1
|
Sungkhaphan P, Thavornyutikarn B, Muangsanit P, Kaewkong P, Kitpakornsanti S, Pornsuwan S, Singhatanadgit W, Janvikul W. Dual-Functional Drug Delivery System for Bisphosphonate-Related Osteonecrosis Prevention and Its Bioinspired Releasing Model and In Vitro Assessment. ACS OMEGA 2023; 8:26561-26576. [PMID: 37521598 PMCID: PMC10373185 DOI: 10.1021/acsomega.3c03440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Clindamycin (CDM)/geranylgeraniol (GGOH)-loaded plasma-treated mesoporous silica nanoparticles/carboxymethyl chitosan composite hydrogels (CHG60 and CHG120) were developed for the prevention of medication-related osteonecrosis of the jaw associated with bisphosphonates (MRONJ-B). The pore structure and performances of CHGs, e.g., drug release profiles and kinetics, antibacterial activity, zoledronic acid (ZA)-induced cytotoxicity reversal activity, and acute cytotoxicity, were evaluated. The bioinspired platform mimicking in vivo fibrin matrices was also proposed for the in vitro/in vivo correlation. CHG120 was further encapsulated in the human-derived fibrin, generating FCHG120. The SEM and μCT images revealed the interconnected porous structures of CHG120 in both pure and fibrin-surrounding hydrogels with %porosity of 75 and 36%, respectively, indicating the presence of fibrin inside the hydrogel pores, besides its peripheral region, which was evidenced by confocal microscopy. The co-presence of GGOH moderately decelerated the overall releases of CDM from CHGs in the studied releasing fluids, i.e., phosphate buffer saline-based fluid (PBB) and simulated interstitial fluid (SIF). The whole-lifetime release patterns of CDM, fitted by the Ritger-Peppas equation, appeared nondifferentiable, divided into two releasing stages, i.e., rapid and steady releasing stages, whereas the biphasic drug release patterns of GGOH were observed with Phase I and II releases fitted by the Higuchi and Ritger-Peppas equations, respectively. Notably, the burst releases of both drugs were subsided with lengthier durations (up to 10-12 days) in SIF, compared with those in PBB, enabling CHGs to elicit satisfactory antibacterial and ZA cytotoxicity reversal activities for MRONJ-B prevention. The fibrin network in FCHG120 further reduced and sustained the drug releases for at least 14 days, lengthening bactericidal and ZA cytotoxicity reversal activities of FCHG and decreasing in vitro and in ovo acute drug toxicity. This highlighted the significance of fibrin matrices as appropriate in vivo-like platforms to evaluate the performance of an implant.
Collapse
Affiliation(s)
- Piyarat Sungkhaphan
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Boonlom Thavornyutikarn
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Papon Muangsanit
- National
Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Pakkanun Kaewkong
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Setthawut Kitpakornsanti
- Faculty
of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Khlong Luang 12120, Thailand
| | | | - Weerachai Singhatanadgit
- Faculty
of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Khlong Luang 12120, Thailand
| | - Wanida Janvikul
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| |
Collapse
|
2
|
Abundant plasma protein depletion using ammonium sulfate precipitation and Protein A affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1089:43-59. [PMID: 29758408 DOI: 10.1016/j.jchromb.2018.04.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022]
Abstract
Plasma is a highly valuable resource for biomarker research since it is easy obtainable and contains a high amount of information on patient health status. Although advancements in the field of proteomics enabled analysis of the plasma proteome, identification of low abundant proteins remains challenging due to high complexity and large dynamic range. In order to reduce the dynamic range of protein concentrations, a tandem depletion technique consisting of ammonium sulfate precipitation and Protein A affinity chromatography was developed. Using this method, 50% of albumin, together with other high abundant proteins such as alpha-1-antitrypsin, was depleted from the plasma sample at 20% to 40% ammonium sulfate saturation levels. In combination with immunoglobulin removal using a Protein A column, this technique delivered up to 40 new low- to medium abundance protein identifications when performing a shotgun mass spectrometry analysis. Compared to non-depleted plasma, 270 additional protein spots were observed during 2D-PAGE analysis. These results illustrate that this tandem depletion method is equivalent to commercial kits which are based on immune-affinity chromatography. Moreover, this method using Protein A immunoglobulin depletion was shown to be highly reproducible and a minimal amount of non-target proteins was depleted. The combination of ammonium sulfate precipitation and Protein A affinity chromatography offers a low cost, efficient, straightforward and reproducible alternative to commercial kits, with proteins remaining in native conformation, allowing protein activity and protein interaction studies.
