1
|
Mapar M, Rydzak T, Hommes JW, Surewaard BGJ, Lewis IA. Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants. Trends Microbiol 2025; 33:223-232. [PMID: 39393939 DOI: 10.1016/j.tim.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Small colony variants (SCVs) of Staphylococcus aureus are a relatively rare but clinically significant growth morphotype. Infections with SCVs are frequently difficult to treat, inherently antibiotic-resistant, and can lead to persistent infections. Despite a long history of research, the molecular underpinnings of this morphotype and their impact on the clinical trajectory of infections remain unclear. However, a growing body of literature indicates that SCVs are caused by a diverse range of molecular factors. These recent findings suggest that SCVs should be thought of as an ensemble collection of loosely related phenotypes, and not as a single phenomenon. This review describes the diverse mechanisms currently known to contribute to SCVs and proposes an ensemble model for conceptualizing this morphotype.
Collapse
Affiliation(s)
- Maryam Mapar
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Rydzak
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Josefien W Hommes
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bas G J Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Keim KC, George IK, Reynolds L, Smith AC. The Clinical Significance of Staphylococcus aureus Small Colony Variants. Lab Med 2022; 54:227-234. [PMID: 36226897 DOI: 10.1093/labmed/lmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
A burdensome, atypical phenotype of Staphylococcus aureus (SA) called S aureus small colony variant (SA-SCV) has been identified, which is induced as a result of a combination of environmental stressors, including polymicrobial interactions. The SA-SCVs exhibit altered phenotypes as a result of metabolic dormancy caused by electron transport deficiency, leading to increased biofilm production and alterations to antimicrobial susceptibility. The SA-SCVs typically exhibit altered colony morphology and biochemical reactions compared with wild-type SA, making them difficult to detect via routine diagnostics. The SA-SCVs have been found to contribute to chronic or recurrent infections, including skin and soft-tissue infections, foreign-body associated infection, cystic fibrosis, and sepsis. There is evidence that SA-SCVs contribute to patient morbidity and mortality as a result of diagnostic difficulties and limited treatment options. New detection methods may need to be developed that can be incorporated into routine diagnostics, which would allow for better assessment of specimens and introduce new considerations for treatment.
Collapse
Affiliation(s)
- Klara C Keim
- Department of Immunology and Microbiology, School of Medicine, Anschutz Medical Campus, University of Colorado , Aurora, CO , USA
| | - Isaiah K George
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Landrye Reynolds
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Allie C Smith
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| |
Collapse
|
3
|
James KL, Rice KC. Best Practices for Preparation of Staphylococcus aureus Metabolomics Samples. Methods Mol Biol 2021; 2341:103-116. [PMID: 34264466 DOI: 10.1007/978-1-0716-1550-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Developments in mass spectrometry have made it possible to identify individual biomolecules in complex samples. This has led to advances in the detection and quantification of both extracellular and intracellular metabolites, such as amino acids, organic acids, fatty acids, nucleotides, and CoA-esters from growth media and cellular extracts. However, the reproducibility of metabolite data can be problematic if the concentrations and/or stability of metabolites fluctuate during culture harvesting and processing. Herein we describe a standardized and efficient collection protocol and best practices for preservation and harvesting of Staphylococcus aureus cellular and supernatant samples to improve reproducibility, reliability, and consistency in mass-spectrometry-based metabolite data sets.
Collapse
Affiliation(s)
- Kimberly L James
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA.
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Hu WC, Pang J, Biswas S, Wang K, Wang C, Xia XH. Ultrasensitive Detection of Bacteria Using a 2D MOF Nanozyme-Amplified Electrochemical Detector. Anal Chem 2021; 93:8544-8552. [PMID: 34097376 DOI: 10.1021/acs.analchem.1c01261] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial infection is one of the major causes of human death worldwide. To prevent bacterial infectious diseases from spreading, it is of critical importance to develop convenient, ultrasensitive, and cost-efficient methods for bacteria detection. Here, an electrochemical detector of a functional two-dimensional (2D) metal-organic framework (MOF) nanozyme was developed for the sensitive detection of pathogenic Staphylococcus aureus. A dual recognition strategy consisting of vancomycin and anti-S. aureus antibody was proposed to specifically anchor S. aureus. The 2D MOFs with excellent peroxidase-like activity can efficiently catalyze o-phenylenediamine to 2,2-diaminoazobenzene, which is an ideal electrochemical signal readout for monitoring the bacteria concentration. Under optimal conditions, the present bioassay provides a wide detection range of 10-7.5 × 107 colony-forming units CFU/mL with a detection limit of 6 CFU/mL, which is better than most of the previous reports. In addition, the established electrochemical sensor can selectively and accurately identify S. aureus in the presence of other bacteria. The present work provides a new pathway for sensitive and selective detection of S. aureus and presents a promising potential in the realm of clinical diagnosis.
