1
|
Moon BF, Zhou IY, Ning Y, Chen YI, Le Fur M, Shuvaev S, Akam EA, Ma H, Solsona CM, Weigand‐Whittier J, Rotile N, Hariri LP, Drummond M, Boice AT, Zygmont SE, Sharma Y, Warburton RR, Martin GL, Blanton RM, Fanburg BL, Hill NS, Caravan P, Penumatsa KC. Simultaneous Positron Emission Tomography and Molecular Magnetic Resonance Imaging of Cardiopulmonary Fibrosis in a Mouse Model of Left Ventricular Dysfunction. J Am Heart Assoc 2024; 13:e034363. [PMID: 38979786 PMCID: PMC11292745 DOI: 10.1161/jaha.124.034363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Aging-associated left ventricular dysfunction promotes cardiopulmonary fibrogenic remodeling, Group 2 pulmonary hypertension (PH), and right ventricular failure. At the time of diagnosis, cardiac function has declined, and cardiopulmonary fibrosis has often developed. Here, we sought to develop a molecular positron emission tomography (PET)-magnetic resonance imaging (MRI) protocol to detect both cardiopulmonary fibrosis and fibrotic disease activity in a left ventricular dysfunction model. METHODS AND RESULTS Left ventricular dysfunction was induced by transverse aortic constriction (TAC) in 6-month-old senescence-accelerated prone mice, a subset of mice that received sham surgery. Three weeks after surgery, mice underwent simultaneous PET-MRI at 4.7 T. Collagen-targeted PET and fibrogenesis magnetic resonance (MR) probes were intravenously administered. PET signal was computed as myocardium- or lung-to-muscle ratio. Percent signal intensity increase and Δ lung-to-muscle ratio were computed from the pre-/postinjection magnetic resonance images. Elevated allysine in the heart (P=0.02) and lungs (P=0.17) of TAC mice corresponded to an increase in myocardial magnetic resonance imaging percent signal intensity increase (P<0.0001) and Δlung-to-muscle ratio (P<0.0001). Hydroxyproline in the heart (P<0.0001) and lungs (P<0.01) were elevated in TAC mice, which corresponded to an increase in heart (myocardium-to-muscle ratio, P=0.02) and lung (lung-to-muscle ratio, P<0.001) PET measurements. Pressure-volume loop and echocardiography demonstrated adverse left ventricular remodeling, function, and increased right ventricular systolic pressure in TAC mice. CONCLUSIONS Administration of collagen-targeted PET and allysine-targeted MR probes led to elevated PET-magnetic resonance imaging signals in the myocardium and lungs of TAC mice. The study demonstrates the potential to detect fibrosis and fibrogenesis in cardiopulmonary disease through a dual molecular PET-magnetic resonance imaging protocol.
Collapse
Affiliation(s)
- Brianna F. Moon
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Iris Y. Zhou
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yingying Ning
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yin‐Ching I. Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Mariane Le Fur
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Sergey Shuvaev
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Eman A. Akam
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Hua Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | | | - Jonah Weigand‐Whittier
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Nicholas Rotile
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Lida P. Hariri
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Matthew Drummond
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Avery T. Boice
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Samantha E. Zygmont
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yamini Sharma
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Rod R. Warburton
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Tufts Medical CenterBostonMAUSA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Tufts Medical CenterBostonMAUSA
| | - Barry L. Fanburg
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Nicholas S. Hill
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Peter Caravan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | | |
Collapse
|
2
|
Akam-Baxter EA, Bergemann D, Ridley SJ, To S, Andrea B, Moon B, Ma H, Zhou Y, Aguirre A, Caravan P, Gonzalez-Rosa JM, Sosnovik DE. Dynamics of collagen oxidation and cross linking in regenerating and irreversibly infarcted myocardium. Nat Commun 2024; 15:4648. [PMID: 38858347 PMCID: PMC11164919 DOI: 10.1038/s41467-024-48604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
In mammalian hearts myocardial infarction produces a permanent collagen-rich scar. Conversely, in zebrafish a collagen-rich scar forms but is completely resorbed as the myocardium regenerates. The formation of cross-links in collagen hinders its degradation but cross-linking has not been well characterized in zebrafish hearts. Here, a library of fluorescent probes to quantify collagen oxidation, the first step in collagen cross-link (CCL) formation, was developed. Myocardial injury in mice or zebrafish resulted in similar dynamics of collagen oxidation in the myocardium in the first month after injury. However, during this time, mature CCLs such as pyridinoline and deoxypyridinoline developed in the murine infarcts but not in the zebrafish hearts. High levels of newly oxidized collagen were still seen in murine scars with mature CCLs. These data suggest that fibrogenesis remains dynamic, even in mature scars, and that the absence of mature CCLs in zebrafish hearts may facilitate their ability to regenerate.
