1
|
Yang Y, Jiang B, Shi L, Wang L, Yang Y, Li Y, Zhang Y, Zhu Z, Zhang X, Liu X. The potential of natural herbal plants in the treatment and prevention of non-small cell lung cancer: An encounter between ferroptosis and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119555. [PMID: 40015539 DOI: 10.1016/j.jep.2025.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine constitutes a substantial cultural and scientific resource for the Chinese nation, attracting considerable scholarly interest due to its intrinsic characteristics of "multi-component, multi-target, and multi-pathway" interactions. Simultaneously, it aligns accurately with the intricate and continuously evolving progression of non-small cell lung cancer (NSCLC). Furthermore, contemporary pharmacological studies indicate that natural herbaceous plants and their bioactive compounds exhibit a diverse array of biological activities, including antioxidant, anti-inflammatory, and anti-tumor effects, among others. Additionally, these substances have been demonstrated to possess a degree of safety, particularly in terms of exhibiting comparatively lower levels of toxicity to the liver and kidneys when contrasted with conventional Western medicine. Thus, the development of herbal plants, which includes both single herbs and composite formulations, as well as their bioactive constituents, through the targeted regulation of ferroptosis and mitophagy, presents substantial potential and instills considerable hope for individuals diagnosed with NSCLC. AIM OF THE REVIEW This review aims to conduct a critical analysis of the ethnopharmacological applications of natural herbaceous plants in relation to ferroptosis and mitophagy in NSCLC. The objective is to evaluate the potential advantages of prioritizing specific phytochemical constituents found in these plants, which may serve as novel therapeutic candidates informed by ethnobotanical knowledge. Additionally, this study seeks to enhance the current pharmacological applications of natural herbaceous plants. METHODS An investigation into natural herbal remedies for NSCLC was conducted, with a particular emphasis on the ferroptosis and mitophagy pathways. This study utilized traditional medical texts and ethnomedicinal literature as primary sources. Furthermore, relevant information related to ethnobotany, phytochemistry, and pharmacology is obtained from online databases, including PubMed and the China National Knowledge Infrastructure (CNKI), among others. "Traditional Chinese medicine compound preparations", "single herb extracts", "active compounds", "NSCLC", "ferroptosis", and "mitophagy" were used as keywords when searching the databases. Consequently, pertinent articles published in recent years were collected and analyzed. RESULTS Given the complex etiology of NSCLC, treatment strategies that concentrate exclusively on ferroptosis or mitophagy often demonstrate limitations. In this regard, the utilization of herbal plants offers unique benefits in the management of NSCLC. The rationale can be summarized within the following two dimensions: Firstly, due to the molecular mechanisms of ferroptosis and mitophagy involving multiple signaling pathways (including PINK1/Parkin, HMGB1, system Xc-/GPX4/GSH, FSP1/CoQ10/NAD (P) H, and so on), sometimes drugs with a single target are difficult to involve multiple pathways. Fortunately, there is an expanding body of evidence suggesting that various herbaceous plants and their bioactive compounds can affect multiple biological targets. Moreover, these compounds seem to interact with several targets associated with ferroptosis and mitophagy in NSCLC (such as NIX, BNIP3, FUNDC1, GPX4, FSP1, P53, Nrf2, LncRNA, and so on). Secondly, Herbaceous plants and their bioactive compounds have been shown to possess a favorable safety profile, particularly with respect to reduced hepatotoxicity and nephrotoxicity in comparison to conventional Western medicine. For example, Numerous compound formulations, such as Fangji Huangqi decoction, Mufangji decoction, Qiyu Sanlong decoction, and Fuzheng Kangai decoction, have been employed in China for millennia, and their clinical efficacy appears to be quite promising. Notably, In recent years, numerous researchers have sought to isolate active constituents from clinically effective compound formulations through the application of chemical methodologies. This endeavor has been driven by the necessity to tackle challenges related to complex ingredient compositions and sophisticated processing. These active compounds have been employed in cellular and animal studies to elucidate the molecular mechanisms underlying these formulations. CONCLUSIONS The Asian region has a long-standing historical tradition of employing natural herbaceous plants for traditional medicinal purposes. Phytochemical and pharmacological studies have shown that various compound preparations derived from traditional Chinese medicine, along with individual herb extracts and their active constituents, display a range of bioactive effects. These effects encompass anti-tumor, anti-inflammatory, antibacterial, and antioxidant properties, among others. Numerous traditional compound formulations originating from China have emerged as promising candidates for the development of pharmacological agents targeting NSCLC. It is noteworthy that a variety of compound formulations aimed at the ferroptosis and mitophagy pathways, which demonstrate unique therapeutic effects on NSCLC, are presently under extensive investigation by an increasing number of researchers. Therefore, it is imperative to consider in vitro mechanistic studies, in vivo pharmacological evaluations, and assessments of clinical efficacy. Furthermore, it is essential to conduct a comprehensive assessment of plant resources, implement quality control measures, and engage in toxicological research to ensure that the data is appropriate for further examination.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lijuan Shi
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lili Wang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yaru Yang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yongyu Li
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yanmei Zhang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhongbo Zhu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xuhui Zhang
- Department of Pulmonary Diseases, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730030, China.
| | - Xiping Liu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
2
|
Li H, Zhao H, Chen L, Yang Y, Wang S, Gao R, Cheng X. Spectrum-effect relationship between HPLC fingerprints and antioxidant activity of Qi-Fu-Yin based on multiple statistical correlation analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1565-1576. [PMID: 38777368 DOI: 10.1002/pca.3396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Qi-Fu-Yin has been used to treat Alzheimer's disease (AD) in China. Oxidative stress has been recognized as a factor in AD progress. To date, there is no quality control method to ensure batch-to-batch consistency of Qi-Fu-Yin, and the potential antioxidant compounds in Qi-Fu-Yin remain uncertain. OBJECTIVES The aim of this study is to identify the potential antioxidant compounds of Qi-Fu-Yin and establish quality control standards for Qi-Fu-Yin. METHODS High-performance liquid chromatography was used to establish and quantify the fingerprints of Qi-Fu-Yin from various batches. Ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) was used to identify the common peaks. Bivariate correlation analysis, partial least squares regression analysis, and gray correlation analysis were used to establish the spectrum-effect relationship. RESULTS Forty-nine common peaks were determined through the establishment of fingerprints. Among them, 35 common peaks were preliminarily characterized. The multiple statistical correlation analysis methods identified six compounds as potential antioxidant constituents of Qi-Fu-Yin, and their antioxidant activities were validated in vitro. All six antioxidant compounds derived from two herbs. Therefore, three chemical index compounds derived from other three herbs were added to the quantitative analysis, while for two herbs, no peaks could be included. Eventually, six antioxidant constituents and three index compounds were quantitatively determined to provide a relatively comprehensive quality control for Qi-Fu-Yin. CONCLUSIONS The study elucidated the antioxidant substance basis of Qi-Fu-Yin and provided a relatively comprehensive approach for the assay of Qi-Fu-Yin, which is a promising advance in the quality control of Qi-Fu-Yin.
