1
|
Zhao Y, Hadavi D, Dijkgraaf I, Honing M. Coupling of surface plasmon resonance and mass spectrometry for molecular interaction studies in drug discovery. Drug Discov Today 2024; 29:104027. [PMID: 38762085 DOI: 10.1016/j.drudis.2024.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Various analytical technologies have been developed for the study of target-ligand interactions. The combination of these technologies gives pivotal information on the binding mechanism, kinetics, affinity, residence time, and changes in molecular structures. Mass spectrometry (MS) offers structural information, enabling the identification and quantification of target-ligand interactions. Surface plasmon resonance (SPR) provides kinetic information on target-ligand interaction in real time. The coupling of MS and SPR complements each other in the studies of target-ligand interactions. Over the last two decades, the capabilities and added values of SPR-MS have been reported. This review summarizes and highlights the benefits, applications, and potential for further research of the SPR-MS approach.
Collapse
Affiliation(s)
- Yuandi Zhao
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Maastricht University, Maastricht, the Netherlands
| | - Darya Hadavi
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Maastricht University, Maastricht, the Netherlands.
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, MUMC+, The Netherlands
| | - Maarten Honing
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Zhou W, Wang M, Zhang A, Huang D, Guo H, Shen G. Directional screening and identification of potential cytotoxic components from Achnatherum inebrians by a combination of surface palsmon resonance and chromatography. CHINESE HERBAL MEDICINES 2022. [DOI: 10.1016/j.chmed.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
3
|
Liu T, Long W, Hu Z, Guan Y, Lei G, He J, Yang X, Yang J, Fu H. Rapid identification of the geographical origin of Eucommia ulmoides by using excitation-emission matrix fluorescence combined with chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121243. [PMID: 35468376 DOI: 10.1016/j.saa.2022.121243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Eucommia ulmoides is an important and valuable traditional Chinese medicine with various medical functions, and has been widely used as health food in China, Japan, South Korea and other Asian countries for many years. The efficacy and quality of E. ulmoides are closely associated with the geographical origin. In this work, the potential of excitation-emission matrix (EEMs) fluorescence coupled with chemometric methods was investigated for simple, rapid and accurate for identification E. ulmoides from different geographical origins. Parallel factor analysis (PARAFAC) was applied for characterizing the fluorescence fingerprints of E. ulmoides samples. Moreover, k-nearest neighbor (kNN), principal component analysis-linear discriminant analysis (PCA-LDA) and partial least squares discriminant analysis (PLS-DA) models were used for the classification of E. ulmoides samples according to their geographical origins. The results showed that kNN model was more suitable for identification of E. ulmoides samples from different provinces. The kNN model could identify E. ulmoides samples from eight different geographical origins with 100% accuracy on the training and test sets. Therefore, the proposed method was available for conveniently and accurately determining the geographical origin of E. ulmoides, which can expect to be an attractive alternative method for identifying the geographic origin of other traditional Chinese medicines.
Collapse
Affiliation(s)
- Tingkai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Zikang Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuting Guan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Guanghua Lei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jieling He
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Simultaneous Determination of Fourteen Marker Compounds in the Traditional Herbal Prescription, Geumgwesingihwan, Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2022; 27:molecules27123890. [PMID: 35745012 PMCID: PMC9227478 DOI: 10.3390/molecules27123890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Geumgwesingihwan (GSH) is a traditional herbal prescription composed of eight medicinal herbs: Rehmannia glutinosa (Gaertn.) DC., Dioscorea japonica Thunb., Cornus officinalis Siebold and Zucc., Poria cocos Wolf, Paeonia suffruticosa Andrews, Alisma plantago-aquatica subsp. orientale (Sam.) Sam., Achyranthes bidentate Blume, and Plantago asiatica L. This study developed and validated an ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method in the multiple reaction monitoring (MRM) mode for simultaneous determination of 14 compounds (allantoin, gallic acid, 5-(hydroxymethyl)furfural, geniposidic acid, oxypaeoniflorin, loganin, geniposide, paeoniflorin, ecdysterone, verbascoside, cornuside, benzoylpaeoniflorin, paeonol, and alisol B acetate) in GSH. The chromatographic separation of all marker analytes was carried out on an Acquity UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 µm) using gradient elution of a mobile phase of distilled water–acetonitrile containing 0.1% acetic acid. The newly established UPLC–MS/MS MRM method was validated by evaluating the linearity, the limits of detection and quantification, recovery, and precision. All markers were detected at concentrations of 6.94–4126.28 mg/kg. In addition, the recovery was 76.65–119.49% and the relative standard deviation value of the precision was 0.19–9.91%. The newly developed and validated UPLC–MS/MS assay will provide useful information for quality assessment of GSH.
