1
|
Maliszewska O, Roszkowska A, Lipiński M, Treder N, Olędzka I, Kowalski P, Bączek T, Bień E, Krawczyk MA, Plenis A. Profiling Docetaxel in Plasma and Urine Samples from a Pediatric Cancer Patient Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Combined with LC-MS/MS. Pharmaceutics 2023; 15:pharmaceutics15041255. [PMID: 37111740 PMCID: PMC10143245 DOI: 10.3390/pharmaceutics15041255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, therapeutic drug monitoring (TDM) has been applied in docetaxel (DOC)-based anticancer therapy to precisely control various pharmacokinetic parameters, including the concentration of DOC in biofluids (e.g., plasma or urine), its clearance, and its area under the curve (AUC). The ability to determine these values and to monitor DOC levels in biological samples depends on the availability of precise and accurate analytical methods that both enable fast and sensitive analysis and can be implemented in routine clinical practice. This paper presents a new method for isolating DOC from plasma and urine samples based on the coupling of microextraction and advanced liquid chromatography with tandem mass spectrometry (LC-MS/MS). In the proposed method, biological samples are prepared via ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) using ethanol (EtOH) and chloroform (Chl) as the desorption and extraction solvents, respectively. The proposed protocol was fully validated according to the Food and Drug Administration (FDA) and the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) requirements. The developed method was then applied to monitor the DOC profile in plasma and urine samples collected from a pediatric patient suffering from cardiac angiosarcoma (AS) with metastasis to lungs and mediastinal lymph nodes, who was receiving treatment with DOC at a dose of 30 mg/m2 body surface area. Due to the rarity of this disease, TDM was carried out to determine the exact levels of DOC at particular time points to ascertain which levels were conducive to maximizing the treatment's effectiveness while minimizing the drug's toxicity. To this end, the concentration-time profiles of DOC in the plasma and urine samples were determined, and the levels of DOC at specific time intervals up to 3 days after administration were measured. The results showed that DOC was present at higher concentrations in the plasma than in the urine samples, which is due to the fact that this drug is primarily metabolized in the liver and then eliminated with the bile. The obtained data provided information about the pharmacokinetic profile of DOC in pediatric patients with cardiac AS, which enabled the dose to be adjusted to achieve the optimal therapeutic regimen. The findings of this work demonstrate that the optimized method can be applied for the routine monitoring of DOC levels in plasma and urine samples as a part of pharmacotherapy in oncological patients.
Collapse
Affiliation(s)
- Olga Maliszewska
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
| | - Marcin Lipiński
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland
| | - Natalia Treder
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
| | - Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
| | - Piotr Kowalski
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
| | - Ewa Bień
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-211 Gdańsk, Poland
| | - Małgorzata Anna Krawczyk
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-211 Gdańsk, Poland
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdańsk, Poland
| |
Collapse
|
2
|
Yang J, Li X, Li W, Xi X, Du Q, Pan F, Liu S. An improved LC-MS/MS method for determination of docetaxel and its application to population pharmacokinetic study in Chinese cancer patients. Biomed Chromatogr 2020; 34:e4857. [PMID: 32307730 DOI: 10.1002/bmc.4857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/11/2022]
Abstract
Because of its unpredictable side effects and efficacy, the anticancer drug docetaxel (DTX) requires improved characterisation of its pharmacokinetic profiles through population pharmacokinetic studies. A sensitive and rugged LC-MS/MS method for the detection of DTX in human plasma was developed and optimised using paclitaxel as an internal standard (IS). The plasma samples underwent rapid extraction using hybrid solid-phase extraction-protein precipitation. The analyte and IS were separated with an isocratic system on a Zorbax Eclipse Plus C18 column using water containing 0.05% acetic acid along with 20 μM of sodium acetate and methanol (30/70, v/v) as the mobile phase. Quantification was performed using a triple quadrupole mass spectrometer through multiple reaction monitoring in positive mode, using the m/z 830.3 → 548.8 and m/z 876.3 → 307.7 transitions for DTX and paclitaxel, respectively. The range of the calibration curve was 1-500 ng/mL for DTX, and the linear correlation coefficient was >0.99. The accuracies ranged from -4.6 to 4.2%, and the precision was no higher than 7.0% for the analytes. No significant matrix effect was observed. Both DTX and the IS showed considerable recovery. This method was finally applied to the establishment of a population pharmacokinetic model to optimise the clinical use of DTX.
