1
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Büyüktiryaki S, Keçili R, Hussain CM. Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115893] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Polikarpova D, Makeeva D, Kolotilina N, Dolgonosov A, Peshkova M, Kartsova L. Nanosized cation exchanger for the electrophoretic separation and preconcentration of catecholamines and amino acids. Electrophoresis 2020; 41:1031-1038. [DOI: 10.1002/elps.201900416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Daria Polikarpova
- Institute of ChemistrySaint Petersburg State University Saint Petersburg Russia
| | - Daria Makeeva
- Institute of ChemistrySaint Petersburg State University Saint Petersburg Russia
| | - Nadezhda Kolotilina
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences Moscow Russia
| | - Anatoly Dolgonosov
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences Moscow Russia
| | - Maria Peshkova
- Institute of ChemistrySaint Petersburg State University Saint Petersburg Russia
| | - Liudmila Kartsova
- Institute of ChemistrySaint Petersburg State University Saint Petersburg Russia
| |
Collapse
|
4
|
Kartsova L, Makeeva D, Davankov V. Nano-sized polymer and polymer-coated particles in electrokinetic separations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Lan C, Yin D, Yang Z, Zhao W, Chen Y, Zhang W, Zhang S. Determination of Six Macrolide Antibiotics in Chicken Sample by Liquid Chromatography-Tandem Mass Spectrometry Based on Solid Phase Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:6849457. [PMID: 30918741 PMCID: PMC6409056 DOI: 10.1155/2019/6849457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
In this paper, a simple and effective method for the determination of six macrolide antibiotics (MACs), including tylosin, tilmicosin, azithromycin, clarithromycin, roxithromycin, and kitasamycin, in the chicken sample using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed based on a self-built porous aromatic framework- (PAF-) based solid phase sorbent. The main parameters influencing the extraction efficiency, such as sorbent amounts, type of the eluent, pH of the sample, and the eluent volume, were evaluated. Under the optimized condition, the limits of detection were from 0.2 to 0.5 μg·kg-1. The recoveries of the method ranged from 82.1% to 101.4% with the relative standard deviations less than 11.1%. All the results demonstrated that the established method is potential for the determination of macrolide antibiotics in food safety analysis and monitoring.
Collapse
Affiliation(s)
- Chen Lan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Dan Yin
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhicong Yang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Wuduo Zhao
- Center for Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou, China
| | - Yanlong Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Wenfen Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Wang Q, Zhang L. Fabricated ultrathin magnetic nitrogen doped graphene tube as efficient and recyclable adsorbent for highly sensitive simultaneous determination of three tetracyclines residues in milk samples. J Chromatogr A 2018; 1568:1-7. [DOI: 10.1016/j.chroma.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/11/2023]
|
7
|
Adam V, Vaculovicova M. CE and nanomaterials - Part II: Nanomaterials in CE. Electrophoresis 2017; 38:2405-2430. [DOI: 10.1002/elps.201700098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
8
|
Ahmadi M, Elmongy H, Madrakian T, Abdel-Rehim M. Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Anal Chim Acta 2017; 958:1-21. [PMID: 28110680 DOI: 10.1016/j.aca.2016.11.062] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 01/02/2023]
|
9
|
Babaei M, Jalalian SH, Bakhtiari H, Ramezani M, Abnous K, Taghdisi SM. Aptamer-Based Fluorescent Switch for Sensitive Detection of Oxytetracycline. Aust J Chem 2017. [DOI: 10.1071/ch16562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxytetracycline (OTC) is one of the most used antibiotics in veterinary medicine. There is a large concern about developing antibiotic resistance in humans as a result of the consumption of products contaminated with OTC, so a fast detection technique for an on-field screening test is highly in demand. Here we introduce a novel aptasensor for fast detection of OTC, based on a triple helix molecular switch (THMS) complex formation. The limit of detection (LOD) of this sensor was 1.67 and 6.44 nM in phosphate buffer and milk samples, respectively. Moreover, the sensor showed a high selectivity towards OTC.
Collapse
|
10
|
Tarongoy FM, Haddad PR, Boysen RI, Hearn MTW, Quirino JP. Open tubular-capillary electrochromatography: Developments and applications from 2013 to 2015. Electrophoresis 2016; 37:66-85. [PMID: 26497640 DOI: 10.1002/elps.201500339] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/24/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023]
Abstract
Open tubular CEC (OT-CEC) separates analyte mixtures by a combination of electrophoretic, electro-osmotic, and/or chromatographic effects. OT-CEC research is an active and growing field, with studies encompassing a wide range of investigations related to new strategies for chemical modification of the inner surface of the capillary, leading to the introduction of novel stationary phase coatings. This review has examined the literature on OT-CEC from 2013 to August 2015 and highlights the developments in the fabrication of highly selective stationary phases, based on materials that include cyclodextrin chiral selectors, graphene and graphene oxide, metal-organic frameworks, molecularly imprinted polymers, nanoparticles, nanolatex particles, nanocomposites, in situ generated polymers, block polymers, tentacle-type polymers, polyelectrolyte multilayers, polysaccharides, phospholipids, and proteins. This review, while considering the development of novel OT-CEC coating materials, specifically examines different immobilization or coating methodologies and approaches and also discusses the separation mechanisms that occur with these new materials. These OT-CEC coatings are intended mainly to separate low molecular weight molecules relevant to the pharmaceutical, agricultural, and food industries as well as for use in environmental monitoring.