Collapse
Affiliation(s)
- Eman A Akam-Baxter
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.
| | - David Bergemann
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sterling J Ridley
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha To
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Andrea
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brianna Moon
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hua Ma
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yirong Zhou
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron Aguirre
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Caravan
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan Manuel Gonzalez-Rosa
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Biology Department, Boston College, Chestnut Hill, USA
| | - David E Sosnovik
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zhuang Y, Yin T, Li J, Zang Y, Li X. An Allysine-Conjugatable Probe for Fluorogenically Imaging Fibrosis. Anal Chem 2024; 96:9034-9042. [PMID: 38773734 DOI: 10.1021/acs.analchem.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Allysine, a pivotal biomarker in fibrogenesis, has prompted the development of various radioactive imaging probes. However, fluorogenic probes targeting allysine remain largely unexplored. Herein, by leveraging the equilibrium between the nonfluorescent spirocyclic and the fluorescent zwitterionic forms of rhodamine-cyanine hybrid fluorophores, we systematically fine-tuned the environmental sensitivity of this equilibrium toward the development of fluorogenic probes for fibrosis. The trick lies in modulating the nucleophilicity of the ortho-carboxyl group, which is terminated with a hydrazide group for allysine conjugation. Probe B2 was developed with this strategy, which featured an N-sulfonyl amide group and exhibited superior fibrosis-to-control imaging contrast. Initially presenting as nonfluorescent spirocyclic aggregates in aqueous solutions, B2 displayed a notable fluorogenic response upon conjugation with protein allysine through its hydrazide group, inducing deaggregation and switching to the fluorescent zwitterionic form. Probe B2 outperformed the traditional Masson stain in imaging contrast, achieving an about 260-2600-fold ratio for fibrosis-to-control detection depending on fibrosis severity. Furthermore, it demonstrated efficacy in evaluating antifibrosis drugs. Our results emphasize the potential of this fluorogenic probe as an alternative to conventional fibrosis detection methods. It emerges as a valuable tool for antifibrosis drug evaluation.
Collapse
Affiliation(s)
- Yilian Zhuang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Tao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Lingang Laboratory, Shanghai 201203, China
| | - Xin Li
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
4
|
Shuvaev S, Knipe RS, Drummond M, Rotile NJ, Ay I, Weigand-Whittier JP, Ma H, Zhou IY, Roberts JD, Black K, Hariri LP, Ning Y, Caravan P. Optimization of an Allysine-Targeted PET Probe for Quantifying Fibrogenesis in a Mouse Model of Pulmonary Fibrosis. Mol Imaging Biol 2023; 25:944-953. [PMID: 37610609 DOI: 10.1007/s11307-023-01845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a destructive lung disease with a poor prognosis, an unpredictable clinical course, and inadequate therapies. There are currently no measures of disease activity to guide clinicians making treatment decisions. The aim of this study was to develop a PET probe to identify lung fibrogenesis using a pre-clinical model of pulmonary fibrosis, with potential for translation into clinical use to predict disease progression and inform treatment decisions. METHODS Eight novel allysine-targeting chelators, PIF-1, PIF-2, …, PIF-8, with different aldehyde-reactive moieties were designed, synthesized, and radiolabeled with gallium-68 or copper-64. PET probe performance was assessed in C57BL/6J male mice 2 weeks after intratracheal bleomycin challenge and in naïve mice by dynamic PET/MR imaging and with biodistribution at 90 min post injection. Lung hydroxyproline and allysine were quantified ex vivo and histological staining for fibrosis and aldehyde was performed. RESULTS In vivo screening of probes identified 68GaPIF-3 and 68GaPIF-7 as probes with high uptake in injured lung, high uptake in injured lung versus normal lung, and high uptake in injured lung versus adjacent liver and heart tissue. A crossover, intra-animal PET/MR imaging study of 68GaPIF-3 and 68GaPIF-7 confirmed 68GaPIF-7 as the superior probe. Specificity for fibrogenesis was confirmed in a crossover, intra-animal PET/MR imaging study with 68GaPIF-7 and a non-binding control compound, 68GaPIF-Ctrl. Substituting copper-64 for gallium-68 did not affect lung uptake or specificity indicating that either isotope could be used. CONCLUSION A series of allysine-reactive PET probes with variations in the aldehyde-reactive moiety were evaluated in a pre-clinical model of lung fibrosis. The hydrazine-bearing probe, 68GaPIF-7, exhibited the highest uptake in fibrogenic lung, low uptake in surrounding liver or heart tissue, and low lung uptake in healthy mice and should be considered for further clinical translation.