Collapse
Affiliation(s)
- Jia Yang
- Department of Pharmacy, The Third Affiliated Hospital (Gener Hospital), Chongqing Medical University, Chongqing, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital (Gener Hospital), Chongqing Medical University, Chongqing, China
| | - Xin Xi
- Department of Pharmacy, The Third Affiliated Hospital (Gener Hospital), Chongqing Medical University, Chongqing, China
| | - Qian Du
- Department of Pharmacy, The Third Affiliated Hospital (Gener Hospital), Chongqing Medical University, Chongqing, China
| | - Feng Pan
- Department of Biomedical Analysis and Testing Center, Medical University of the Army Force, Chongqing, China
| | - Songqing Liu
- Department of Pharmacy, The Third Affiliated Hospital (Gener Hospital), Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Joseph JF, Gronbach L, García-Miller J, Cruz LM, Wuest B, Keilholz U, Zoschke C, Parr MK. Automated Real-Time Tumor Pharmacokinetic Profiling in 3D Models: A Novel Approach for Personalized Medicine. Pharmaceutics 2020; 12:E413. [PMID: 32366029 PMCID: PMC7284432 DOI: 10.3390/pharmaceutics12050413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer treatment often lacks individual dose adaptation, contributing to insufficient efficacy and severe side effects. Thus, personalized approaches are highly desired. Although various analytical techniques are established to determine drug levels in preclinical models, they are limited in the automated real-time acquisition of pharmacokinetic profiles. Therefore, an online UHPLC-MS/MS system for quantitation of drug concentrations within 3D tumor oral mucosa models was generated. The integration of sampling ports into the 3D tumor models and their culture inside the autosampler allowed for real-time pharmacokinetic profiling without additional sample preparation. Docetaxel quantitation was validated according to EMA guidelines. The tumor models recapitulated the morphology of head-and-neck cancer and the dose-dependent tumor reduction following docetaxel treatment. The administration of four different docetaxel concentrations resulted in comparable courses of concentration versus time curves for 96 h. In conclusion, this proof-of-concept study demonstrated the feasibility of real-time monitoring of drug levels in 3D tumor models without any sample preparation. The inclusion of patient-derived tumor cells into our models may further optimize the pharmacotherapy of cancer patients by efficiently delivering personalized data of the target tissue.
Collapse
Affiliation(s)
- Jan F. Joseph
- Core Facility BioSupraMol, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Leonie Gronbach
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Jill García-Miller
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Leticia M. Cruz
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | | | - Ulrich Keilholz
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Comprehensive Cancer Center, 10117 Berlin, Germany;
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Maria K. Parr
- Freie Universität Berlin, Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry), 14195 Berlin, Germany
| |
Collapse
|
4
|
Bhattacharya S, Sarkar P, Khanam J, Pal TK. Simultaneous determination of paclitaxel and lansoprazole in rat plasma by LC–MS/MS method and its application to a preclinical pharmacokinetic study of investigational PTX-LAN-PLGA nanoformulation. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:331-339. [DOI: 10.1016/j.jchromb.2019.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
|
5
|
Saka C. Chromatographic Methods for Determination of Drugs Used in Prostate Cancer in Biological and Pharmacological Samples. Crit Rev Anal Chem 2018; 49:78-99. [DOI: 10.1080/10408347.2018.1487776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Cafer Saka
- School of Healthy, Siirt University, Siirt, Turkey
| |
Collapse
|
6
|
Raymundo S, Muller V, Andriguetti N, Tegner M, Artmann A, Kluck H, Franzoi M, Vilela R, Schwartsmann G, Linden R, Antunes M. Determination of docetaxel in dried blood spots by LC–MS/MS: Method development, validation and clinical application. J Pharm Biomed Anal 2018; 157:84-91. [DOI: 10.1016/j.jpba.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/05/2023]
|
7
|