Collapse
Affiliation(s)
- Faustino M Tarongoy
- Australian Centre for Research on Separation Science, School of Physical Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Paul R Haddad
- Australian Centre for Research on Separation Science, School of Physical Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Reinhard I Boysen
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Milton T W Hearn
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, School of Physical Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
11
|
Wu X, Xu Z, Huang Z, Shao C. Large volume sample stacking of cationic tetracycline antibiotics toward 10 ppb level analysis by capillary electrophoresis with UV detection. Electrophoresis 2016; 37:2963-2969. [DOI: 10.1002/elps.201600189] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 08/01/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Xingyi Wu
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai China
| | - Zhongqi Xu
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai China
| | - Zhuo Huang
- Water Environment Department; Changjiang River Scientific Research Institute; Wuhan China
| | - Chaoying Shao
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai China
| |
Collapse
|
12
|
Topal M, Uslu Şenel G, Öbek E, Arslan Topal EI. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 173:1-9. [PMID: 26950498 DOI: 10.1016/j.jenvman.2016.02.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC.
Collapse
Affiliation(s)
- Murat Topal
- General Directorate of State Hydraulic Works, 9th District Office, Elazığ, Turkey.
| | - Gülşad Uslu Şenel
- Department of Environmental Engineering, Faculty of Engineering, University of Fırat, Elazığ, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, University of Fırat, Elazığ, Turkey
| | - E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, University of Fırat, Elazığ, Turkey
| |
Collapse
|
13
|
Liu D, Song N, Feng W, Jia Q. Synthesis of graphene oxide functionalized surface-imprinted polymer for the preconcentration of tetracycline antibiotics. RSC Adv 2016. [DOI: 10.1039/c5ra22462d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we synthesized graphene oxide functionalized a surface-imprinted polymer based on the self-polymerization of dopamine to generate the imprinted cavity.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Naizhong Song
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Wei Feng
- The First Hospital of Jilin University
- Jilin University
- Changchun 130021
- China
| | - Qiong Jia
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
14
|
Domínguez-Vega E, Montealegre C, Marina ML. Analysis of antibiotics by CE and their use as chiral selectors: An update. Electrophoresis 2015; 37:189-211. [PMID: 26471773 DOI: 10.1002/elps.201500359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
The widespread use of antibiotics in medicine and as growth-promoting agents has increased the demand for suitable analytical techniques for their analysis. Analytical methods based on CE or miniaturized CE systems have proved over the years their ability for the analysis of antibiotics. Since our last review (Electrophoresis 2014, 35, 28-49) several new CE methodologies have been reported for antibiotic analysis. This review presents an update of the literature published from June 2013 to June 2015 for the analysis of antibiotics by CE. UV continues being the most used detection system for antibiotics analysis by CE. Strategies to improve sensitivity as the use of sensitive detection systems and the application of preconcentration techniques appear to be the major developments. Furthermore, the use of portable and miniaturized devices for antibiotic analysis is presented in detail. Applications of the developed methodologies to the determination of residues of antibiotics in biological, food, and environmental samples are carefully described. Finally, new developments and applications of antibiotics as chiral selectors in CE are also included.
Collapse
Affiliation(s)
- Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Maria Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
15
|
Udalova AY, Dmitrienko SG, Apyari VV. Methods for the separation, preconcentration, and determination of tetracycline antibiotics. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815060180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Keyon AS, Gstoettenmayr D, Prapatpong P, Alhusban AA, Ranjbar L, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014). Electrophoresis 2015; 36:36-61. [DOI: 10.1002/elps.201400420] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Michael C. Breadmore
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Ria Marni Tubaon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aliaa I. Shallan
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Sui Ching Phung
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aemi S. Abdul Keyon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Faculty of Science; Department of Chemistry, Universiti Teknologi Malaysia; Johor Malaysia
| | - Daniel Gstoettenmayr
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Pornpan Prapatpong
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry, Mahidol University; Rajathevee Bangkok Thailand
| | - Ala A. Alhusban
- Faculty of Health Sciences, School of Pharmacy; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Leila Ranjbar
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Hong Heng See
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Ibnu Sina Institute for Fundamental Science Studies; Universiti Teknologi Malaysia; Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
- Faculty of Pharmacy; Department of Analytical Chemistry, Al-Azhar University; Cairo Egypt
| | - Joselito P. Quirino
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
17
|
Malá Z, Šlampová A, Křivánková L, Gebauer P, Boček P. Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2014; 36:15-35. [DOI: 10.1002/elps.201400313] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Zdena Malá
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Andrea Šlampová
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Ludmila Křivánková
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
18
|
Xu W, Liu S, Yu J, Cui M, Li J, Guo Y, Wang H, Huang J. An ultrasensitive HRP labeled competitive aptasensor for oxytetracycline detection based on grapheme oxide–polyaniline composites as the signal amplifiers. RSC Adv 2014. [DOI: 10.1039/c3ra47368f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|