Collapse
|
3
|
Gianazza E, Miller I, Palazzolo L, Parravicini C, Eberini I. With or without you — Proteomics with or without major plasma/serum proteins. J Proteomics 2016; 140:62-80. [PMID: 27072114 DOI: 10.1016/j.jprot.2016.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/26/2022]
|
4
|
Derazshamshir A, Baydemir G, Yılmaz F, Bereli N, Denizli A. Preparation of cryogel columns for depletion of hemoglobin from human blood. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 44:792-9. [DOI: 10.3109/21691401.2015.1129623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Chen Q, Wang MM, Hu X, Chen XW, Wang JH. An octamolybdate-metal organic framework hybrid for the efficient adsorption of histidine-rich proteins. J Mater Chem B 2016; 4:6812-6819. [DOI: 10.1039/c6tb02090a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Incorporation of octamolybdate (Mo8O26) into the metal–organic framework, MIL-101(Cr), produces a novel hybrid. The covalent interactions of the Mo8O26 moiety in the hybrid with the N-terminal site and the multi-metal binding site of proteins offer favorable adsorption performance towards histidine-rich proteins.
Collapse
Affiliation(s)
- Qing Chen
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Meng-Meng Wang
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Xue Hu
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Xu-Wei Chen
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| |
Collapse
|
6
|
QIU FANGHUA, HOU TIEYING, HUANG DEHONG, XUE ZHIFENG, LIANG DONGYAN, LI QIUMING, LIN WEIMIAO. Evaluation of two high-abundance protein depletion kits and optimization of downstream isoelectric focusing. Mol Med Rep 2015; 12:7749-55. [DOI: 10.3892/mmr.2015.4417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/14/2015] [Indexed: 11/06/2022] Open
|
7
|
High abundant protein removal from rodent blood for biomarker discovery. Biochem Biophys Res Commun 2015; 455:84-9. [PMID: 25445603 DOI: 10.1016/j.bbrc.2014.09.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 12/17/2022]
Abstract
In order to realize the goal of stratified and/or personalized medicine in the clinic, significant advances in the field of biomarker discovery are necessary. Adding to the abundance of nucleic acid biomarkers being characterized, additional protein biomarkers will be needed to satisfy diverse clinical needs. An appropriate source for finding these biomarkers is within blood, as it contains tissue leakage factors as well as additional proteins that reside in blood that can be linked to the presence of disease. Unfortunately, high abundant proteins and complexity of the blood proteome present significant challenges for the discovery of protein biomarkers from blood. Animal models often enable the discovery of biomarkers that can later be translated to humans. Therefore, determining appropriate sample preparation of proteomic samples in rodent models is an important research goal. Here, we examined both mouse and rat blood samples (including both serum and plasma), for appropriate high abundant protein removal techniques for subsequent gel-based proteomic experiments. We assessed four methods of albumin removal: antibody-based affinity chromatography (MARS), Cibacron® Blue-based affinity depletion (SwellGel® Blue Albumin Removal Kit), protein-based affinity depletion (ProteaPrep Albumin Depletion Kit) and TCA/acetone precipitation. Albumin removal was quantified for each method and SDS-PAGE and 2-DE gels were used to quantify the number of protein spots obtained following albumin removal. Our results suggest that while all four approaches can effectively remove high abundant proteins, antibody-based affinity chromatography is superior to the other three methods.
Collapse
|
8
|
Jauchem JR, Cerna CZ, Lim TY, Seaman RL. Exposures of Sus scrofa to a TASER(®) conducted electrical weapon: no effects on 2-dimensional gel electrophoresis patterns of plasma proteins. Forensic Sci Med Pathol 2014; 10:526-34. [PMID: 25319243 DOI: 10.1007/s12024-014-9606-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
Abstract
In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER (®) C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures.