Gao S, Tao Z, Zhou J, Wang Z, Yun Y, Li M, Zhang F, Chen W, Miao Y. One-Step Solid Extraction for Simultaneous Determination of Eleven Commonly Used Anticancer Drugs and One Active Metabolite in Human Plasma by HPLC-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:7967694. [PMID: 30046507 PMCID: PMC6036832 DOI: 10.1155/2018/7967694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Therapeutic drug monitoring for anticancer drugs could timely reflect in vivo drug exposure, and it was a powerful tool for adjusting and maintaining drug concentration into a reasonable range, so that an enhanced efficacy and declined adverse reactions could be achieved. A liquid chromatography-tandem mass spectrometry method had been developed and fully validated for simultaneous determination of paclitaxel, docetaxel, vinblastine, vinorelbine, pemetrexed, carboplatin, etoposide, cyclophosphamide, ifosfamide, gemcitabine, irinotecan, and SN-38 (an active metabolite of irinotecan) in human plasma from cancer patients after intravenous drip of chemotherapy drugs. One-step solid-phase extraction was successfully applied using an Ostro sample preparation 96-well plate for plasma samples pretreated with acetonitrile containing 0.1% formic acid. Chromatographic separation was achieved on an Atlantis T3-C18 column (2.1 × 100 mm, 3.0 μm) with gradient elution using a mobile phase consisting of acetonitrile and 10 mM ammonium acetate plus 0.1% formic acid in water, and the flow rate was 0.25 mL/min. The Agilent G6410A triple quadrupole liquid chromatography-mass spectrometry system was operated under the multiple reaction monitoring mode with an electrospray ionization in the positive mode. Linear range was 25.0-2500.0 ng for paclitaxel, 10.0-1000.0 ng for docetaxel and SN-38, 100.0-10000.0 ng for vinorelbine and pemetrexed, 10.0-10000.0 ng for vinblastine and irinotecan, 1.0-1000.0 ng for cyclophosphamide and ifosfamide, 50.0-5000.0 ng for carboplatin, etoposide, and gemcitabine. Linearity coefficients of correlation were >0.99 for all analytes. The intraday and interday accuracy and precision of the method were within ±15.0% and less than 15%. The mean recovery and matrix effect as well as stability of all the analytes ranged from 56.2% to 98.9% and 85.2% to 101.3% as well as within ±15.0%. This robust and efficient method was successfully applied to implement therapeutic drug monitoring for cancer patients in clinical application.
Collapse
Affiliation(s)
- Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhengbo Tao
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, 155 Nan Jing Bei Street, Shenyang, Liaoning 110001, China
| | - Jingya Zhou
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yunlei Yun
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Mingming Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yejun Miao
- Department of Psychiatry, Ankang Hospital, Ningbo, Zhejiang 315000, China
| |
Collapse
|
8
|
da Silva GH, Fernandes MA, Trevizan LNF, de Lima FT, Eloy JO, Chorilli M. A Critical Review of Properties and Analytical Methods for the Determination of Docetaxel in Biological and Pharmaceutical Matrices. Crit Rev Anal Chem 2018; 48:517-527. [DOI: 10.1080/10408347.2018.1456315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gilmar Hanck da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Mariza Aires Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | | | - Felipe Tita de Lima
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Josimar O. Eloy
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| |
Collapse
|
9
|
Sheu MT, Wu CY, Su CY, Ho HO. Determination of total and unbound docetaxel in plasma by ultrafiltration and UPLC-MS/MS: application to pharmacokinetic studies. Sci Rep 2017; 7:14609. [PMID: 29097770 PMCID: PMC5668284 DOI: 10.1038/s41598-017-15176-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
A sensitive and specific liquid chromatographic/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantifying total and unbound docetaxel drug concentrations in plasma. Calibration curves for unbound and total docetaxel were linear over the respective ranges of 0.108~10.8 and 0.54~216 ng/mL. The intra- and interday assay accuracy and precision did not exceed 15%. The methods were validated to show the standard range linearity, sensitivity, selectivity, accuracy, precision, and stability of docetaxel in the matrices tested. In addition, this method is fast and simple with a short run time of 4.5 min and a small plasma sample volume (500 µL). The validated method was successfully applied to a pharmacokinetic study of a docetaxel micelle formulation in rat plasma after intravenous administration at a dose of 10 mg/kg. Docetaxel micelles slowly released their drug payload, and protein-bound, unbound, and micellar drug pools existed simultaneously. These various forms in plasma pools were also measured in the study. We confirmed that most of the docetaxel in plasma was micelle-associated (96.52% at 24 h and 83.14% at 72 h) after micellar docetaxel administration, as a result of sequestration of the drug in long-circulating micelles.