Collapse
Affiliation(s)
- Hengyu Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongwei Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxiao Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shixue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rongyu Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaorui Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Huang H, Yang H, Zhang Z, Song Y, Li L, Li K, Zhang J, Qi X, Wu Y. Synergistic Therapeutic Effects and Immunoregulatory Mechanism of Maxing Shigan Decoction Combined with Sijunzi Decoction on Viral Pneumonia in Mice. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:2017992. [PMID: 39221016 PMCID: PMC11364478 DOI: 10.1155/2024/2017992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Influenza is defined in traditional Chinese medicine (TCM) as an epidemic febrile illness and is usually treated with herbal compound formulas under the guidance of the "Qu Xie and Fu Zheng" theories. Ma Xing Shi Gan Tang (MXSGD) is a prominent remedy for clearing heat and detoxifying toxins in the clinical treatment of influenza in TCM, playing the role of "Qu Xie." Si Jun Zi Tang (SJZD) is recognized as one of the "Fu Zheng" formulas for strengthening the spleen and nourishing the stomach, with immunomodulatory effects. In this study, we followed the principles of "Qu Xie and Fu Zheng" to explore the effects of MXSGD combined with SJZD on viral pneumonia and its mechanism. Results showed that the couse of MXSGD and SJZD was effective in reducing the mortality rates and severity of lung pathology in lethally infected FM1 mice compared to the use of either drug alone. Moreover, further research demonstrated that the combined use suppressed TLRs and NLRP3 inflammatory signaling pathways at 4 dpi while promoting them at 7 dpi. At 10 dpi, there was a significant increase in CD11c+ and CD103+ DCs in the lungs. Together, SJZD improved the therapeutic effectiveness of MXSGD in treating influenza virus pneumonia than when used alone. MXSGD and SJZD exhibit synergistic effects in the treatment of influenza, as evidenced by the inhibition of TLR7 and NLRP3 inflammatory pathways early in the infection and facilitation of the response later. They also increase CD11c+ and CD103+ DC levels, as well as balancing Th1/Th2 cytokines.
Collapse
Affiliation(s)
- Huimin Huang
- Liuzhou Key Laboratory of Infection Disease and ImmunologyGuangxi Key Laboratory of Clinical Disease Biotechnology ResearchResearch Center of Medical SciencesLiuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, Guangxi, China
| | - Huanhua Yang
- Liuzhou Key Laboratory of Infection Disease and ImmunologyGuangxi Key Laboratory of Clinical Disease Biotechnology ResearchResearch Center of Medical SciencesLiuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, Guangxi, China
| | - Zurong Zhang
- Liuzhou Key Laboratory of Infection Disease and ImmunologyGuangxi Key Laboratory of Clinical Disease Biotechnology ResearchResearch Center of Medical SciencesLiuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, Guangxi, China
| | - Yunlong Song
- Liuzhou Key Laboratory of Infection Disease and ImmunologyGuangxi Key Laboratory of Clinical Disease Biotechnology ResearchResearch Center of Medical SciencesLiuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, Guangxi, China
| | - Li Li
- Liuzhou Key Laboratory of Infection Disease and ImmunologyGuangxi Key Laboratory of Clinical Disease Biotechnology ResearchResearch Center of Medical SciencesLiuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, Guangxi, China
| | - Ke Li
- School of Life SciencesBeijing University of Chinese Medicine, Beijing 102488, China
| | - Junjie Zhang
- School of Life SciencesBeijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyu Qi
- School of Life SciencesBeijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Wu
- Liuzhou Key Laboratory of Infection Disease and ImmunologyGuangxi Key Laboratory of Clinical Disease Biotechnology ResearchResearch Center of Medical SciencesLiuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, Guangxi, China
| |
Collapse
|
4
|
Liu T, Lin S. Comprehensive characterization of the chemical constituents of Lianhua Qingwen capsule by ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry. Heliyon 2024; 10:e27352. [PMID: 38496865 PMCID: PMC10944244 DOI: 10.1016/j.heliyon.2024.e27352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Lianhua Qingwen capsule is a famous traditional Chinese medicine (TCM) prescription that is widely used for the treatment of respiratory diseases in China. To facilitate in-depth and global characterization of the chemical constituents of Lianhua Qingwen capsule, a profiling method based on ultra-high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) was applied in both positive and negative ion modes for the comprehensive characterization of the chemical profiles of Lianhua Qingwen capsule. A total of 596 compounds were identified or tentatively characterized, including 137 flavonoids, 46 phenylpropanoids, 43 phenylethanoid glycosides, 145 terpenoids, 83 organic acids and their derivatives, 15 quinones, 39 alkaloids, 32 alcohol glycosides and 56 other compounds. Thus, this results widely extended and enriched the chemical constituents of Lianhua Qingwen capsule, which will provide comprehensive and valuable information for its quality control and further pharmacological study, facilitate understanding the effective substance and pharmacodynamic material basis, thereby providing a solid foundation for further development of the Lianhuaqingwen capsule.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Shu Lin
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
5
|
Dai X, Liu Y, Liu T, Zhang Y, Wang S, Xu T, Yin J, Shi H, Ye Z, Zhu R, Gao J, Dong G, Zhao D, Gao S, Wang X, Prentki M, Brὂmme D, Wang L, Zhang D. SiJunZi decoction ameliorates bone quality and redox homeostasis and regulates advanced glycation end products/receptor for advanced glycation end products and WNT/β-catenin signaling pathways in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117167. [PMID: 37716489 DOI: 10.1016/j.jep.2023.