1
|
Bellamri M, Brandt K, Cammerrer K, Syeda T, Turesky RJ, Cannon JR. Nuclear DNA and Mitochondrial Damage of the Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine in Human Neuroblastoma Cells. Chem Res Toxicol 2023; 36:1361-1373. [PMID: 37421305 PMCID: PMC10626466 DOI: 10.1021/acs.chemrestox.3c00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Animal fat and iron-rich diets are risk factors for Parkinson's disease (PD). The heterocyclic aromatic amines (HAAs) harman and norharman are neurotoxicants formed in many foods and beverages, including cooked meats, suggesting a role for red meat in PD. The structurally related carcinogenic HAAs 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) also form in cooked meats. We investigated the cytotoxicity, DNA-damaging potential, and mitochondrial damage of HAAs and their genotoxic HONH-HAA metabolites in galactose-dependent SH-SY5Y cells, a human neuroblastoma cell line relevant for PD-related neurotoxicity. All HAAs and HONH-HAAs induced weak toxicity except HONH-PhIP, which was 1000-fold more potent than the other chemicals. HONH-PhIP DNA adduct formation occurred at 300-fold higher levels than adducts formed with HONH-MeIQx and HONH-AαC, assuming similar cellular uptake rates. PhIP-DNA adduct levels occurred at concentrations as low as 1 nM and were threefold or higher and more persistent in mitochondrial DNA than nuclear DNA. N-Acetyltransferases (NATs), sulfotransferases, and kinases catalyzed PhIP-DNA binding and converted HONH-PhIP to highly reactive ester intermediates. DNA binding assays with cytosolic, mitochondrial, and nuclear fractions of SH-SY5Y fortified with cofactors revealed that cytosolic AcCoA-dependent enzymes, including NAT1, mainly carried out HONH-PhIP bioactivation to form N-acetoxy-PhIP, which binds to DNA. Furthermore, HONH-PHIP and N-acetoxy-PhIP inhibited mitochondrial complex-I, -II, and -III activities in isolated SH-SY5Y mitochondria. Mitochondrial respiratory chain complex dysfunction and DNA damage are major mechanisms in PD pathogenesis. Our data support the possible role of PhIP in PD etiology.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Kyle Brandt
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Kari Cammerrer
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Tauqeerunnisa Syeda
- School of Health Sciences, Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Lawana V, Um SY, Rochet JC, Turesky RJ, Shannahan JH, Cannon JR. Neuromelanin Modulates Heterocyclic Aromatic Amine-Induced Dopaminergic Neurotoxicity. Toxicol Sci 2021; 173:171-188. [PMID: 31562763 DOI: 10.1093/toxsci/kfz210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are mutagens and potential human carcinogens. Our group and others have demonstrated that HAAs may also produce selective dopaminergic neurotoxicity, potentially relevant to Parkinson's disease (PD). The goal of this study was to elucidate mechanisms of HAA-induced neurotoxicity through examining a translational biochemical weakness of common PD models. Neuromelanin is a pigmented byproduct of dopamine metabolism that has been debated as being both neurotoxic and neuroprotective in PD. Importantly, neuromelanin is known to bind and potentially release dopaminergic neurotoxicants, including HAAs (eg, β-carbolines such as harmane). Binding of other HAA subclasses (ie, aminoimidazoaazarenes) to neuromelanin has not been investigated, nor has a specific role for neuromelanin in mediating HAA-induced neurotoxicity been examined. Thus, we investigated the role of neuromelanin in modulating HAA-induced neurotoxicity. We characterized melanin from Sepia officinalis and synthetic dopamine melanin, proposed neuromelanin analogs with similar biophysical properties. Using a cell-free assay, we demonstrated strong binding of harmane and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to neuromelanin analogs. To increase cellular neuromelanin, we transfected SH-SY5Y neuroblastoma cells with tyrosinase. Relative to controls, tyrosinase-expressing cells exhibited increased neuromelanin levels, cellular HAA uptake, cell toxicity, and oxidative damage. Given that typical cellular and rodent PD models form far lower neuromelanin levels than humans, there is a critical translational weakness in assessing HAA-neurotoxicity. The primary impacts of these results are identification of a potential mechanism by which HAAs accumulate in catecholaminergic neurons and support for the need to conduct neurotoxicity studies in systems forming neuromelanin.