Collapse
Affiliation(s)
- Wen-Chao Hu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Pang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sudip Biswas
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Xu M, Yang K, Zhu J. Monitoring the Diversity and Metabolic Shift of Gut Microbes during Green Tea Feeding in an In Vitro Human Colonic Model. Molecules 2020; 25:E5101. [PMID: 33153091 PMCID: PMC7663002 DOI: 10.3390/molecules25215101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The human gut microbiome plays an important role in human health, and many factors such as environment, host genetics, age, and diet have been found to influence the microbial composition. Tea, as one of the widely consumed beverages, has been known for centuries to have antioxidant, anti-inflammatory, and anticancer effects. To investigate the impact of green tea polyphenol on the diversity and metabolic functions of human gut microbes, we applied an in vitro human colonic model (HCM) in this study to mimic a short-term green tea ingestion event and investigate its related changes to gut microbial composition and their metabolic functions. The pH, temperature, anaerobic environment, feeding nutrient, and time point in each compartment of the HCM were tightly controlled to simulate the intestinal system, and pooled human fecal samples of two healthy volunteers were used for the colon microbiota inoculation within the colonic model. By adding green tea extract (GTE) to the growth medium, the detailed impacts of GTE polyphenol on gut microbial population/diversity, gut microbial metabolites, metabolic pathways, and their associations were investigated via 16 S ribosomal DNA sequencing and liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analyses. Our data indicated that the treatment of green tea extract applied to gut microbiota can induce a significant decrease in the abundance of Firmicutes and a slight decrease in the abundance of Bacteroidetes, and these changes result in a decreased Firmicutes/Bacteroidetes ratio, which can be an effective indicator for successful GTE intervention, which may generate beneficial health effect to human. Meanwhile, the relative abundances of many detected bacteria genera among three HCM vessels changed through the GTE intervention. The overall effects of GTE on gut microbial beta-diversity were observed by multivariate statistical analyses, and the differences in metabolic profiles from different GTE treatment stages were detected. Moreover, we identified several associations between microbial population and microbial metabolites, which may assist us in establishing new hypotheses for future related studies. In summary, our study suggested that the microbial compositional changes induced by GTE also changed their metabolic functions, and consequentially, may change the host metabolism and impact human health.
Collapse
Affiliation(s)
- Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (M.X.); (K.Y.)
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (M.X.); (K.Y.)
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Wang JZ, Zhang YF, Xu F, Shang MY, Liu GX, Cai SQ. Investigation of the in vivo
metabolism of harpagoside and distribution of its metabolites in rats by HPLC-IT-TOF-MS
n. Biomed Chromatogr 2018; 32:e4218. [PMID: 29470860 DOI: 10.1002/bmc.4218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jing-Zhe Wang
- Division of Pharmacognosy, School of Pharmaceutical Sciences; Peking University; Beijing China
| | - Yi-Fan Zhang
- Division of Pharmacognosy, School of Pharmaceutical Sciences; Peking University; Beijing China
| | - Feng Xu
- Division of Pharmacognosy, School of Pharmaceutical Sciences; Peking University; Beijing China
| | - Ming-Ying Shang
- Division of Pharmacognosy, School of Pharmaceutical Sciences; Peking University; Beijing China
| | - Guang-Xue Liu
- Division of Pharmacognosy, School of Pharmaceutical Sciences; Peking University; Beijing China
| | - Shao-Qing Cai
- Division of Pharmacognosy, School of Pharmaceutical Sciences; Peking University; Beijing China
| |
Collapse
|