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE SiJunZi decoction (SJZD), one of the traditional Chinese medicine formulas, has been clinically and traditionally used to improve glucose and lipid metabolism and promote bone remodeling. AIM OF THE STUDY To study the actions and mechanisms of SJZD on bone remodeling in a type 2 diabetes mouse model. MATERIALS AND METHODS Diabetic mice generated with a high-fat diet (HFD) and streptozotocin (STZ) were subjected to SJZD treatment for 8 weeks. Blood glucose and lipid profile, redox status and bone metabolism were determined by ELISA or biochemical assays. Bone quality was evaluated by micro-CT, three-point bending assay and Fourier transform infrared spectrum (FTIR). Bone histomorphometry alterations were evaluated by Hematoxylin-Eosin (H&E), tartrate resistant acid phosphatase (TRAP) staining and Safranin O-fast green staining. The expressions of superoxide dismutase 1 (SOD1), advanced glycation end products (AGEs), receptor for advanced glycosylation end products (RAGE), phosphorylated nuclear factor kappa-B (p-NF-κB), NF-κB, cathepsin K, semaphorin 3A (Sema3A), insulin-like growth factor 1 (IGF1), p-GSK-3β, (p)-β-catenin, Runt-related transcription factor 2 (Runx2) and Cyclin D1 in the femurs and/or tibias were examined by Western blot or immunohistochemical staining. The main constituents in the SJZD aqueous extract were characterized by a HPLC/MS. RESULTS SJZD intervention improved glucose and lipid metabolism and preserved bone quality in the diabetic mice, in particular glucose tolerance, lipid profile, bone microarchitecture, strength and material composition. SJZD administration to diabetic mice preserved redox homeostasis in serum and bone marrow, and prevented an increase in AGEs, RAGE, p-NF-κB/NF-κB, cathepsin K, p-GSK-3β, p-β-catenin expressions and a decrease in Sema3A, IGF1, β-catenin, Runx2 and Cyclin D1 expressions in tibias and/or femurs. Thirteen compounds were identified in SJZD aqueous extract, including astilbin, liquiritin apioside, ononin, ginsenoside Re, Rg1, Rb1, Rb2, Ro, Rb3, Rd, notoginsenoside R2, glycyrrhizic acid, and licoricesaponin B2. CONCLUSIONS SJZD ameliorates bone quality in diabetic mice possibly via maintaining redox homeostasis. The mechanism governing these alterations are possibly related to effects on the AGEs/RAGE and Wnt/β-catenin signaling pathways. SJZD may offer a novel source of drug candidates for the prevention and treatment of type 2 diabetes and osteoporosis.
Collapse
Affiliation(s)
- Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zimengwei Ye
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Junfeng Gao
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Guangtong Dong
- Department of Chinese Medicine Formulas, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xinxiang Wang
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, QC, Canada.
| | - Dieter Brὂmme
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Yao L, Liu Y, Cui Y, Sun J, Xia X, Wang J, Wei Y, Chen W. Characterization and quality evaluation of QiXueShuFu Decoction based on fingerprint and ultra-performance liquid chromatography-quadrupole-orbitrap mass spectrometry. J Sep Sci 2024; 47:e2300606. [PMID: 38095460 DOI: 10.1002/jssc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
QiXueShuFu Decoction (QXSFD) modified from the Bazhen Decoction which was originally from the classic Ming Dynasty is a traditional folk formula that boosts the body's immune system. However, its ambiguous chemical components limited its quality control evaluation. In this study, ultra-performance liquid chromatography (UPLC) fingerprint combined with multivariate analysis was used to evaluate the quality of 15 batches of QXSFD, and UPLC quadrupole-orbitrap mass spectrometry was used to further examine the chemical components in QXSFD, after which representative compounds from each disassembled prescription were selected for comparison. Fifteen batches of samples had 33 common peaks in which 11 differential components could be used as a reference for subsequent quality control. One hundred forty-three components were identified from QXSFD. Saponins were mainly derived from the monarch, terpenes from the minister, and polysaccharides and glycosides from the assistant. In addition, quantitative assay revealed that the content of ferulic acid, chlorogenic acid, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside and 3,6'-disinapoyl sucrose in the whole prescription were higher than the contents of each disassembled prescription. This is the first comprehensive quality report on the chemical components of QXSFD, which is important for pharmacodynamic material basis and quality control.
Collapse
Affiliation(s)
- Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Yuzhen Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Yu Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Julin Sun
- Anhui Province Maanshan Hospital of Traditional Chinese Medicine, Ma'anshan, China
| | - Xiaojian Xia
- Anhui Province Maanshan Hospital of Traditional Chinese Medicine, Ma'anshan, China
| | - Junping Wang
- Center of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Yougang Wei
- Anhui Province Maanshan Hospital of Traditional Chinese Medicine, Ma'anshan, China
| | - WeiDong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
7
|
He Y, Qi A, Gu Y, Zhang C, Wang Y, Yang W, Bi L, Gong Y, Jiao L, Xu L. Clinical Efficacy and Gut Microbiota Regulating-Related Effect of Si-Jun-Zi Decoction in Postoperative Non-Small Cell Lung Cancer Patients: A Prospective Observational Study. Integr Cancer Ther 2024; 23:15347354241237973. [PMID: 38504436 PMCID: PMC10953039 DOI: 10.1177/15347354241237973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Postoperative non-small cell lung cancer (NSCLC) patients frequently encounter a deteriorated quality of life (QOL), disturbed immune response, and disordered homeostasis. Si-Jun-Zi Decoction (SJZD), a well-known traditional Chinese herbal formula, is frequently employed in clinical application for many years. Exploration is underway to investigate the potential therapeutic effect of SJZD for treating postoperative NSCLC. OBJECTIVE To assess the efficacy of SJZD on QOLs, hematological parameters, and regulations of gut microbiota in postoperative NSCLC patients. METHODS A prospective observational cohort study was conducted, enrolling 65 postoperative NSCLC patients between May 10, 2020 and March 15, 2021 in Yueyang Hospital, with 33 patients in SJZD group and 32 patients in control (CON) group. The SJZD group comprised of patients who received standard treatments and the SJZD decoction, while the CON group consisted of those only underwent standard treatments. The treatment period was 4 weeks. The primary outcome was QOL. The secondary outcomes involved serum immune cell and inflammation factor levels, safety, and alterations in gut microbiota. RESULTS SJZD group showed significant enhancements in cognitive functioning (P = .048) at week 1 and physical functioning (P = .019) at week 4. Lung cancer-specific symptoms included dyspnea (P = .001), coughing (P = .008), hemoptysis (P = .034), peripheral neuropathy (P = .019), and pain (arm or shoulder, P = .020, other parts, P = .019) eased significantly in the fourth week. Anemia indicators such as red blood cell count (P = .003 at week 1, P = .029 at week 4) and hemoglobin (P = .016 at week 1, P = .048 at week 4) were significantly elevated by SJZD. SJZD upregulated blood cell cluster differentiation (CD)3+ (P = .001 at week 1, P < .001 at week 4), CD3+CD4+ (P = .012 at week 1), CD3+CD8+ (P = .027 at week 1), CD19+ (P = .003 at week 4), increased anti-inflammatory interleukin (IL)-10 (P = .004 at week 1, P = .003 at week 4), and decreased pro-inflammatory IL-8 (P = .004 at week 1, p = .005 at week 4). Analysis of gut microbiota indicated that SJZD had a significant impact on increasing microbial abundance and diversity, enriching probiotic microbes, and regulating microbial biological functions. CONCLUSIONS SJZD appears to be an effective and safe treatment for postoperative NSCLC patients. As a preliminary observational study, this study provides a foundation for further research.