Collapse
Affiliation(s)
- James R Jauchem
- Bio-Effects Division, Human Effectiveness Directorate, 711th Human Performance Wing, US Air Force Research Laboratory, 711 HPW/RHDR, 4141 Petroleum Road, Fort Sam Houston, TX, 78234, USA,
| | | | | | | |
Collapse
|
9
|
Removal of albumin and immunoglobulins from canine cerebrospinal fluid using depletion kits: a feasibility study. Fluids Barriers CNS 2014; 11:14. [PMID: 25002965 PMCID: PMC4079625 DOI: 10.1186/2045-8118-11-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Highly abundant proteins in biological fluids such as serum or cerebrospinal fluid (CSF) can hinder the detection of proteins in lower abundance, e.g., potential biomarkers. Commercial products are available for the depletion of albumin and immunoglobulins (Igs), although most of these kits have not been validated for dog samples. The present study therefore examines the use of different types of depletion kits for dog CSF. FINDINGS Three kits, with different mechanisms for the depletion of albumin and Igs, were tested with dog CSF specimens. One product significantly decreased the amount of albumin; with all kits, IgG was less efficiently removed than albumin. Mass spectrometry of the fractions eluted from the depletion columns revealed considerable co-depletion of other CSF proteins. CONCLUSIONS A commercially available depletion kit was identified which depletes albumin and (to a lower extent) immunoglobulins from dog CSF. However, the limited efficacy and the concomitant loss of other proteins from the sample should be taken into account when using this product.
Collapse
|
10
|
Javanmard M, Emaminejad S, Gupta C, Provine J, Davis R, Howe R. Depletion of cells and abundant proteins from biological samples by enhanced dielectrophoresis. SENSORS AND ACTUATORS. B, CHEMICAL 2014; 193:918-924. [PMID: 26924893 PMCID: PMC4765371 DOI: 10.1016/j.snb.2013.11.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Platforms that are sensitive and specific enough to assay low-abundance protein biomarkers, in a high throughput multiplex format, within a complex biological fluid specimen, are necessary to enable protein biomarker based diagnostics for diseases such as cancer. The signal from an assay for a low-abundance protein biomarker in a biological fluid sample like blood is typically buried in a background that arises from the presence of blood cells and from high-abundance proteins that make up 90% of the assayed protein mass. We present an automated on-chip platform for the depletion of cells and highly abundant serum proteins in blood. Our platform consists of two components, the first of which is a microfluidic mixer that mixes beads containing antibodies against the highly abundant proteins in the whole blood. This complex mixture (consisting of beads, cells, and serum proteins) is then injected into the second component of our microfluidic platform, which comprises a filter trench to capture all the cells and the beads. The size-based trapping of the cells and beads into the filter trench is significantly enhanced by leveraging additional negative dielectrophoretic forces to push the micron sized particles (cells and beads which have captured the highly abundant proteins) down into the trench, allowing the serum proteins of lower abundance to flow through. In general, dielectrophoresis using bare electrodes is incapable of producing forces beyond the low piconewton range that tend to be insufficient for separation applications. However, by using electrodes passivated with atomic layer deposition, we demonstrate the application of enhanced negative DEP electrodes together with size-based flltration induced by the filter trench, to deplete 100% of the micron sized particles in the mixture.
Collapse
Affiliation(s)
- M. Javanmard
- Stanford Genome Technology Center, Stanford University, Stanford, CA, USA
| | - S. Emaminejad
- Stanford Genome Technology Center, Stanford University, Stanford, CA, USA
- Electrical Engineering Department, Stanford University, Stanford, CA, USA
| | - C. Gupta
- Electrical Engineering Department, Stanford University, Stanford, CA, USA
| | - J. Provine
- Electrical Engineering Department, Stanford University, Stanford, CA, USA
| | - R.W. Davis
- Stanford Genome Technology Center, Stanford University, Stanford, CA, USA
| | - R.T. Howe
- Electrical Engineering Department, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Gökay Ö, Karakoç V, Andaç M, Türkmen D, Denizli A. Dye-attached magnetic poly(hydroxyethyl methacrylate) nanospheres for albumin depletion from human plasma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 43:62-70. [PMID: 24093765 DOI: 10.3109/21691401.2013.841172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The selective binding of albumin on dye-affinity nanospheres was combined with magnetic properties as an alternative approach for albumin depletion from human plasma. Magnetic poly(hydroxyethyl methacrylate) (mPHEMA) nanospheres were synthesized using mini-emulsion polymerization method in the presence of magnetite powder. The specific surface area of the mPHEMA nanospheres was found to be 1302 m(2)/g. Subsequent to Cibacron Blue F3GA (CB) immobilization onto mPHEMA nanospheres, a serial characterization processing was implemented. The quantity of immobilized CB was calculated as 800 μmol/g. Ultimately, albumin adsorption performance of the CB-attached mPHEMA nanospheres from both aqueous dissolving medium and human plasma were explored.