Collapse
Affiliation(s)
- Vivek Lawana
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| | | | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Robert J Turesky
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Jason R Cannon
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| |
Collapse
|
4
|
Retmana IA, Beijnen JH, Sparidans RW. Chromatographic bioanalytical assays for targeted covalent kinase inhibitors and their metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1162:122466. [PMID: 33316750 DOI: 10.1016/j.jchromb.2020.122466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Deriving from targeted kinase inhibitors (TKIs), targeted covalent kinase inhibitors (TCKIs) are a new class of TKIs that are covalently bound to their target residue of kinase receptors. Currently, there are many new TCKIs under clinical development besides afatinib, ibrutinib, osimertinib, neratinib, acalabrutinib, dacomitinib, and zanubrutinib that are already approved by the FDA. Subsequently, there is an increasing demand for bioanalytical methods to qualitatively and quantitively investigate those compounds, leading to a number of papers reporting the development, validation, and use of bioanalytical methods for TCKIs. Most publications describe the technological set up of analytical methods that allow quantification of TCKIs in various biomatrices such as plasma, cerebrospinal fluid, urine, tissue, and liver microsomes. In addition, the identification of metabolites and biotransformation pathways of new TCKIs has gained more interest in recent years. We provide an overview of bioanalytical methods of this new class of TCKIs. The included issues are sample pretreatment, chromatographic separation, detection, and method validation. In the scope of bioanalysis of TCKIs, protein precipitation is mostly applied to treat the biological matrices sample. Liquid chromatographic in reversed-phase mode (RPLC) and mass detection with triple quadrupole (QqQ) are the most often utilized separation and quantitative detection modes, respectively. There may be a possibility of increased use of the high-resolution mass spectrometry (HRMS) for qualitative investigation purposes in the future. We also found that US FDA and EMA guidelines are the most common guidelines employed as validation framework for the bioanalytical methods of TCKIs.
Collapse
Affiliation(s)
- Irene A Retmana
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Jos H Beijnen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Syeda T, Foguth RM, Llewellyn E, Cannon JR. PhIP exposure in rodents produces neuropathology potentially relevant to Alzheimer's disease. Toxicology 2020; 437:152436. [PMID: 32169473 PMCID: PMC7218929 DOI: 10.1016/j.tox.2020.152436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a public health crisis due to debilitating cognitive symptoms and lack of curative treatments, in the context of increasing prevalence. Thus, it is critical to identify modifiable risk factors. High levels of meat consumption may increase AD risk. Many toxins are formed during meat cooking such as heterocyclic aromatic amines (HAAs). Our prior studies have shown that HAAs produce dopaminergic neurotoxicity. Given the mechanistic and pathological overlap between AD and dopaminergic disorders we investigated whether exposure to 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a prevalent dietary HAA formed during high-temperature meat cooking, may produce AD-relevant neurotoxicity. Here, C57BL/6 mice were treated with 100 or 200 mg/kg PhIP for 8 h or 75 mg/kg for 4 weeks and 16 weeks. PhIP exposure for 8 h produced oxidative damage, and AD-relevant alterations in hippocampal synaptic proteins, Amyloid-beta precursor protein (APP), and β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). PhIP exposure for 4 weeks resulted in an increase in BACE1. PhIP exposure for 16 weeks resulted in increased hippocampal oxidative damage, APP, BACE1, Aβ aggregation, and tau phosphorylation. Quantification of intracellular nitrotyrosine revealed oxidative damage in cholinergic neurons after 8 h, 4 weeks and 16 weeks of PhIP exposure. Our study demonstrates that increase in oxidative damage, APP and BACE1 might be a possible mechanism by which PhIP promotes Aβ aggregation. Given many patients with AD or PD exhibit neuropathological overlap, our study suggests that HAA exposure should be further studied for roles in mediating pathogenic overlap.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Rachel M Foguth
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Emily Llewellyn
- Summer Research Opportunities Program, Purdue, University, West Lafayette, IN, 47907, United States; Department of Biology, Utah Valley University, Orem, Utah, 84058, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
6
|
ABC transporters Mdr1a/1b, Bcrp1, Mrp2 and Mrp3 determine the sensitivity to PhIP/DSS-induced colon carcinogenesis and inflammation. Arch Toxicol 2019; 93:775-790. [DOI: 10.1007/s00204-019-02394-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
|
7
|
Cruz-Hernandez A, Agim ZS, Montenegro PC, McCabe GP, Rochet JC, Cannon JR. Selective dopaminergic neurotoxicity of three heterocyclic amine subclasses in primary rat midbrain neurons. Neurotoxicology 2018; 65:68-84. [PMID: 29408373 PMCID: PMC6015749 DOI: 10.1016/j.neuro.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/21/2017] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
Heterocyclic amines (HCAs) are primarily produced during high temperature meat cooking. These compounds have been intensively investigated as mutagens and carcinogens. However, converging data suggest that HCAs may also be neurotoxic and potentially relevant to neurodegenerative diseases such as Parkinson's disease (PD). The identification of new potential etiological factors is important because most PD cases are sporadic. Our group previously showed that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was selectively neurotoxic to dopaminergic neurons. However, PhIP is one of many HCAs, a class of compounds that exhibits wide structural variability. The goal of this study was to determine the neurotoxicity of the most prevalent and best studied HCAs from three subclasses: aminoimidazoaazarenes (AIA), α-carbolines, and β-carbolines. Using E17 rat primary midbrain cultures, we tested dopaminergic and non-dopaminergic neurotoxicity elicited by the following compounds: 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), PhIP, 1-methyl-9H-pyrido[3,4-b]indole (harmane), 9H-pyrido[3,4-b]indole (norharmane) and 2-amino-9H-pyrido[2,3-b]indole (AαC) at concentrations ranging from 100 nM-5 μM. All tested HCAs were selectively neurotoxic, though the dose required to elicit selective loss of dopaminergic neurons or decreases in dopaminergic neurite length was compound specific. Non-dopaminergic neurons were unaffected at all tested doses. The sensitivity (determined by threshold dose required to elicit selective neurotoxicity) appears to be unrelated to published mutagenic potency. Both AIA and α/β-carbolines produced oxidative damage, which was magnified in dopaminergic neurons vs. non-dopaminergic neurons as further evidence of selective neurotoxicity. These studies are expected to prompt clinical and mechanistic studies on the potential role of HCA exposure in PD.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States.
| | - Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States.
| | - Paola C Montenegro
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, United States.
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
8
|
Agim ZS, Cannon JR. Alterations in the nigrostriatal dopamine system after acute systemic PhIP exposure. Toxicol Lett 2018; 287:31-41. [PMID: 29378243 DOI: 10.1016/j.toxlet.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 11/30/2022]
Abstract
Heterocyclic amines (HCAs) are primarily formed during cooking of meat at high temperature. HCAs have been extensively studied as mutagens and possible carcinogens. Emerging data suggest that HCAs are neurotoxic and may be relevant to Parkinson's disease (PD) etiology. However, the majority of HCAs have not been evaluated for in vivo neurotoxicity. Here, we investigated acute in vivo neurotoxicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is the most prevalent genotoxin in many types of meats. Adult, male Sprague-Dawley rats were subjected to acute, systemic PhIP at doses and time-points that have been extensively utilized in cancer studies (100 and 200 mg/kg for 8, 24 h) and evaluated for changes in dopaminergic, serotoninergic, GABAergic, and glutamatergic neurotransmission. PhIP exposure resulted in decreased striatal dopamine metabolite levels and dopamine turnover in the absence of changes to vesicular monoamine transporter 2 levels; other neurotransmitter systems were unaffected. Quantification of intracellular nitrotyrosine revealed higher levels of oxidative damage in dopaminergic neurons in the substantia nigra after PhIP exposure, while other neuronal populations were less sensitive. These changes occurred in the absence of an overt lesion to the nigrostriatal dopamine system. Collectively, our study suggests that acute PhIP treatment in vivo targets the nigrostriatal dopaminergic system and that PhIP should be further examined in chronic, low-dose studies for PD relevance.
Collapse
Affiliation(s)
- Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, United States.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
9
|
Surrogate matrix: opportunities and challenges for tissue sample analysis. Bioanalysis 2015; 7:2419-2433. [DOI: 10.4155/bio.15.161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Often there is limited availability of matching tissue matrix and/or the analyte may occur endogenously in the target tissue. Surrogate matrix provides an option for quantitation of drug, metabolite(s) and biomarker(s) in these circumstances. However, the use of a surrogate matrix also presents challenges. This paper summarizes and discusses the challenges of selecting a proper surrogate, validating the suitability of the surrogate and establishing a surrogate tissue method using the fit-for-purpose approach. This paper also systematically reviews the current practices for evaluating key parameters of a surrogate tissue assay, including sensitivity, specificity, selectivity, interference, precision, accuracy, recovery, matrix effects and stability. Considerations and suggestions are provided for dealing with such challenges during method establishment and tissue sample analysis.
Collapse
|
10
|
Dietary factors in the etiology of Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:672838. [PMID: 25688361 PMCID: PMC4320877 DOI: 10.1155/2015/672838] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The majority of cases do not arise from purely genetic factors, implicating an important role of environmental factors in disease pathogenesis. Well-established environmental toxins important in PD include pesticides, herbicides, and heavy metals. However, many toxicants linked to PD and used in animal models are rarely encountered. In this context, other factors such as dietary components may represent daily exposures and have gained attention as disease modifiers. Several in vitro, in vivo, and human epidemiological studies have found a variety of dietary factors that modify PD risk. Here, we critically review findings on association between dietary factors, including vitamins, flavonoids, calorie intake, caffeine, alcohol, and metals consumed via food and fatty acids and PD. We have also discussed key data on heterocyclic amines that are produced in high-temperature cooked meat, which is a new emerging field in the assessment of dietary factors in neurological diseases. While more research is clearly needed, significant evidence exists that specific dietary factors can modify PD risk.