Collapse
Affiliation(s)
- Yiyun He
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Congmeng Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhang D, Duan S, He Z, Zhu Z, Li Z, Yi Q, Cai T, Li J, Chen N, Guo S. Sijunzi Decoction Targets IL1B and TNF to Reduce Neutrophil Extracellular Traps (NETs) in Ulcerative Colitis: Evidence from Silicon Prediction and Experiment Validation. Drug Des Devel Ther 2023; 17:3103-3128. [PMID: 37868820 PMCID: PMC10590142 DOI: 10.2147/dddt.s428814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose This study was conducted to explore the mechanism of Sijunzi Decoction (SJZ) in the treatment of ulcerative colitis (UC). Methods The study aimed to investigate the active components and targets of SJZ in the treatment of UC by screening databases such as TCMSP, GeneCards, OMIM, Distinct, TTD, and Drugbank. An online Venn tool, Cytoscape 3.7.2, and Autodock Tools were used to analyze the components and targets. The study also used a mouse model of UC to further investigate the effects of SJZ. HE staining, immunofluorescence, ELISA, qPCR, and Western blot were used to detect various indices. Results Eighty-three active components and 112 action targets were identified from SJZ, including 67 targets for treating UC-related NETs. The five core targets identified were AKT1, JUN, IL1B, PTGS2, and TNF, and molecular docking studies indicated that the five targets were well-docked with ginsenoside Rh2, isoflavones, and formononetin. Animal experiments demonstrated that SJZ could alleviate various parameters such as weight, colon length, spleen index, disease activity index, and intestinal pathology of the UC mice. Immunofluorescence and Western blot showed that SJZ could reduce the expression of IL1B and TNF in intestinal neutrophils while increasing the expression of Occludin. Cellular immunofluorescence suggests that SJZ can reduce the expression of TNF and IL1B in NETs. The qPCR results also suggested that SJZ could inhibit TNF signal. Furthermore, ELISA results suggested that SJZ could inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) while promoting the expression of anti-inflammatory cytokines (IL-10, IL-37, TGF-β). Conclusion SJZ treats UC by reducing the content of intestinal NETs, with primary targets on the NETs being IL1B and TNFand suppress TNF signal. The practical components of SJZ may be ginsenoside Rh2, isoflavones, and formononetin.
Collapse
Affiliation(s)
- Dong Zhang
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Siwei Duan
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhangyou He
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zeming Zhu
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhiping Li
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Qincheng Yi
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Tiantian Cai
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Juanjuan Li
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Nan Chen
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Shaoju Guo
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
9
|
Yang S, Chen G, Yuan M, Zou Y, Zhang H, Xu H. UPLC-QTOF-MS with a chemical profiling approach for holistic quality evaluation between a material reference of Wen Dan decoction and its commercial preparations. Chin Med 2023; 18:63. [PMID: 37248470 DOI: 10.1186/s13020-023-00767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Wen Dan decoction (WDD) has been a famous classic formula for resolving phlegm since ancient times in China. Currently, there are many types of WDD commercial preparations produced through modern technology. However, it is not known whether the holistic quality of WDD commercial preparations is consistent with the traditional decocting method to exert its proper effects. Therefore, the WDD material reference was studied and prepared, which can represent the traditional Chinese formulation WDD. METHODS A method based on UPLC-QTOF-MS was developed to evaluate the quality of WDD material reference and commercial prescriptions. At the same time, the multivariate statistical method was used to compare the differences between the material reference and the commercial prescription by principal component analysis (PCA) and heatmap. Finally, the UPLC-QTOF-MS method was established to quantitatively study 11 representative components, including naringin, hesperidin, neohesperidin, liquiritin, glycyrrhizic acid, adenosine, liquiritigenin, tangeretin, eriocitrin, naringenin and synephrine. RESULTS A total of 107 compounds were identified in the WDD material reference by comparing the retention time and fragment ion characteristics, including 54 flavonoids, 14 triterpenes, 10 organic acids, 7 alkaloids, 7 coumarins and 15 other components. The samples were almost evenly split into two groups, indicating a difference in quality between the WDD material reference and its commercial preparations in multivariate statistical analysis. Eleven major components of linearity, precision, repeatability, stability and recovery rate met the requirements, which were clearly different in commercial preparations and WDD material references. In terms of the content of 11 components in the commercial preparation, only CP8 is close to the material reference, which is in agreement with the statistical analysis of the heatmap. The concentrations of naringin and neohesperidin from the WDD material reference were higher than those from the commercial preparations. CONCLUSIONS The quality evaluation method established in this study can be used to identify different sources of WDD but also proves that the WDD material reference contains higher naringin. Furthermore, this study confirmed that the preparation technology of WDD commercial prescriptions should be optimized on the basis of WDD material references, producing the closest possible clinical basis for the substance.