Collapse
Affiliation(s)
- Sergey Shuvaev
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA
| | - Rachel S Knipe
- Division of Pulmonary and Critical Care Medicine, Boston, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt Drummond
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA
- Division of Pulmonary and Critical Care Medicine, Boston, USA
| | - Nicholas J Rotile
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
| | - Ilknur Ay
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
| | | | - Hua Ma
- Institute for Innovation in Imaging (i3), Boston, USA
| | - Iris Yuwen Zhou
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA
| | - Jesse D Roberts
- Department of Pediatric Anesthesiology, Mass General Hospital for Children, Boston, USA
| | - Katherine Black
- Division of Pulmonary and Critical Care Medicine, Boston, USA
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Yingying Ning
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA
| | - Peter Caravan
- Institute for Innovation in Imaging (i3), Boston, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA.
| |
Collapse
|
5
|
Ma H, Zhou IY, Chen YI, Rotile NJ, Ay I, Akam EA, Wang H, Knipe RS, Hariri LP, Zhang C, Drummond M, Pantazopoulos P, Moon BF, Boice AT, Zygmont SE, Weigand-Whittier J, Sojoodi M, Gonzalez-Villalobos RA, Hansen MK, Tanabe KK, Caravan P. Tailored Chemical Reactivity Probes for Systemic Imaging of Aldehydes in Fibroproliferative Diseases. J Am Chem Soc 2023; 145:20825-20836. [PMID: 37589185 PMCID: PMC11022681 DOI: 10.1021/jacs.3c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.
Collapse
Affiliation(s)
- Hua Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Y. Iris Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Eman A. Akam
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Caiyuan Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Matthew Drummond
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Brianna F. Moon
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Avery T. Boice
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Samantha E. Zygmont
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Romer A. Gonzalez-Villalobos
- Cardiovascular and Metabolism Discovery, Janssen Research and Development LLC, Boston, Massachusetts 02115, United States
| | - Michael K. Hansen
- Cardiovascular and Metabolism Discovery, Janssen Research and Development LLC, Boston, Massachusetts 02115, United States
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
6
|
Akam EA, Bergemann D, Ridley SJ, To S, Andrea B, Moon B, Ma H, Zhou Y, Aguirre A, Caravan P, Gonzalez-Rosa JM, Sosnovik DE. Dynamics of Collagen Oxidation and Cross Linking in Regenerating and Irreversibly Infarcted Myocardium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.549713. [PMID: 37546963 PMCID: PMC10402057 DOI: 10.1101/2023.07.25.549713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In mammalian hearts myocardial infarction produces a permanent collagen-rich scar. Conversely, in zebrafish a collagen-rich scar forms but is completely resorbed as the myocardium regenerates. The formation of cross-links in collagen hinders its degradation but cross-linking has not been well characterized in zebrafish hearts. Here, a library of fluorescent probes to quantify collagen oxidation, the first step in collagen cross-link (CCL) formation, was developed. Myocardial injury in mice or zebrafish resulted in similar dynamics of collagen oxidation in the myocardium in the first month after injury. However, during this time, mature CCLs such as pyridinoline and deoxypyridinoline developed in the murine infarcts but not in the zebrafish hearts. High levels of newly oxidized collagen were still seen in murine scars with mature CCLs. These data suggest that fibrogenesis remains dynamic, even in mature scars, and that the absence of mature CCLs in zebrafish hearts may facilitate their ability to regenerate.
Collapse
|
7
|
Ma H, Zhou IY, Chen YI, Rotile NJ, Ay I, Akam E, Wang H, Knipe R, Hariri LP, Zhang C, Drummond M, Pantazopoulos P, Moon BF, Boice AT, Zygmont SE, Weigand-Whittier J, Sojoodi M, Gonzalez-Villalobos RA, Hansen MK, Tanabe KK, Caravan P. Tailored chemical reactivity probes for systemic imaging of aldehydes in fibroproliferative diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537707. [PMID: 37131719 PMCID: PMC10153247 DOI: 10.1101/2023.04.20.537707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small molecule magnetic resonance (MR) probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis noninvasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, make them strong candidates for clinical translation.