Collapse
|
5
|
Lv D, Xu J, Qi M, Wang D, Xu W, Qiu L, Li Y, Cao Y. A strategy of screening and binding analysis of bioactive components from traditional Chinese medicine based on surface plasmon resonance biosensor. J Pharm Anal 2021; 12:500-508. [PMID: 35811628 PMCID: PMC9257445 DOI: 10.1016/j.jpha.2021.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Elucidating the active components of traditional Chinese medicine (TCM) is essential for understanding the mechanisms of TCM and promote its rational use as well as TCM-derived drug development. Recent studies have shown that surface plasmon resonance (SPR) technology is promising in this field. In the present study, we propose an SPR-based integrated strategy to screen and analyze the major active components of TCM. We used Radix Paeoniae Alba (RPA) as an example to identify the compounds that can account for its anti-inflammatory mechanism via tumor necrosis factor receptor type 1 (TNF-R1). First, RPA extraction was analyzed using an SPR-based screening system, and the potential active ingredients were collected, enriched, and identified as paeoniflorin and paeonol. Next, the affinity constants of paeoniflorin and paeonol were determined as 4.9 and 11.8 μM, respectively. Then, SPR-based competition assays and molecular docking were performed to show that the two compounds could compete with tumor necrosis factor-α (TNF-α) while binding to the subdomain 1 site of TNF-R1. Finally, in biological assays, the two compounds suppressed cytotoxicity and apoptosis induced by TNF-α in the L929 cell line. These findings prove that SPR technology is a useful tool for determining the active ingredients of TCM at the molecular level and can be used in various aspects of drug development. The SPR-based integrated strategy is reliable and feasible in TCM studies and will shed light on the elucidation of the pharmacological mechanism of TCM and facilitate its modernization. A surface plasmon resonance-based integrated strategy was established to analyze traditional Chinese medicine. Surface plasmon resonance technology can be used for ligand screening, affinity detection, and binding site confirmation. Paeoniflorin and paeonol were identified as TNF-R1-bound ingredients in RPA.
Collapse
Affiliation(s)
- Diya Lv
- Center for Instrumental Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jin Xu
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Minyu Qi
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Dongyao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lei Qiu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| | - Yan Cao
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Corresponding author.
| |
Collapse
|
6
|
Shi F, Tong C, He C, Shi S, Cao Y, Wei Q. Diagnostic ion filtering targeted screening and isolation of anti-inflammatory iridoid glycosides from Hedyotis diffusa. J Sep Sci 2021; 44:2612-2619. [PMID: 33884739 DOI: 10.1002/jssc.202100074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/03/2021] [Accepted: 04/18/2021] [Indexed: 11/07/2022]
Abstract
Efficient and targeted screening and isolation of bioactive compounds from complex natural products is still a challenging work. Herein, diagnostic ion filtering based high-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry was firstly developed to screen six main iridoid glycosides from Hedyotis diffusa. Then, online extraction-high-speed counter current chromatography was proposed for targeted enrichment and preparative isolation using ethyl acetate/n-butanol/water (4.5:0.5:5, v/v/v) as solvent system. After that, Sephadex LH-20 column chromatography using methanol as solvent system was selected for further purification of six iridoid glycosides with purities over 98%. They were finally identified as monotropein, desacetylasperuloside acid, asperuloside, 6-O-(Z)-p-coumaroyl scandoside methyl ester, 6-O-(Z)-feruloyl scandoside methyl ester, and 6-O-(E)-p-coumaroyl scandoside methyl ester. And their anti-inflammatory activities were evaluated and confirmed by lipopolysaccharide activated RAW 264.7 macrophages. Obviously, the results provide a scientific basis for the potential applications of H. diffusa, and the developed methodology is efficient and reliable for targeted screening and isolation of bioactive compounds from natural products.