Collapse
Affiliation(s)
- Siyu Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, People's Republic of China
| | - Gan Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, People's Republic of China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, People's Republic of China
| | - Yan Zou
- Shineway Pharmaceutical Group Ltd., Hebei, China
| | - Hongmei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
10
|
Ma P, Peng C, Peng Y, Fan L, Chen X, Li X. A mechanism of Sijunzi decoction on improving intestinal injury with spleen deficiency syndrome and the rationality of its compatibility. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116088. [PMID: 36649851 DOI: 10.1016/j.jep.2022.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sijunzi Decoction (SJZD) is a renowned formula for the treatment of spleen deficiency syndrome (SDS) in traditional Chinese medicine (TCM). Its non-polysaccharides (NPS) component, dominated by various compounds of SJZD, has shown the remarkable efficacy in SDS, especially in gastrointestinal injury. However, the principle of compatibility of SJZD and the micro-mechanism of effect on SDS are still unclear. AIM OF THE STUDY To elucidate the scientific implications of SJZD compatibility and its micro-mechanism in the treatment of SDS-induced intestinal injury. MATERIALS AND METHODS First, the chemical composition of NPS in SJZD and incomplete SJZD (iSJZD, including SJZD-R, SJZD-A, SJZD-P, SJZD-G) were comprehensively analyzed by UPLC-QTOF-MS, and comparing their chemical composition by multivariate statistical analysis to reveal the effect of a single herb on SJZD compatibility. Second, network pharmacology and molecular docking were used to uncover the micro-mechanisms of potential active compounds in SJZD for the treatment of SDS, and develop an active component combination (ACC) by accurate quantification. Subsequently, the action of the potential active compounds and ACC was verified through in vivo and in vitro. RESULTS A total of 112, 77, 93, 87, and 67 compounds were detected in NPS of SJZD, SJZD-R, SJZD-A, SJZD-P, and SJZD-G, respectively. Changes in the chemical components of SJZD_NPS and iSJZD_NPS revealed that RG and RAM, as well as RAM and Poria significantly affected the dissolution of each other's chemical components, and the co-decoction of four herbs promoted the dissolution of the active compounds and inhibited toxic compounds. Furthermore, network pharmacology showed that 274 compounds of 15 categories in SJZD_NPS acted on the 186 key targets to treat SDS by inhibiting inflammation, enhancing immunity, and regulating gastrointestinal function and metabolism. Finally, through in vitro experiments, six compounds among 18 potential compounds were verified to markedly repair intestinal epithelium injury by modulating the FAK/PI3K/Akt or LCK/Ras/PI3K/Akt signaling pathway. It is worth mentioning that ACC, composed of 11 compounds accurately quantified, demonstrated significant in vivo treatment effects on intestinal damage with SDS similar to NPS or SJZD. CONCLUSIONS This study elucidates the scientific evidence of the "Jun-Chen-Zuo-Shi" and "detoxification and synergistic" in the decocting process of SJZD. An ACC, the active component of SJZD, ameliorate SDS-induced intestinal injury by the FAK/PI3K/Akt signaling pathway, which provides a strategy for screening alternatives to effective combinations of TCMs.
Collapse
Affiliation(s)
- Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
11
|
Ni W, Liu T, Liu Y, Lu L, Zhou B, Dai Y, Zhao H, Xu H, Ji G. Sijunzi decoction granules in the prevention and treatment of recurrence of colorectal adenoma: Study protocol for a multicenter, randomized, double-blind, placebo-controlled trial. Front Pharmacol 2023; 14:1175811. [PMID: 37089947 PMCID: PMC10113428 DOI: 10.3389/fphar.2023.1175811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Background: The recurrence of colorectal adenomas (CRAs) after endoscopy predisposes patients to a risk of colorectal cancer. Guided by the traditional Chinese medicine (TCM), patients with colorectal diseases usually manifest with spleen deficiency syndrome (SDS) and are treated with Sijunzi decoction (SJZD). Therefore, this trial aims to explore the efficacy and safety of SJZD in the prevention and treatment of CRAs recurrence. Methods: SJZD on prevention and treatment of CRAs recurrence after resection: a multicenter, randomized, double-blind, placebo-controlled trial was designed. Patients who undergo polypectomy of CRAs will be recruited and randomized into a SJZD group and a placebo group in a 1:1 ratio. The intervention phase will be 12 months. The follow-up period will last 24 months. The primary outcome is the CRA recurrence rate after intervention. The secondary outcomes include the CRA recurrence rate at the second year post-polypectomy, the pathological type of adenoma and the alterations in SDS scores after intervention. Discussion: Previous clinical practice has observed the sound effect of SJZD in the context of gastrointestinal diseases. A number of experiments have also validated the active components in SJZD. This trial aims to provide tangible evidence for the usage of SJZD, hoping to reduce the recurrence of CRAs.
