1
|
Martínez-Beamonte R, Barranquero C, Gascón S, Mariño J, Arnal C, Estopañán G, Rodriguez-Yoldi MJ, Surra JC, Martín-Belloso O, Odriozola-Serrano I, Orman I, Segovia JC, Osada J, Navarro MÁ. Effect of virgin olive oil as spreadable preparation on atherosclerosis compared to dairy butter in Apoe-deficient mice. J Physiol Biochem 2024; 80:671-683. [PMID: 38787512 PMCID: PMC11502577 DOI: 10.1007/s13105-024-01029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Olive oil is the main source of lipid energy in the Mediterranean diet and there is strong evidence of its health benefits. The effect of extra virgin olive oil (EVOO) in the form of a preparation of spreadable virgin olive oil (S-VO) on the progression of atheroma plaques was investigated in Apoe-deficient mice, a model of accelerated atherosclerosis. METHODS Two isocaloric Western purified diets containing 20% fat, either as S-VO or as dairy butter, were used to feed 28 males and 16 females of two-month-old Apoe-deficient mice for 12 weeks. S-VO was prepared by blending more than 75% virgin olive oil with other vegetal natural fat to obtain a solid fat. Plasma total cholesterol, triglycerides and HDL cholesterol were measured. Hepatic lipid droplets were analyzed. Areas of atherosclerotic aortic lesions were quantified in cross-sectional images of the proximal aorta and en face analysis of the whole aorta. RESULTS Total plasma cholesterol was increased in mice on the butter-supplemented diet in both female and male mice compared to S-VO, and the ratio of TC/HDL-cholesterol was significantly lower in S-VO than in the butter diet, although only in males, and no differences in plasma triglycerides were observed. No significant differences in hepatic lipid droplets were observed between diets in either sex. Aortic lesion areas were significantly higher in mice consuming the butter versus the S-VO diet in both sexes. CONCLUSION Extra virgin olive oil prepared in spreadable form maintained the delay in atheroma plaque progression compared to butter.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain.
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain.
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Oliberus, Campus Iberus, Zaragoza, Spain.
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain
- Illes Balears, Instituto de Medicina Legal de Las Islas Baleares, E-07003, Palma, Spain
| | - Juan Mariño
- Las Arbequinas de Rosalía, Monesma de San Juan, 22415, Huesca, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Saragossa, Spain
- Oliberus, Campus Iberus, Zaragoza, Spain
| | - Gloria Estopañán
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Saragossa, Spain
| | - María Jesús Rodriguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Farmacología , Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013, Saragossa, Spain
- Oliberus, Campus Iberus, Zaragoza, Spain
| | - Joaquín Carlos Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Instituto de Investigación Sanitaria de Aragón, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 50013, Saragossa, Spain
- Oliberus, Campus Iberus, Zaragoza, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- Agrotecnio-CERCA Center, Av. Rovira Roure, 191, 25198, Lleida, Spain
- Alimentos Funcionales, Campus Iberus, Zaragoza, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- Agrotecnio-CERCA Center, Av. Rovira Roure, 191, 25198, Lleida, Spain
- Alimentos Funcionales, Campus Iberus, Zaragoza, Spain
| | - Israel Orman
- Cell Technology Division. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIEMAT/CIBERER, Madrid, Spain
- Advanced Cell Therapy Unit., Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Jose Carlos Segovia
- Cell Technology Division. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIEMAT/CIBERER, Madrid, Spain
- Advanced Cell Therapy Unit., Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain.
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain.
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - María Ángeles Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Oliberus, Campus Iberus, Zaragoza, Spain
| |
Collapse
|
2
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|
4
|
Ji Y, Leymarie N, Haeussler DJ, Bachschmid MM, Costello CE, Lin C. Direct detection of S-palmitoylation by mass spectrometry. Anal Chem 2013; 85:11952-9. [PMID: 24279456 DOI: 10.1021/ac402850s] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Direct detection and quantification of protein/peptide palmitoylation by mass spectrometry (MS) is a challenging task because of the tendency of palmitoyl loss during sample preparation and tandem MS analysis. In addition, the large difference in hydrophobicity between the palmitoyl peptides and their unmodified counterparts could prevent their simultaneous analysis in a single liquid chromatography-MS experiment. Here, the stability of palmitoylation in several model palmitoyl peptides under different incubation and fragmentation conditions was investigated. It was found that the usual trypsin digestion protocol using dithiothreitol as the reducing agent in ammonium bicarbonate buffer could result in significant palmitoyl losses. Instead, it is recommended that sample preparation be performed in neutral tris buffer with tris(2-carboxyethyl)phosphine as the reducing agent, conditions under which palmitoylation was largely preserved. For tandem MS analysis, collision-induced dissociation often led to facile palmitoyl loss, and electron capture dissociation frequently produced secondary side-chain losses remote from the backbone cleavage site, thus discouraging their use for accurate palmitoylation site determination. In contrast, the palmitoyl group was mostly preserved during electron transfer dissociation, which produced extensive inter-residue cleavage coverage, making it the ideal fragmentation method for palmitoyl peptide analysis. Finally, derivatization of the unmodified peptides with a perfluoroalkyl tag, N-[(3-perfluorooctyl)propyl] iodoacetamide, significantly increased their hydrophobicity, allowing them to be simultaneously analyzed with palmitoyl peptides for relative quantification of palmitoylation.
Collapse
Affiliation(s)
- Yuhuan Ji
- Center for Biomedical Mass Spectrometry, ‡Department of Biochemistry, and §Department of Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | | | | | | | | | | |
Collapse
|
6
|
Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. JOURNAL OF AMINO ACIDS 2011; 2011:207691. [PMID: 22312457 PMCID: PMC3268018 DOI: 10.4061/2011/207691] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 01/08/2023]
Abstract
Posttranslational modifications (PTMs) modulate protein function in most eukaryotes and have a ubiquitous role in diverse range of cellular functions. Identification, characterization, and mapping of these modifications to specific amino acid residues on proteins are critical towards understanding their functional significance in a biological context. The interpretation of proteome data obtained from the high-throughput methods cannot be deciphered unambiguously without a priori knowledge of protein modifications. An in-depth understanding of protein PTMs is important not only for gaining a perception of a wide array of cellular functions but also towards developing drug therapies for many life-threatening diseases like cancer and neurodegenerative disorders. Many of the protein modifications like ubiquitination play a decisive role in various drug response(s) and eventually in disease prognosis. Thus, many commonly observed PTMs are routinely tracked as disease markers while many others are used as molecular targets for developing target-specific therapies. In this paper, we summarize some of the major, well-studied protein alterations and highlight their importance in various chronic diseases and normal development. In addition, other promising minor modifications such as SUMOylation, observed to impact cellular dynamics as well as disease pathology, are mentioned briefly.
Collapse
Affiliation(s)
- Tejaswita M Karve
- Department of Biochemistry, Cellular & Molecular Biology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington DC 20057, USA
| | | |
Collapse
|