Collapse
Affiliation(s)
- Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chen-Yuan Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chia-Yu Su
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
10
|
Geng C, Li P, Chen X, Yuan G, Guo N, Liu H, Zhang R, Guo R. Comparison of the docetaxel concentration in human plasma measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a nanoparticle immunoassay and clinical applications of that assay. Biosci Trends 2017; 11:202-208. [PMID: 28420860 DOI: 10.5582/bst.2017.01029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To determine the feasibility of using a nanoparticle immunoassay for clinical therapeutic drug monitoring (TDM) of docetaxel concentrations, a sensitive and simple method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established to measure the docetaxel concentration in human plasma and the results of LC-MS/MS and the immunoassay were compared. Docetaxel and paclitaxel (the internal standard, or IS) in human plasma were extracted through protein precipitation, separated on a Diamonsil C18 column (150 mm × 4.6 mm, 5 μm), ionized with positive ions, and detected with LC-MS/MS in multi-reaction monitoring (MRM) mode. Plasma samples from 248 cancer patients were assayed with LC-MS/MS and a nanoparticle immunoassay. Data from the samples were analyzed with the statistical software SPSS and the software MedCalc. Results indicated that the calibration curve of the validated method of LC-MS/MS was linear over the range of 10-2,000 ng/mL, with an lowest limit of quantitation (LLOQ) of 10 ng/mL, and the intra- and inter- day precision and accuracy were both < ± 15%. Comparison of the two methods indicated that results of the LC-MS/MS were closely related to those of the nanoparticle immunoassay, with a correlation coefficient (R) of 0.965 and acceptable 95% confidence intervals (CI) of ‒ 231.7-331.1 ng/mL. Overall, the established method of LC-MC/MS and the nanoparticle immunoassay were both suitable for measurement of the docetaxel concentration in human plasma, and the immunoassay was far more cost-effective and better at clinical TDM of docetaxel in clinical practice.
Collapse
Affiliation(s)
- Chunmei Geng
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Pingli Li
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Xuwang Chen
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Guiyan Yuan
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Nan Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Huanjun Liu
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Rui Zhang
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| |
Collapse
|
11
|
Crotti S, Posocco B, Marangon E, Nitti D, Toffoli G, Agostini M. Mass spectrometry in the pharmacokinetic studies of anticancer natural products. MASS SPECTROMETRY REVIEWS 2017; 36:213-251. [PMID: 26280357 DOI: 10.1002/mas.21478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/29/2015] [Indexed: 05/08/2023]
Abstract
In the history of medicine, nature has represented the main source of medical products. Indeed, the therapeutic use of plants certainly goes back to the Sumerian and Hippocrates and nowadays nature still represents the major source for new drugs discovery. Moreover, in the cancer treatment, drugs are either natural compounds or have been developed from naturally occurring parent compounds firstly isolated from plants and microbes from terrestrial and marine environment. A critical element of an anticancer drug is represented by its severe toxicities and, after administration, the drug concentrations have to remain in an appropriate range to be effective. Anyway, the drug dosage defined during the clinical studies could be inappropriate for an individual patient due to differences in drug absorption, metabolism and excretion. For this reason, personalized medicine, based on therapeutic drug monitoring (TDM), represents one of most important challenges in cancer therapy. Mass spectrometry sensitivity, specificity and fastness lead to elect this technique as the Golden Standard for pharmacokinetics and drug metabolism studies therefore for TDM. This review focuses on the mass spectrometry-based methods developed for pharmacokinetic quantification in human plasma of anticancer drugs derived from natural sources and already used in clinical practice. Particular emphasis was placed both on the pre-analytical and analytical steps, such as: sample preparation procedures, sample size required by the analysis and the limit of quantification of drugs and metabolites to give some insights on the clinical practice applicability. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:213-251, 2017.
Collapse
Affiliation(s)
- Sara Crotti
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
- Istituto di Ricerca Pediatrica - Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Bianca Posocco
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Elena Marangon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Donato Nitti
- Surgical Clinic, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Via Nicolo Giustiniani 2, 35128, Padova, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Marco Agostini
- Istituto di Ricerca Pediatrica - Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
- Surgical Clinic, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Via Nicolo Giustiniani 2, 35128, Padova, Italy
| |
Collapse
|
12
|
Guichard N, Guillarme D, Bonnabry P, Fleury-Souverain S. Antineoplastic drugs and their analysis: a state of the art review. Analyst 2017; 142:2273-2321. [DOI: 10.1039/c7an00367f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We provide an overview of the analytical methods available for the quantification of antineoplastic drugs in pharmaceutical formulations, biological and environmental samples.