Collapse
Affiliation(s)
- Öznur Gökay
- Division of Biochemistry, Department of Chemistry, Hacettepe University , Ankara , Turkey
| | | | | | | | | |
Collapse
|
12
|
Uzun L, Armutcu C, Biçen Ö, Ersöz A, Say R, Denizli A. Simultaneous depletion of immunoglobulin G and albumin from human plasma using novel monolithic cryogel columns. Colloids Surf B Biointerfaces 2013; 112:1-8. [PMID: 23928053 DOI: 10.1016/j.colsurfb.2013.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
In this study, we aimed to develop an alternative matrix able to deplete the albumin (Alb) and immunoglobulin G (IgG) from blood plasma simultaneously to prepare plasma samples for large-scale applications of blood-related proteomics. As a first step, nano-protein A nanoparticles (nanoProA) were prepared and characterized. Subsequently, cibacron blue F3GA (CB) was immobilized onto the nanoProA's to enhance their specific affinity for Alb molecules. Finally, both nanoparticles, specifically, nanoProA and CB-nanoProA, were separately embedded into cryogel structures to combine advantages of the nanoparticles with those of the cryogels. The protein adsorption was optimized using aqueous Alb and IgG solutions separately. Subsequently, competitive protein adsorption was performed using a protein mixture prepared with Alb and IgG adhering to their plasma protein ratios. Because of the CB-immobilization, the Alb depletion performance of the cryogels increased whereas the IgG depleting performance decreased. Using the nanoProA, embedded cryogel removed 99.3% of the IgG, while using the CB-nanoProA embedded cryogel removed 97.5% of the Alb content. The simultaneous depletion performances of the cryogels for Alb and IgG were characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In this study, the monolithic cryogel-based adsorbents were classified as an alternative matrix to prepare plasma samples for proteomics applications at the preparative scale.
Collapse
Affiliation(s)
- Lokman Uzun
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
13
|
Mahn A, Lienqueo ME, Quilodrán C, Olivera-Nappa A. Purification of transthyretin as nutritional biomarker of selenium status. J Sep Sci 2012; 35:3184-9. [DOI: 10.1002/jssc.201200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Andrea Mahn
- Department of Chemical Engineering; Universidad de Santiago de Chile; Chile
| | - María Elena Lienqueo
- Department of Chemical and Biotechnology Engineering; University of Chile; Santiago Chile
| | - Claudia Quilodrán
- Department of Chemical and Biotechnology Engineering; University of Chile; Santiago Chile
| | - Alvaro Olivera-Nappa
- Department of Chemical and Biotechnology Engineering; University of Chile; Santiago Chile
| |
Collapse
|
14
|
Stastna M, Van Eyk JE. Analysis of protein isoforms: can we do it better? Proteomics 2012; 12:2937-48. [PMID: 22888084 DOI: 10.1002/pmic.201200161] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 12/23/2022]
Abstract
Protein isoforms/splice variants can play important roles in various biological processes and can potentially be used as biomarkers or therapeutic targets/mediators. Thus, there is a need for efficient and, importantly, accurate methods to distinguish and quantify specific protein isoforms. Since protein isoforms can share a high percentage of amino acid sequence homology and dramatically differ in their cellular concentration, the task for accuracy and efficiency in methodology and instrumentation is challenging. The analysis of intact proteins has been perceived to provide a more accurate and complete result for isoform identification/quantification in comparison to analysis of the corresponding peptides that arise from protein enzymatic digestion. Recently, novel approaches have been explored and developed that can possess the accuracy and reliability important for protein isoform differentiation and isoform-specific peptide targeting. In this review, we discuss the recent development in methodology and instrumentation for enhanced detection of protein isoforms as well as the examples of their biological importance.