Collapse
Affiliation(s)
- Fangying Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Chengxin He
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| |
Collapse
|
7
|
Rapid Screening and Identification of Antitumor Ingredients from the Mangrove Endophytic Fungus Using an Enzyme-Immobilized Magnetic Nanoparticulate System. Molecules 2021; 26:molecules26082255. [PMID: 33924693 PMCID: PMC8069786 DOI: 10.3390/molecules26082255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
As a consequence of recent progression in biomedicine and nanotechnology, nanoparticle-based systems have evolved as a new method with extensive applications in responsive therapy, multimodal imaging, drug delivery and natural product separation. Meanwhile, the magnetic nanoparticulate system has aroused great interest for separation and purification because of its excellent magnetic properties. Phospholipase A2 (PLA2) is a highly expressed regulator to promote the growth of various cancers and is an ideal target to treat cancers. In this study, a novel strategy based on ligand–receptor interactions to discover novel PLA2 inhibitors was established, in which PLA2-functionalized Fe3O4@PLGA-PEG-NH2 magnetic nanoparticles were used as a supporting material combined with high-performance liquid chromatography–mass spectrometry, aiming to accelerate the discovery of novel PLA2 inhibitors from natural sources such as mangrove endophytic fungi. Under the optimized ligand fishing conditions, six target compounds were ultimately fished and identified to be cyclic peptides (1–3) and sterols (4–6), which compounds 1, 2 and 4–6 have well-documented cytotoxicities. Compound 3 exerted better inhibitory effect on A549 cells by experiment. In conclusion, PLA2-functionalized Fe3O4@PLGA-PEG-NH2 magnetic nanoparticles-based ligand fishing provided a feasible, selective and effective platform for the efficient screening and identification of antitumor components from natural products.
Collapse
|
8
|
Piroozmand F, Mohammadipanah F, Faridbod F. Emerging biosensors in detection of natural products. Synth Syst Biotechnol 2020; 5:293-303. [PMID: 32954023 PMCID: PMC7484522 DOI: 10.1016/j.synbio.2020.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Natural products (NPs) are a valuable source in the food, pharmaceutical, agricultural, environmental, and many other industrial sectors. Their beneficial properties along with their potential toxicities make the detection, determination or quantification of NPs essential for their application. The advanced instrumental methods require time-consuming sample preparation and analysis. In contrast, biosensors allow rapid detection of NPs, especially in complex media, and are the preferred choice of detection when speed and high throughput are intended. Here, we review diverse biosensors reported for the detection of NPs. The emerging approaches for improving the efficiency of biosensors, such as microfluidics, nanotechnology, and magnetic beads, are also discussed. The simultaneous use of two detection techniques is suggested as a robust strategy for precise detection of a specific NP with structural complexity in complicated matrices. The parallel detection of a variety of NPs structures or biological activities in a mixture of extract in a single detection phase is among the anticipated future advancements in this field which can be achieved using multisystem biosensors applying multiple flow cells, sensing elements, and detection mechanisms on miniaturized folded chips.
Collapse
Affiliation(s)
- Firoozeh Piroozmand
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Zhang Z, Yang D, Wang J, Huo J, Zhang J. Studies on the interactions between nicosulfuron and degradation enzymes. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhang H, Wu ZY, Yang YY, Yang FQ, Li SP. Recent applications of immobilized biomaterials in herbal analysis. J Chromatogr A 2019; 1603:216-230. [PMID: 31277949 DOI: 10.1016/j.chroma.2019.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
Immobilization of biomaterials developed rapidly due to the great promise in improving their stability, activity and even selectivity. In this review, the immobilization strategies of biomaterials, including physical adsorption, encapsulation, covalent attachment, cross-linking and affinity linkage, were briefly introduced. Then, the major emphasis was focused on the reported various types of immobilized biomaterials, including proteins, enzymes, cell membrane and artificial membrane, living cells, carbohydrates and bacteria, used in the herbal analysis for bioactive compound screening, drug-target interaction evaluation and chiral separation. In addition, a series of carrier materials applied in biomaterials immobilization, such as magnetic nanoparticles, metal-organic frameworks, silica capillary column, cellulose filter paper, cell membrane chromatography, immobilized artificial membrane chromatography and hollow fiber, were also discussed. Perspectives on further applications of immobilized biomaterials in herbal analysis were finally presented.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zhao-Yu Wu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, PR China.