Collapse
Affiliation(s)
- Wenjing Ni
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Tao Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Bingduo Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yancheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Zhao
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| |
Collapse
|
12
|
Liu H, Wang SY, Zhu JH, Xu JD, Zhou SS, Kong M, Mao Q, Li SL, Zhu H. Effects of sulfur-fumigated ginseng on the global quality of Si-Jun-Zi decoction, a traditional ginseng-containing multi-herb prescription, evaluated by metabolomics and glycomics strategies. J Pharm Biomed Anal 2022; 219:114927. [PMID: 35816772 DOI: 10.1016/j.jpba.2022.114927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/26/2023]
Abstract
Si-Jun-Zi decoction (SJZD) with ginseng as the principal medicinal herb is a traditional Chinese Medicine multi-herb prescription that commonly employed to treat colorectal cancer etc. Previous studies showed that nearly half of the commercial ginseng was sulfur-fumigated, one of the postharvest processing methods that commonly causes sulfur-dioxide (SO2) residue and chemical composition transformation in medical herbs. In this study, the effect of sulfur-fumigated ginseng on global quality of SJZD was evaluated by UPLC-QTOF-MS/MS based metabolomics and multiple chromatographic techniques based glycomics strategies. For non-saccharides components, sulfur-fumigated ginseng led to the emergence of sulfur-containing derivatives and alteration of saponins and flavonoids in SJZD. For saccharide components, sulfur-fumigated ginseng decreased the total contents and molecular weights of polysaccharides, changed the monosaccharide composition of polysaccharides, and increased the contents of oligosaccharides and free monosaccharides of SJZD. The alterations of SJZD were aggravated with the sulfur-fumigated content of ginseng. Those phenomena might be attributed to 1) sulfur-fumigation caused the generation of sulfur-containing derivatives in ginseng, which further transferred to SJZD, and 2) sulfur-fumigation caused the residue of SO2 in ginseng, which reduced the pH value and further changed the dissolution of saponins and flavonoids and accelerated the degradation of the polysaccharides to oligosaccharides and/or monosaccharides in SJZD. Furthermore, although storage reduced the SO2 residue in sulfur-fumigated ginseng, it couldn't recover the alterations of chemical profiles in SJZD. In conclusion, sulfur-fumigated ginseng altered the global quality of SJZD, which promoted that extra attention must be paid during the application of herbal formulas that containing sulfur-fumigated herbs.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
13
|
A Network Pharmacology Approach for Uncovering the Antitumor Effects and Potential Mechanisms of the Sijunzi Decoction for the Treatment of Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9364313. [PMID: 35463069 PMCID: PMC9019414 DOI: 10.1155/2022/9364313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Background Sijunzi decoction (SJZD), a classic Chinese formula, has been clinically used for the treatment of gastrointestinal disorders. However, few studies have uncovered its antitumor effects and its potential mechanisms against gastric cancer (GC). Therefore, this work aimed to identify the active compounds and putative targets of the SJZD and to further explore the potential mechanisms involved in the treatment of GC. Materials and Methods The active compounds and potential targets of the SJZD and related genes for GC treatment were collected from a public database. Traditional Chinese medicine (TCM)-compound-target-disease networks, Venn diagrams, protein–protein interactions (PPIs), gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to obtain the bioactive compounds, key targets, and potential pathways. Next, the human gastric adenocarcinoma cell line NUGC-4 was inoculated subcutaneously into the right flank of NCG mice to build a tumor-bearing mouse model to further verify the findings. Results There were 117 compounds in the SJZD in total. The SJZD and GC had 161 and 3288 potential targets, respectively, among which 123 targets overlapped. The network analysis showed that quercetin, kaempferol formononetin, ginsenoside, atractylenolide III, etc., were bioactive molecules. The tumor necrosis factor (TNF), interleukin-6 (IL-6), cellular tumor antigen p53 (TP53), transcription factor AP-1 (JUN), and vascular endothelial growth factor A (VEGFA) were potential targets. A KEGG pathway enrichment analysis revealed 110 pathways involved in the pathways for cancer, including the PI3K-AKT signaling pathway. Validation experiments showed that the SJZD inhibited tumor growth and induced apoptosis in tumor cells. In addition, the SJZD downregulated expressions of VEGFA, iNOS, COX-2, and Bax/Bcl2 and inhibited the expressions of p-PI3K and p-AKT. Conclusion The SJZD treats GC by inhibiting blood vessel hyperplasia and inducing cell apoptosis by regulating the PI3K/AKT pathway.
Collapse
|
14
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
15
|
Identification of Chemical Components of Qi-Fu-Yin and Its Prototype Components and Metabolites in Rat Plasma and Cerebrospinal Fluid via UPLC-Q-TOF-MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1995766. [PMID: 34992662 PMCID: PMC8727097 DOI: 10.1155/2021/1995766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Qi-Fu-Yin, a traditional Chinese medicine formula, has been used to treat Alzheimer's disease (AD, a neurodegenerative disorder) in clinical setting. In this study, the chemical components of Qi-Fu-Yin and its prototype components and metabolites in rat plasma and cerebrospinal fluid, after oral administration, were preliminarily characterized via ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS). A total of 180 compounds, including saponins, flavonoids, organic acids, sucrose esters, oligosaccharide esters, phthalides, phenylethanoid glycosides, alkaloids, xanthones, terpene lactones, ionones, and iridoid glycoside, were tentatively characterized. For the first time, 51 prototypical components and 26 metabolites, including saponins, phthalides, flavonoids, sucrose esters, organic acids, alkaloids, ionones, terpene lactones, iridoid glycoside, and their derivatives, have been tentatively identified in the plasma. Furthermore, 10 prototypical components (including butylidenephthalide, butylphthalide, 20(S)-ginsenoside Rh1, 20(R)-ginsenoside Rh1, and zingibroside R1) and 6 metabolites were preliminarily characterized in cerebrospinal fluid. These results were beneficial to the discovery of the active components of Qi-Fu-Yin anti-AD.
Collapse
|
16
|
Li YJ, Liao LL, Liu P, Tang P, Wang H, Peng QH. Sijunzi Decoction Inhibits Stemness by Suppressing β-Catenin Transcriptional Activity in Gastric Cancer Cells. Chin J Integr Med 2021; 28:702-710. [PMID: 34751940 DOI: 10.1007/s11655-021-3314-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate a previously uncharacterized function of Sijunzi Decoction (SJZD) in inhibition of gastric cancer stem cells (GCSCs). METHODS MKN74 and MKN45, two CD44 positive gastric cancer cell lines with stem cell properties were used. The cells were divided into 2 groups. Treatment group was treated with SJZD (1-5 mg/mL) for indicated time (48 h-14 days). The control group was treated with equal volume of phosphate buffered saline. Cell Counting Assay Kit-8 were used to measure cell viability. Spheroid colony formation and GCSCs marker expression were performed to determine GCSCs stemness. Cell fractionation and chromatin immunoprecipitation assays were used to assess the distribution and DNA-binding activity of β-catenin after SJZD treatment, respectively. RESULTS SJZD treatment repressed cell growth and induced apoptosis in MKN74 and MKN45 cell lines (P<0.05). Moreover, SJZD dramatically inhibited formation of spheroid colony and expression of GCSC markers in GC cells (P<0.05). Mechanistically, SJZD reduced nuclear accumulation and DNA binding activity of β-catenin (P<0.05), the key regulator for maintaining CSC stemness. CONCLUSION SJZD inhibits GCSCs by attenuating the transcriptional activity of β-catenin.
