are about to be resolved, making the retrovirus gene therapy a mature technology.
Collapse
Affiliation(s)
- Maria Mercedes Segura
- Chemical Engineering Department, Universitat Autònoma de Barcelona, Campus Bellaterra, Cerdanyola del Vallès (08193), Barcelona, Spain
| | | | | | | |
Collapse
|
9
|
Abstract
Manufacturing of cell culture-derived virus particles for vaccination and gene therapy is a rapidly growing field in the biopharmaceutical industry. The process involves a number of complex tasks and unit operations ranging from selection of host cells and virus strains for the cultivation in bioreactors to the purification and formulation of the final product. For the majority of cell culture-derived products, efforts focused on maximization of bioreactor yields, whereas design and optimization of downstream processes were often neglected. Owing to this biased focus, downstream procedures today often constitute a bottleneck in various manufacturing processes and account for the majority of the overall production costs. For efficient production methods, particularly in sight of constantly increasing economic pressure within human healthcare systems, highly productive downstream schemes have to be developed. Here, we discuss unit operations and downstream trains to purify virus particles for use as vaccines and vectors for gene therapy.
Collapse
Affiliation(s)
- Michael W Wolf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
10
|
O’Neill LS, Skinner AM, Woodward JA, Kurre P. Entry kinetics and cell-cell transmission of surface-bound retroviral vector particles. J Gene Med 2010; 12:463-76. [PMID: 20440757 PMCID: PMC2864923 DOI: 10.1002/jgm.1458] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Transduction with recombinant HIV-1 derived lentivirus vectors is a multi-step process initiated by surface attachment and subsequent receptor-directed uptake into the target cell. We previously reported the retention of vesicular stomatitis virus G protein pseudotyped particles on murine progenitor cells and their delayed cell-cell transfer. METHODS To examine the underlying mechanism in more detail, we used a combination of approaches focused on investigating the role of receptor-independent factors in modulating attachment. RESULTS The investigation of synchronized transduction reveals cell-type specific rates of vector particle clearance with substantial delays during particle entry into murine hematopoietic progenitor cells. The observed uptake kinetics from the surface of the 1 degrees cell correlate inversely with the magnitude of transfer to 2 degrees targets, corresponding with our initial observation of preferential cell-cell transfer in the context of brief vector exposures. We further demonstrate that vector particle entry into cells is associated with the cell-type specific abundance of extracellular matrix fibronectin. Residual particle-extracellular fibronectin matrix binding and 2 degrees transfer can be competitively disrupted by heparin exposure without affecting murine progenitor homing and repopulation. CONCLUSIONS Although cellular attachment factors, including fibronectin, aid gene transfer by colocalizing particles to cells and disfavoring early dissociation from targets, they also appear to stabilize particles on the cell surface. The present study highlights the inadvertent consequences for cell entry and cell-cell transfer.
Collapse
Affiliation(s)
- Lee S. O’Neill
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Amy M. Skinner
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Josha A. Woodward
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Peter Kurre
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
- Papé Family Pediatric Research Institute, Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Segura MM, Garnier A, Durocher Y, Ansorge S, Kamen A. New protocol for lentiviral vector mass production. Methods Mol Biol 2010; 614:39-52. [PMID: 20225034 DOI: 10.1007/978-1-60761-533-0_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multiplasmid transient transfection is the most widely used technique for the generation of lentiviral vectors. However, traditional transient transfection protocols using 293 T adherent cells and calcium phosphate/DNA co-precipitation followed by ultracentrifugation are tedious, time-consuming, and difficult to scale up. This chapter describes a streamlined protocol for the fast mass production of lentiviral vectors and their purification by affinity chromatography. Lentiviral particles are generated by transient transfection of suspension growing HEK 293 cells in serum-free medium using polyethylenimine (PEI) as transfection reagent. Lentiviral vector production is carried out in Erlenmeyer flasks agitated on orbital shakers requiring minimum supplementary laboratory equipment. Alternatively, the method can be easily scaled up to generate larger volumes of vector stocks in bioreactors. Heparin affinity chromatography allows for selective concentration and purification of lentiviral particles in a singlestep directly from vector supernatants. The method is suitable for the production and purification of different vector pseudotypes.
Collapse
|
12
|
Pedro L, Soares S, Ferreira G. Purification of Bionanoparticles. Chem Eng Technol 2008; 31:815-825. [PMID: 32313384 PMCID: PMC7162033 DOI: 10.1002/ceat.200800176] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/11/2022]
Abstract
The recent demand for nanoparticulate products such as viruses, plasmids, protein nanoparticles, and drug delivery systems have resulted in the requirement for predictable and controllable production processes. Protein nanoparticles are an attractive candidate for gene and molecular therapy due to their relatively easy production and manipulation. These particles combine the advantages of both viral and non-viral vectors while minimizing the disadvantages. However, their successful application depends on the availability of selective and scalable methodologies for product recovery and purification. Downstream processing of nanoparticles depends on the production process, producer system, culture media and on the structural nature of the assembled nanoparticle, i.e., mainly size, shape and architecture. In this paper, the most common processes currently used for the purification of nanoparticles, are reviewed.
Collapse
Affiliation(s)
- L. Pedro
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - S. S. Soares
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - G. N. M. Ferreira
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| |
Collapse
|
13
|
Segura MM, Garnier A, Durocher Y, Coelho H, Kamen A. Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnol Bioeng 2007; 98:789-99. [PMID: 17461423 DOI: 10.1002/bit.21467] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of lentiviral vectors as gene delivery vehicles has become increasingly popular in recent years. The growing interest in these vectors has created a strong demand for large volumes of vector stocks, which entails the need for scaleable vector manufacturing procedures. In this work, we present a simple and robust process for the production of lentiviral vectors using scaleable production and purification methodologies. Lentivirus particles were produced by transient transfection of serum-free suspension-growing 293 EBNA-1 cells with four plasmids encoding the vector components using linear polyethylenimine (PEI) as transfection reagent. This process was successfully scaled-up from shake flasks to a 3-L bioreactor from which 10(10) IVP were recovered. In addition, an affinity chromatography protocol designed for purification of bioactive oncoretroviral vectors has been adapted in this work for the purification of VSV-G pseudotyped lentiviral vectors. Using heparin affinity chromatography, lentiviral particles were concentrated and purified directly from the clarified supernatants. During this step, a recovery of 53% of infective lentiviral particles was achieved while removing 94% of the impurities contained in the supernatant.
Collapse
Affiliation(s)
- María Mercedes Segura
- Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|