Collapse
|
8
|
Patzelt S, Pigors M, Steenbock H, Diel L, Boch K, Chakievska L, Künzel S, Busch H, Fähnrich A, Brinckmann J, Schmidt E. Increased Fibrosis in a Mouse Model of Anti-Laminin 332 Mucous Membrane Pemphigoid Remains Unaltered by Inhibition of Aldehyde Dehydrogenase. Front Immunol 2022; 12:812627. [PMID: 35197965 PMCID: PMC8858800 DOI: 10.3389/fimmu.2021.812627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Mucous membrane pemphigoid (MMP) is an autoimmune blistering disease characterized by autoantibodies against the basal membrane zone of skin and surface-close epithelia and predominant mucosal lesions. The oral cavity and conjunctivae are most frequently affected, albeit clinical manifestations can also occur on the skin. MMP-associated lesions outside the oral cavity typically lead to scarring. Mechanisms underlying scarring are largely unknown in MMP and effective treatment options are limited. Herein, we assessed the collagen architecture in tissue samples of an antibody-transfer mouse model of anti-laminin-332 MMP. In MMP mice, increased collagen fibril density was observed in skin and conjunctival lesions compared to mice injected with normal rabbit IgG. The extracellular matrix of MMP skin samples also showed altered post-translational collagen cross-linking with increased levels of both lysine- and hydroxylysine-derived collagen crosslinks supporting the fibrotic phenotype in experimental MMP compared to control animals. In addition, we evaluated a potential anti-fibrotic therapy in experimental anti-laminin-332 MMP using disulfiram, an inhibitor of the aldehyde dehydrogenase (ALDH), which has been implicated in immune-mediated mucosal scarring. In addition, disulfiram also acts as a copper chelator that was shown to block lysyl oxidase activity, an enzyme involved in formation of collagen crosslinks. Topical use of disulfiram (300 μM in 2% [w/v] methocel) did not improve ocular lesions in experimental MMP over the 12-day treatment period in disulfiram-treated mice compared to vehicle-treated mice (n=8/group). Furthermore, C57BL6/J mice (n=8/group) were treated prophylactically with 200 mg/kg p.o. disulfiram or the solvent once daily over a period of 12 days. Systemic treatment did not show any reduction in the severity of oral and ocular lesions in MMP mice, albeit some improvement in skin lesions was observed in disulfiram- vs. vehicle-treated mice (p=0.052). No reduction in fibrosis was seen, as assessed by immunohistochemistry. Whilst blocking of ALDH failed to significantly ameliorate disease activity, our data provide new insight into fibrotic processes highlighting changes in the collagenous matrix and cross-linking patterns in IgG-mediated MMP.
Collapse
Affiliation(s)
- Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Leonard Diel
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Lenche Chakievska
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Zhong Y, Mahoney RC, Khatun Z, Chen HH, Nguyen CT, Caravan P, Roberts JD. Lysyl oxidase regulation and protein aldehydes in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 2022; 322:L204-L223. [PMID: 34878944 PMCID: PMC8794022 DOI: 10.1152/ajplung.00158.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFβ activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFβ regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFβ-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFβ treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFβ stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFβ and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.
Collapse
Affiliation(s)
- Ying Zhong
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rose C. Mahoney
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Zehedina Khatun
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Howard H. Chen
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher T. Nguyen
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Caravan
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts,7The Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesse D. Roberts
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,2Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts,3Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
10
|
Zhou IY, Montesi SB, Akam EA, Caravan P. Molecular Imaging of Fibrosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Akam EA, Abston E, Rotile NJ, Slattery HR, Zhou IY, Lanuti M, Caravan P. Improving the reactivity of hydrazine-bearing MRI probes for in vivo imaging of lung fibrogenesis. Chem Sci 2020; 11:224-231. [PMID: 32728411 PMCID: PMC7362876 DOI: 10.1039/c9sc04821a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is the pathologic accumulation of extracellular matrix components in lung tissue that result in scarring following chronic lung injury. PF is typically diagnosed by high resolution computed tomography (HRCT) and/or invasive biopsy. However, HRCT cannot distinguish old injury from active fibrogenesis. We previously demonstrated that allysine residues on oxidized collagen represent an abundant target during lung fibrogenesis, and that magnetic resonance imaging (MRI) with a small-molecule, gadolinium-containing probe, Gd-Hyd, could specifically detect and stage fibrogenesis in a mouse model. In this work, we present an improved probe, Gd-CHyd, featuring an N,N-dialkyl hydrazine which has an order of magnitude both greater reactivity and affinity for aldehydes. In a paired study in mice with bleomycin induced lung injury we show that the improved reactivity and affinity of Gd-CHyd results in significantly higher lung-to-liver contrast, e.g. 77% higher at 45 min post injection, and slower lung clearance than Gd-Hyd. Gd-CHyd enhanced MRI is >60-fold higher in bleomycin injured mouse lungs compared to uninjured mice. Collectively, our data indicate that enhancing hydrazine reactivity and affinity towards allysine is an effective strategy to significantly improve molecular MRI probes for lung fibrogenesis.