Collapse
Affiliation(s)
- Nicolas Guichard
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- Geneva
- Switzerland
| | - Pascal Bonnabry
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | | |
Collapse
|
13
|
Li D, Cao Z, Liao X, Yang P, Liu L. The development of a quantitative and qualitative method based on UHPLC-QTOF MS/MS for evaluation paclitaxel–tetrandrine interaction and its application to a pharmacokinetic study. Talanta 2016; 160:256-267. [DOI: 10.1016/j.talanta.2016.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 11/15/2022]
|
14
|
Chen Y, Chen J, Cheng Y, Luo L, Zheng P, Tong Y, Li Z. A lyophilized sterically stabilized liposome-containing docetaxel: in vitro and in vivo evaluation. J Liposome Res 2016; 27:64-73. [DOI: 10.3109/08982104.2016.1158185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yuchao Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Cheng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lihua Luo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pinjing Zheng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yidan Tong
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Measurement of total and free docetaxel concentration in human plasma by ultra-performance liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2016; 117:140-9. [DOI: 10.1016/j.jpba.2015.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/22/2022]
|
16
|
Zang Q, Liu Y, He J, Yue X, Zhang R, Wang R, Abliz Z. A sensitive and rapid HPLC–MS/MS method for the quantitative determination of trace amount of bromocriptine in small clinical prolactinoma tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 989:91-7. [DOI: 10.1016/j.jchromb.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/28/2015] [Accepted: 03/06/2015] [Indexed: 11/30/2022]
|
17
|
Kruve A, Rebane R, Kipper K, Oldekop ML, Evard H, Herodes K, Ravio P, Leito I. Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part I. Anal Chim Acta 2015; 870:29-44. [DOI: 10.1016/j.aca.2015.02.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 01/31/2015] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
|
18
|
Rafiei P, Michel D, Haddadi A. Application of a Rapid ESI-MS/MS Method for Quantitative Analysis of Docetaxel in Polymeric Matrices of PLGA and PLGA-PEG Nanoparticles through Direct Injection to Mass Spectrometer. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajac.2015.62015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Quantification of taxanes in biological matrices: a review of bioanalytical assays and recommendations for development of new assays. Bioanalysis 2014; 6:993-1010. [PMID: 24806907 DOI: 10.4155/bio.14.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the isolation of paclitaxel and its approval for the treatment of breast cancer, various taxanes and taxane formulations have been developed. To date, almost 100 bioanalytical assays have been published with the method development and optimization often extensively discussed by the authors. This Review presents an overview of assays published between January 1970 and September 2013 that described method development and validation of assays used to quantify taxanes in biological matrices such as plasma, urine, feces and tissue samples. For liquid chromatography assays, sample pretreatment, chromatographic separation and assay performance are compared. Since this Review discusses the limitations of previously developed liquid chromatography assays and gives recommendations for future assay development, it can be used as a reference for future development of liquid chromatography assays for the quantification of taxanes in various biological matrices to support preclinical and clinical studies.