| |
Collapse
|
11
|
Chemical constituents, biological functions and pharmacological effects for comprehensive utilization of Eucommia ulmoides Oliver. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Xue J, Bai Y, Liu H. Hybrid methods of surface plasmon resonance coupled to mass spectrometry for biomolecular interaction analysis. Anal Bioanal Chem 2019; 411:3721-3729. [DOI: 10.1007/s00216-019-01906-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 01/02/2023]
|
13
|
Identification of eupatilin and ginkgolide B as p38 ligands from medicinal herbs by surface plasmon resonance biosensor-based active ingredients recognition system. J Pharm Biomed Anal 2019; 171:35-42. [PMID: 30965219 DOI: 10.1016/j.jpba.2019.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
Abstract
Screening of bioactive ligands for a certain protein target from medicinal herbs is a highly important yet challenging task during drug discovery process. In this study, a surface plasmon resonance biosensor-based active ingredient recognition system (SPR-AIRS) was applied to screen p38 mitogen-activated protein kinase (p38) ligands from herbal extracts. After p38 protein was immobilized on a SPR chip and the suitability of SPR-AIRS was validated, thirty-four p38-related medicinal herbs were selected and pre-screened. Two medicinal herbs having high response signal with p38-immobilized chip, Folium Ginkgo and Herba Artemisiae Scopariae, were injected into SPR system for ligand fishing. Among them, two active compounds, eupatilin (EPT) and ginkgolide B (GKB), were identified as p38 ligands, and then the KD values of EPT and GKB were measured as 21.68 ± 2.21 and 44.71 ± 1.80 μM, respectively. They can inhibit p38 activities significantly and bind to the ATP binding site on p38. Furthermore, EPT and GKB can inhibit cell proliferation (IC50 = 30.31 ± 6.84 and 42.97 ± 0.83 μM), induce apoptosis and G2/M cell cycle arrest against K562 cell line. This is the first time that EPT and GKB are reported as effective p38 binding ligands. These results prove that SPR-AIRS could be an effective method to screen active compounds acting on a specific protein from complex systems.
Collapse
|
14
|
Fu Y, Luo J, Qin J, Yang M. Screening techniques for the identification of bioactive compounds in natural products. J Pharm Biomed Anal 2019; 168:189-200. [PMID: 30825802 DOI: 10.1016/j.jpba.2019.02.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/06/2023]
Abstract
Natural products (NPs) have a long history of clinical use and are rich source of bioactive compounds. The development of tools and techniques for identifying and analyzing NP bioactive compounds to ensure their quality and discover new drugs is thus very important and still in demand. Screening techniques have proven highly useful for screening and analyzing active components in complex mixtures, which rely on cell culture, dialysis, ultrafiltration, chromatographic methods and target molecule immobilization, using biological targets to identify the active compounds. The recent progress in biological screening techniques in the field of natural products is reviewed here. This includes a review on the strategy and application of the screening methods, their detailed description and discussion of their existing limitations of the different models along with prospective in future development of screening techniques.
Collapse
Affiliation(s)
- Yanwei Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
15
|
|
16
|
Chen L, Wang X, Liu Y, Di X. Dual-target screening of bioactive components from traditional Chinese medicines by hollow fiber-based ligand fishing combined with liquid chromatography–mass spectrometry. J Pharm Biomed Anal 2017. [DOI: 10.1016/j.jpba.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Zhuo R, Liu H, Liu N, Wang Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules 2016; 21:molecules21111516. [PMID: 27845727 PMCID: PMC6274472 DOI: 10.3390/molecules21111516] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022] Open
Abstract
Identification of active compounds from natural products is a critical and challenging task in drug discovery pipelines. Besides commonly used bio-guided screening approaches, affinity selection strategy coupled with liquid chromatography or mass spectrometry, known as ligand fishing, has been gaining increasing interest from researchers. In this review, we summarized this emerging strategy and categorized those methods as off-line or on-line mode according to their features. The separation principles of ligand fishing were introduced based on distinct analytical techniques, including biochromatography, capillary electrophoresis, ultrafiltration, equilibrium dialysis, microdialysis, and magnetic beads. The applications of ligand fishing approaches in the discovery of lead compounds were reviewed. Most of ligand fishing methods display specificity, high efficiency, and require less sample pretreatment, which makes them especially suitable for screening active compounds from complex mixtures of natural products. We also summarized the applications of ligand fishing in the modernization of Traditional Chinese Medicine (TCM), and propose some perspectives of this remarkable technique.