Collapse
Affiliation(s)
- Yue-Jun Li
- Department of Oncology, the Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
- Department of Oncology, the First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
| | - Lin-Li Liao
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Pei Liu
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ping Tang
- Department of Oncology, the Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
- Department of Oncology, the First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
| | - Hong Wang
- Department of Oncology, the Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
- Department of Oncology, the First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
| | - Qing-Hua Peng
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
17
|
Luo LS, Wang Y, Dai LJ, He FX, Zhang JL, Zhou Q. Triterpenoid acids from medicinal mushroom Inonotus obliquus (Chaga) alleviate hyperuricemia and inflammation in hyperuricemic mice: Possible inhibitory effects on xanthine oxidase activity. J Food Biochem 2021; 46:e13932. [PMID: 34528276 DOI: 10.1111/jfbc.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to explore the hypouricemic effect in hyperuricemia mice of triterpenoid acids from Inonotus obliquus (TAIO), and decipher of the underlying xanthine oxidase inhibitory mechanism. Measurement of xanthine oxidase (XO) inhibitory activity was assayed. Organ indexes and serum biochemical indicators were measured in potassium oxonate-induced hyperuricemia mice. Studies showed that TAIO had the strong inhibitory effect on XO activity, and its inhibition type was mixed and reversible. In vivo, TAIO decreased efficiently uric acid level, hepatic XO, serum blood urea nitrogen activities in hyperuricemia mice. Indicating that TAIO may ameliorate kidney damage and relieve inflammation in hyperuricemic mice, and had the inhibitory effect on XO activity. Furthermore, eight triterpenoids were identified by Ultra performance liquid chromatography electrospray quadrupole time of flight mass spectrometry. These findings proved that triterpenoids from Inonotus obliquus would have potential biological characteristics and effect on controlling hyperuricemia and gout as an active supplement. PRACTICAL APPLICATIONS: There are a large amount of evidence indicating that hyperuricemia and gout are related to the hypertension and obesity. And gout and hyperuricemia are also possible connection with cardiovascular disease and metabolic syndrome. Currently, xanthine oxidase is the target of many kinds of chemical drugs at present, but the therapeutic drugs used in clinical medicine will produce more or less side effects. Therefore, the aim of this study was to explore the material basis of effective substances for reducing uric acid in Inonotus obliquus and to evaluate its effect. This study can provide a promising application of Inonotus obliquus in the fields of functional foods or medicines for gout and hyperuricemia.
Collapse
Affiliation(s)
- Lin-Song Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang-Xia He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
An HM, Li MN, Yang H, Pang HQ, Qu C, Xu Y, Liu RZ, Peng C, Li P, Gao W. A validated UHPLC-MS/MS method for pharmacokinetic and brain distribution studies of twenty constituents in rat after oral administration of Jia-Wei-Qi-Fu-Yin. J Pharm Biomed Anal 2021; 202:114140. [PMID: 34015592 DOI: 10.1016/j.jpba.2021.114140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
A rapid ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QqQ MS/MS) approach with high sensitivity and selectivity was developed for the quantification of twenty compounds, including 9 saponins, 8 flavonoids, 2 oligosaccharide esters and 1 phenolic acid, in rat plasma and brain, which was administrated intragastrically with Jia-Wei-Qi-Fu-Yin (JWQFY), Mass spectrometric detection was operated under multiple reaction monitoring (MRM) mode. All calibration curves possessed good linearity with correlation coefficients ( r2) higher than 0.9916 in their respective linear ranges. For intra- and inter-day precision, all the relative standard deviations (RSDs) at different levels were less than 14.68 %. Based on the UHPLC-QqQ MS/MS quantitative results, pharmacokinetic study and brain distribution of multiple components in JWQFY was then successfully performed. As a result, constituents with discrepancy structures showed diverse pharmacokinetic and distribution characteristics. For instance, ferulic acid (phenolic acid), 3, 6'-disinapoyl sucrose and tenuifoliside A (oligosaccharide esters) showed short Tmax (< 10 min), whereas the Tmax of ginsenosides Rb1, Rb2 and Rc (ppd-type terpenoid saponins) were much longer (> 4 h). Besides, ferulic acid, epimedin C, icariin, glycyrrhizin, ginsenoside Rb1 and ginsenoside Rg1 were considered as the potential effective ingredients of JWQFY because of their relatively high exposure to blood and brain. Our study would provide relevant information for discovery of pharmacodynamic ingredients, as well as further action mechanisms investigations of JWQFY.
Collapse
Affiliation(s)
- Hai-Ming An
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Han-Qing Pang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Yi Xu
- Beijing Zhongyan Tongrentang Pharmaceutical R&D co., Ltd, Beijing, 100079, China
| | - Run-Zhou Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Chao Peng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
19
|
Shensu IV prevents glomerular podocyte injury in nephrotic rats via promoting lncRNA H19/DIRAS3-mediated autophagy. Biosci Rep 2021; 41:228425. [PMID: 33881140 PMCID: PMC8112846 DOI: 10.1042/bsr20203362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Shensu IV is a Chinese prescription well-known for its function in treating chronic kidney diseases. However, the potential mechanisms underlying how Shensu IV exerts its effects remain unclear. In the present study, we investigated the effects of Shensu IV on glomerular podocyte injury in nephrotic rats and puromycin-induced injury in cultured podocytes, and assessed the associated molecular mechanisms. Liquid chromatography-mass spectrometry (LC-MS) results showed that the main components of Shensu IV were l-Carnitine, P-lysoPC (LPC) 16:0, Coumaroyl tyramine, Tetramethylpyrazine, LPC 18:1, Choline, (S,S)-Butane-2,3-diol, and Scopoletin. We further found that nephrotic rats displayed pathological alterations in kidney tissues and ultrastructural changes in glomerular podocytes; however, these effects were reversed with Shensu IV treatment. Compared with the control, the numbers of autophagosomes were markedly reduced in the model group, but not in the Shensu IV treatment group. Furthermore, the expression of p62 was significantly higher in the model group than in the controls, whereas the LC3-II/I ratio was significantly lower; however, these changes were not observed when Shensu IV was administered. The protective effects of Shensu IV were further confirmed in podocytes displaying puromycin-induced injury. Compared with control group, the expression of long non-coding RNA (lncRNA) H19, mTOR, p-mTOR, and p62 was significantly increased in the puromycin group, whereas that of distinct subgroup of the RAS family member 3 (DIRAS3) was significantly decreased, as was the LC3-II/I ratio. The opposite results were obtained for both shH19- and Shensu IV-treated cells. Collectively, our data demonstrated that Shensu IV can prevent glomerular podocyte injury in nephrotic rats and puromycin-treated podocytes, likely via promoting lncRNA H19/DIRAS3-regulated autophagy.