Collapse
Affiliation(s)
- Eman A Akam
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
- Harvard Medical School , Boston , USA
| | - Eric Abston
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- Boston University School of Medicine: Pulmonary , Allergy, Sleep & Critical Care Medicine , Boston , USA
- The Division of Thoracic Surgery , MGH , Boston , USA
| | - Nicholas J Rotile
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
| | - Hannah R Slattery
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
| | - Iris Y Zhou
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
- Harvard Medical School , Boston , USA
| | - Michael Lanuti
- Harvard Medical School , Boston , USA
- The Division of Thoracic Surgery , MGH , Boston , USA
| | - Peter Caravan
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
- Harvard Medical School , Boston , USA
| |
Collapse
|
12
|
Wahsner J, Désogère P, Abston E, Graham-O'Regan KA, Wang J, Rotile NJ, Schirmer MD, Santos Ferreira DD, Sui J, Fuchs BC, Lanuti M, Caravan P. 68Ga-NODAGA-Indole: An Allysine-Reactive Positron Emission Tomography Probe for Molecular Imaging of Pulmonary Fibrogenesis. J Am Chem Soc 2019; 141:5593-5596. [PMID: 30908032 DOI: 10.1021/jacs.8b12342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidized collagen, wherein lysine residues are converted to the aldehyde allysine, is a universal feature of fibrogenesis, i.e. actively progressive fibrosis. Here we report the small molecule, allysine-binding positron emission tomography probe, 68Ga-NODAGA-indole, that can noninvasively detect and quantify pulmonary fibrogenesis. We demonstrate that the uptake of 68Ga-NODAGA-indole in actively fibrotic lungs is 7-fold higher than in control groups and that uptake is linearly correlated ( R2 = 0.98) with the concentration of lung allysine.
Collapse
Affiliation(s)
- Jessica Wahsner
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Pauline Désogère
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Eric Abston
- Division of Thoracic Surgery , MGH & HMS , Boston , Massachusetts 02114 , United States
| | - Katherine A Graham-O'Regan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Junfeng Wang
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Nicholas J Rotile
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Markus D Schirmer
- Stroke Division , MGH & HMS , Boston , Massachusetts 02114 , United States
| | - Diêgo Dos Santos Ferreira
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Jingyi Sui
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Bryan C Fuchs
- Division of Surgical Oncology , MGH & HMS , Boston , Massachusetts 02114 , United States
| | - Michael Lanuti
- Division of Thoracic Surgery , MGH & HMS , Boston , Massachusetts 02114 , United States
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| |
Collapse
|
13
|
Désogère P, Montesi SB, Caravan P. Molecular Probes for Imaging Fibrosis and Fibrogenesis. Chemistry 2019; 25:1128-1141. [PMID: 30014529 PMCID: PMC6542638 DOI: 10.1002/chem.201801578] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/26/2022]
Abstract
Fibrosis, or the accumulation of extracellular matrix molecules that make up scar tissue, is a common result of chronic tissue injury. Advances in the clinical management of fibrotic diseases have been hampered by the low sensitivity and specificity of noninvasive early diagnostic options, lack of surrogate end points for use in clinical trials, and a paucity of noninvasive tools to assess fibrotic disease activity longitudinally. Hence, the development of new methods to image fibrosis and fibrogenesis is a large unmet clinical need. Herein, an overview of recent and selected molecular probes for imaging of fibrosis and fibrogenesis by magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography is provided.
Collapse
Affiliation(s)
- Pauline Désogère
- The Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02128, USA
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02128, USA
| |
Collapse
|
14
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 950] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|