Collapse
Affiliation(s)
- Rongjie Zhuo
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Hao Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ningning Liu
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Identification of a ligand for tumor necrosis factor receptor from Chinese herbs by combination of surface plasmon resonance biosensor and UPLC-MS. Anal Bioanal Chem 2016; 408:5359-67. [PMID: 27225174 DOI: 10.1007/s00216-016-9633-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/30/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
Identification of bioactive compounds directly from complex herbal extracts is a key issue in the study of Chinese herbs. The present study describes the establishment and application of a sensitive, efficient, and convenient method based on surface plasmon resonance (SPR) biosensors for screening active ingredients targeting tumor necrosis factor receptor type 1 (TNF-R1) from Chinese herbs. Concentration-adjusted herbal extracts were subjected to SPR binding assay, and a remarkable response signal was observed in Rheum officinale extract. Then, the TNF-R1-bound ingredients were recovered, enriched, and analyzed by UPLC-QTOF/MS. As a result, physcion-8-O-β-D-monoglucoside (PMG) was identified as a bioactive compound, and the affinity constant of PMG to TNF-R1 was determined by SPR affinity analysis (K D = 376 nM). Pharmacological assays revealed that PMG inhibited TNF-α-induced cytotoxicity and apoptosis in L929 cells via TNF-R1. Although PMG was a trace component in the chemical constituents of the R. officinale extract, it had considerable anti-inflammatory activities. It was found for the first time that PMG was a ligand for TNF receptor from herbal medicines. The proposed SPR-based screening method may prove to be an effective solution to analyzing bioactive components of Chinese herbs and other complex drug systems. Graphical abstract Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them. Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them.
Collapse
|
19
|
Zhang Y, Xu S, Wen L, Bai Y, Niu L, Song D, Liu H. A dielectric barrier discharge ionization based interface for online coupling surface plasmon resonance with mass spectrometry. Analyst 2016; 141:3343-8. [DOI: 10.1039/c6an00561f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography–hybrid triple quadrupole-linear ion trap mass spectrometry. J Chromatogr A 2016; 1429:238-47. [DOI: 10.1016/j.chroma.2015.12.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023]
|
21
|
Zhang Y, Li X, Nie H, Yang L, Li Z, Bai Y, Niu L, Song D, Liu H. Interface for Online Coupling of Surface Plasmon Resonance to Direct Analysis in Real Time Mass Spectrometry. Anal Chem 2015; 87:6505-9. [DOI: 10.1021/acs.analchem.5b01272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yiding Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xianjiang Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Honggang Nie
- Analytical
Instrumentation Center, Peking University, Beijing, 100871, P. R. China
| | - Li Yang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ze Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yu Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Li Niu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
| | - Daqian Song
- College
of Chemistry, Jilin University, Changchun, 130012, Jilin, P. R. China
| | - Huwei Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
22
|
Zhang Y, Shi S, Chen X, Peng M. Functionalized magnetic nanoparticles coupled with mass spectrometry for screening and identification of cyclooxygenase-1 inhibitors from natural products. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960:126-32. [DOI: 10.1016/j.jchromb.2014.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 12/12/2022]
|
23
|
Lee GH, Lee MR, Lee HY, Kim SH, Kim HK, Kim HR, Chae HJ. Eucommia ulmoides cortex, geniposide and aucubin regulate lipotoxicity through the inhibition of lysosomal BAX. PLoS One 2014; 9:e88017. [PMID: 24586300 PMCID: PMC3929538 DOI: 10.1371/journal.pone.0088017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022] Open
Abstract
In this study we examined the inhibition of hepatic dyslipidemia by Eucommia ulmoides extract (EUE). Using a screening assay for BAX inhibition we determined that EUE regulates BAX-induced cell death. Among various cell death stimuli tested EUE regulated palmitate-induced cell death, which involves lysosomal BAX translocation. EUE rescued palmitate-induced inhibition of lysosomal V-ATPase, α-galactosidase, α-mannosidase, and acid phosphatase, and this effect was reversed by bafilomycin, a lysosomal V-ATPase inhibitor. The active components of EUE, aucubin and geniposide, showed similar inhibition of palmitate-induced cell death to that of EUE through enhancement of lysosome activity. Consistent with these in vitro findings, EUE inhibited the dyslipidemic condition in a high-fat diet animal model by regulating the lysosomal localization of BAX. This study demonstrates that EUE regulates lipotoxicity through a novel mechanism of enhanced lysosomal activity leading to the regulation of lysosomal BAX activation and cell death. Our findings further indicate that geniposide and aucubin, active components of EUE, may be therapeutic candidates for non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, Republic of Korea
| | - Mi-Rin Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Hye-Kyung Kim
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, Republic of Korea
- * E-mail:
| |
Collapse
|