Collapse
Affiliation(s)
- Miroslava Stastna
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | | |
Collapse
|
15
|
A fully integrated multi-column system for abundant protein depletion from serum/plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 902:35-41. [DOI: 10.1016/j.jchromb.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
|
16
|
Selvaraju S, Rassi ZE. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis--an update covering the period 2008-2011. Electrophoresis 2012; 33:74-88. [PMID: 22125262 PMCID: PMC3516880 DOI: 10.1002/elps.201100431] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 11/08/2022]
Abstract
This review article expands on the previous one (Jmeian, Y. and El Rassi, Z. Electrophoresis 2009, 30, 249-261) by reviewing pertinent literature in the period extending from early 2008 to the present. Similar to the previous review article, the present one is concerned with proteomic sample preparation (e.g. depletion of high-abundance proteins, reduction of the protein dynamic concentration range, enrichment of a particular subproteome), and the subsequent chromatographic and/or electrophoretic prefractionation prior to peptide separation and identification by LC-MS/MS. This review article differs from the first version published in Electrophoresis 2009, 30, 249-261 by expanding on capturing/enriching subglycoproteomics by lectin affinity chromatography. Ninety-eight articles published in the period extending from early 2008 to the present have been reviewed. By no means is this review article exhaustive: its aim is to give a concise report on the latest developments in the field.
Collapse
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071
| |
Collapse
|
17
|
Depletion of highly abundant proteins in blood plasma by ammonium sulfate precipitation for 2D-PAGE analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3645-8. [DOI: 10.1016/j.jchromb.2011.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/02/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022]
|
18
|
Dudley E, Hässler F, Thome J. Profiling for novel proteomics biomarkers in neurodevelopmental disorders. Expert Rev Proteomics 2011; 8:127-36. [PMID: 21329432 DOI: 10.1586/epr.10.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein biomarker discovery from biological fluids, such as serum, has been widely applied to disorders such as cancer and has more recently also been utilized in neuro-psychiatric disorders with relatively clear biological causes, such as Alzheimer's disease and schizophrenia. The application of the associated technologies for the identification of protein biomarker signatures in neurodevelopmental disorders, such as autism spectrum disorder and attention deficit hyperactivity disorder, is comparatively less well established. The aim of this article is to provide an overview of the various protocols available for such analysis, discuss reports in which these techniques have been previously applied in biomarker discovery/validation in neurodevelopmental disorders, and consider the future development of this area of research.
Collapse
Affiliation(s)
- Ed Dudley
- Institute of Mass Spectrometry, School of Medicine, Swansea University, Swansea, UK
| | | | | |
Collapse
|
19
|
Surface plasmon resonance in doping analysis. Anal Bioanal Chem 2011; 401:389-403. [PMID: 21448606 DOI: 10.1007/s00216-011-4830-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Doping analysis relies on the determination of prohibited substances that should not be present in the body of an athlete or that should be below a threshold value. In the case of xenobiotics their mere presence is sufficient to establish a doping offence. However, in the case of human biotics the analytical method faces the difficulty of distinguishing between endogenous and exogenous origin. For this purpose ingenious strategies have been implemented, often aided by state-of-the-art technological advancements such as mass spectrometry in all its possible forms. For larger molecules, i.e. protein hormones, the innate structural complexity, the heterogeneous nature, and the extremely low levels in biological fluids have rendered the analytical procedures heavily dependent of immunological approaches. Although approaches these confer specificity and sensitivity to the applications, most rely on the use of two, or even three, antibody incubations with the consequent increment in assay variability. Moreover, the requirement for different antibodies that separately recognise different epitopes in screening and confirmation assays further contributes to differences encountered in either measurement. The development of analytical techniques to measure interactions directly, such as atomic force microscopy, quartz crystal microbalance or surface plasmon resonance, have greatly contributed to the accurate evaluation of molecular interactions in all fields of biology, and expectations are that this will only increase. Here, an overview is provided of surface plasmon resonance, and its particular value in application to the field of doping analysis.
Collapse
|