Collapse
|
11
|
Griggs AM, Agim ZS, Mishra VR, Tambe MA, Director-Myska AE, Turteltaub KW, McCabe GP, Rochet JC, Cannon JR. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is selectively toxic to primary dopaminergic neurons in vitro. Toxicol Sci 2014; 140:179-89. [PMID: 24718704 DOI: 10.1093/toxsci/kfu060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4'-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4'-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress.
Collapse
Affiliation(s)
- Amy M Griggs
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907 Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907 Cook MED Institute, West Lafayette, Indiana 47906
| | - Zeynep S Agim
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Vartika R Mishra
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Mitali A Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Alison E Director-Myska
- Chemical/Biological Technologies, Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060
| | - Kenneth W Turteltaub
- Biosciences & Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94551
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, Indiana 47907
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
12
|
Vlaming MLH, Teunissen SF, van de Steeg E, van Esch A, Wagenaar E, Brunsveld L, de Greef TFA, Rosing H, Schellens JHM, Beijnen JH, Schinkel AH. Bcrp1;Mdr1a/b;Mrp2 combination knockout mice: altered disposition of the dietary carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and its genotoxic metabolites. Mol Pharmacol 2014; 85:520-30. [PMID: 24334255 DOI: 10.1124/mol.113.088823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The multidrug transporters breast cancer resistance protein (BCRP), multidrug-resistance protein 1 (MDR1), and multidrug-resistance-associated protein (MRP) 2 and 3 eliminate toxic compounds from tissues and the body and affect the pharmacokinetics of many drugs and other potentially toxic compounds. The food-derived carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) is transported by BCRP, MDR1, and MRP2. To investigate the overlapping functions of Bcrp1, Mdr1a/b, and Mrp2 in vivo, we generated Bcrp1;Mdr1a/b;Mrp2(-/-) mice, which are viable and fertile. These mice, together with Bcrp1;Mrp2;Mrp3(-/-) mice, were used to study the effects of the multidrug transporters on the pharmacokinetics of PhIP and its metabolites. Thirty minutes after oral or intravenous administration of PhIP (1 mg/kg), the PhIP levels in the small intestine were reduced 4- to 6-fold in Bcrp1;Mdr1a/b;Mrp2(-/) (-) and Bcrp1;Mrp2;Mrp3(-/-) mice compared with wild-type mice. Fecal excretion of PhIP was reduced 8- to 20-fold in knockouts. Biliary PhIP excretion was reduced 41-fold in Bcrp1;Mdr1a/b;Mrp2(-/-) mice. Biliary and small intestine levels of PhIP metabolites were reduced in Bcrp1;Mrp2-deficient mice. Furthermore, in both knockout strains, kidney levels and urinary excretion of genotoxic PhIP-metabolites were significantly increased, suggesting that reduced biliary excretion of PhIP and PhIP metabolites leads to increased urinary excretion of these metabolites and increased systemic exposure. Bcrp1 and Mdr1a limited PhIP brain accumulation. In Bcrp1;Mrp2;Mrp3(-/-), but not Bcrp1;Mdr1a/b;Mrp(-/-) mice, the carcinogenic metabolites N2-OH-PhIP (2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and PhIP-5-sulfate (a genotoxicity marker) accumulated in liver tissue, indicating that Mrp3 is involved in the sinusoidal secretion of these compounds. We conclude that Bcrp1, Mdr1a/b, Mrp2, and Mrp3 significantly affect tissue disposition and biliary and fecal elimination of PhIP and its carcinogenic metabolites and may affect PhIP-induced carcinogenesis as a result.
Collapse
Affiliation(s)
- Maria L H Vlaming
- Divisions of Molecular Oncology (M.L.H.V., E.v.d.S., A.v.E., E.W., A.H.S.) and Clinical Pharmacology (J.H.M.S.), The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Pharmacy & Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands (S.F.T., H.R., J.H.B.); Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (L.B., T.F.A.d.G.); and Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands (J.H.M.S., J.H.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Teunissen SF, Rosing H, Brunsveld L, de Greef TFA, Durmus S, Schellens JHM, Schinkel AH, Beijnen JH. Analysis of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and Its Phase I and Phase II Metabolites in Mouse Urine Using LC–UV–MS–MS. Chromatographia 2011. [DOI: 10.1007/s10337-011-2068-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|