Collapse
|
20
|
Luo LH, Zheng PJ, Nie H, Chen YC, Tong D, Chen J, Cheng Y. Pharmacokinetics and tissue distribution of docetaxel liposome mediated by a novel galactosylated cholesterol derivatives synthesized by lipase-catalyzed esterification in non-aqueous phase. Drug Deliv 2014; 23:1282-90. [DOI: 10.3109/10717544.2014.980525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Li-hua Luo
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pin-jing Zheng
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Nie
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-chao Chen
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Tong
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Chen
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Cheng
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Men L, Zhao Y, Lin H, Yang M, Liu H, Shao Y, Fan R, Tang X, Yu Z. Application of an LC‐MS/MS method to the pharmacokinetics of TM‐2, a potential antitumour agent, in rats. Drug Test Anal 2014; 7:544-9. [DOI: 10.1002/dta.1711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 07/14/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Men
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Yunli Zhao
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Hongli Lin
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Mingjing Yang
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Hui Liu
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Yanjie Shao
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Ronghua Fan
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Xing Tang
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Zhiguo Yu
- School of PharmacyShenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| |
Collapse
|
22
|
A UFLC–MS/MS method coupled with one-step protein precipitation for determination of docetaxel in rat plasma: Comparative pharmacokinetic study of modified nanostructured lipid carrier. J Pharm Biomed Anal 2013; 83:202-8. [DOI: 10.1016/j.jpba.2013.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 11/20/2022]
|
23
|
Du P, Li N, Wang H, Yang S, Song Y, Han X, Shi Y. Development and validation of a rapid and sensitive UPLC-MS/MS method for determination of total docetaxel from a lipid microsphere formulation in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 926:101-107. [PMID: 23567294 DOI: 10.1016/j.jchromb.2013.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
Docetaxel lipid microsphere (DT-LM), an intravenous lipid emulsion for docetaxel without Tween 80, has demonstrated significant advantage over other conventional docetaxel formulations with respect to keeping sustained release, reducing irritation or toxicity of drug, sterile for intravenous injection and presenting targeting. A rapid, sensitive and reproducible ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of total docetaxel from a lipid microsphere formulation in human plasma using paclitaxel as internal standard (IS) has been developed and validated. The analytes and IS were extracted from plasma by simple liquid-liquid extraction and separated on ACQUITY UPLC BEH C18 column at a flow rate of 0.3 ml/min using gradient elution mode. The total analytical time was only 2.5 min. Detection and quantitation were performed by electrospray ionization (ESI) in the positive ionization mode by multiple reaction monitoring (MRM) of the transitions at m/z 808.3→527.1 for docetaxel and 854.0→285.9 for IS. The assay was linear over the concentration range of 2-5000 ng/ml (r(2)>0.99) with the lower limit of quantification (LLOQ) of 2 ng/ml. The intra- and inter-day precision in terms of relative standard deviation (RSD%) was within 9% and accuracy in terms of relative error (RE%) was within 12%. The rapid, sensitive and reproducible UPLC-MS/MS method is now used to support clinical pharmacologic studies with DT-LM injection in patients with advanced cancer.
Collapse
Affiliation(s)
- Ping Du
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Target Drugs, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Marzinke MA, Breaud AR, Clarke W. The development and clinical validation of a turbulent-flow liquid chromatography–tandem mass spectrometric method for the rapid quantitation of docetaxel in serum. Clin Chim Acta 2013. [DOI: 10.1016/j.cca.2012.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Simultaneous online SPE-HPLC-MS/MS analysis of docetaxel, temsirolimus and sirolimus in whole blood and human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 921-922:35-42. [PMID: 23422405 DOI: 10.1016/j.jchromb.2013.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 11/22/2022]
Abstract
Docetaxel and temsirolimus are some of the most used drugs in a wide range of solid tumors. In preclinical studies, mTOR inhibitors such as temsirolimus have demonstrated synergistic cytotoxic effects with taxanes providing the rationale for combination studies. These anticancer agents exhibit a narrow therapeutic concentration range and due to their high inter- and intra-individual pharmacokinetic variability, therapeutic dose monitoring by highly sensitive methods as LC-MS/MS are important for clinical research. Therefore, the aim of this study was to develop and validate a sensitive, fast and convenient method for the simultaneous identification and quantification of docetaxel, temsirolimus and its main metabolite, sirolimus, using paclitaxel, another anticancer drug, as the internal standard. These analytes were quantified by an integrated online solid phase extraction-high performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS) system. Separation was performed on a Zorbax eclipse XDB-C8 (150mm×4.6mm, 5μm) column. The mass spectrometer tandem quadruple detector was equipped with jet stream electrospray ionization, monitored in multiple reactions monitoring (MRM) and operated in positive mode. A combination of protein precipitation with methanol/zinc sulphate (70:30) (v/v) and online SPE using a Zorbax eclipse plus C8 (12.5mm×4.6mm, 5μm) cartridge was used to extract the compounds. This method allows the use of the same reagents, sample treatment and analytical technique independently of whether the samples are whole blood or plasma. The method has been successfully validated and applied to real samples. It is a suitable method for dose adjustment and for evaluating potential drug interactions during combined treatments.
Collapse
|