Collapse
|
20
|
Dong B, Peng C, Ma P, Li X. An integrated strategy of MS-network-based offline 2DLC-QTOF-MS/MS coupled with UHPLC-QTRAP ®-MS/MS for the characterization and quantification of the non-polysaccharides in Sijunzi decoction. Anal Bioanal Chem 2021; 413:3511-3527. [PMID: 33851227 PMCID: PMC8043762 DOI: 10.1007/s00216-021-03302-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Sijunzi decoction (SJZD), a classic recipe in traditional Chinese medicine (TCM), has been applied for the clinical treatment of gastrointestinal diseases. While there are reports on pharmaceutical substances of SJZD focusing on its polysaccharides, the composition of non-polysaccharides (NPSs) has not yet been holistically clarified. In the current study, offline two-dimensional liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (2DLC-QTOF-MS/MS) was used for comprehensive NPS chemical profiling of SJZD. In addition, the MS-network of SJZD was proposed, which led to the construction of a larger in-house chemical library and accelerated qualitative processing. Four hundred forty-nine components, among which 6 were potentially novel, and 32 were confirmed by standard substances, were identified or tentatively assigned. Furthermore, based on good method validation, 19 representative components were simultaneously quantified by ultra-high-performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry (UHPLC-QTRAP®-MS/MS). They were selected for quantification on the account of their bioactive reports on in vivo or in vitro activities, the peak intensity in the mass spectrum, and characteristic structures, which have the potential to be qualitative or quantitative markers of SJZD. The present work furthers understanding of the pharmacological effects and action mechanism of NPSs in SJZD, and provides a useful analytical approach for complex composition research of TCMs.
Collapse
Affiliation(s)
- Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
21
|
Wang Q, Zou Z, Zhang Y, Lin P, Lan T, Qin Z, Xu D, Wu H, Yao Z. Characterization of chemical profile and quantification of major representative components of Wendan decoction, a classical traditional Chinese medicine formula. J Sep Sci 2021; 44:1036-1061. [PMID: 33403778 DOI: 10.1002/jssc.202000952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/22/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022]
Abstract
Wendan decoction, a classical traditional Chinese medicine formula consisting of six herbal medicines, has been widely used in clinical treatments for thousands of years due to the expectorant effects. However, the chemical basis of Wendan decoction remains unclear, which hinders the elucidation of the scientific connotation and mechanism of its effective components. In this study, an ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry method was first developed for characterization of its chemical profile, and a total of 142 chemical components including flavonoids, triterpenoids, alkaloids, coumarins, pungent phytochemicals, and other types were detected, among which 41 components were definitively identified with authentic standards. Furthermore, 14 major representative components were simultaneously quantified by high-performance liquid chromatography with ultraviolet detector, indicating that the content levels of flavonoids were the most abundant in Wendan decoction. In summary, this study established sensitive and practical methods to systematically characterize chemical profile for the first time and simultaneous quantify representative components of Wendan decoction. These findings above would provide a solid chemical basis for disclosure of potential effective components by further in vivo disposal study, and promote therapeutic mechanism researches of Wendan decoction.
Collapse
Affiliation(s)
- Qi Wang
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Zhenyu Zou
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Yezi Zhang
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Pei Lin
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Taohua Lan
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou, P.R. China.,Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Danping Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Huanlin Wu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, P.R. China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
22
|
He M, Zhou Y. How to identify “Material basis–Quality markers” more accurately in Chinese herbal medicines from modern chromatography-mass spectrometry data-sets: Opportunities and challenges of chemometric tools. CHINESE HERBAL MEDICINES 2021; 13:2-16. [PMID: 36117762 PMCID: PMC9476807 DOI: 10.1016/j.chmed.2020.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
|
23
|
Li HF, Li T, Yang P, Wang Y, Tang XJ, Liu LJ, Xu F, Shang MY, Liu GX, Li YL, Wang X, Yin J, Cai SQ. Global Profiling and Structural Characterization of Metabolites of Ononin Using HPLC-ESI-IT-TOF-MS n After Oral Administration to Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15164-15175. [PMID: 33315401 DOI: 10.1021/acs.jafc.0c04247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ononin is a bioactive isoflavone of legumes. To explore the "effective forms" of ononin, its metabolites were characterized using HPLC-ESI-IT-TOF-MSn after oral administration to rats. Metabolites (106), including 94 new metabolites, were characterized, which contained 17 phase I, 23 hydroxylated and methylated, 54 sulfated, 10 glucuronidated, and 2 sulfated and glucuronidated metabolites. Six hydroxylated metabolites of formononetin (aglycone of ononin) were simultaneously detected for the first time. Twenty-three hydroxylated and methylated metabolites were the new metabolites of ononin, and the number of hydroxylation and methylation was 1-3 and 1-2. Twenty metabolites have ononin-related bioactivities, and many metabolites have the same bioactivities. Their probable mechanisms of action may be additive and/or synergistic effects, especially because of the addition of the blood concentrations of these compounds. The results provide a foundation for a better understanding of the "effective forms" of ononin.
Collapse
Affiliation(s)
- Hong-Fu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Teng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Ping Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
- Center for Drug Evaluation, China Food and Drug Administration, No.1 Fuxing Road, Beijing 100038, China
| | - Yong Wang
- School of Pharmacy, Hainan Medical University, No.3 Xueyuan Road, Haikou 571199, China
| | - Xue-Jian Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Li-Jia Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Feng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Ming-Ying Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Guang-Xue Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Yao-Li Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Xuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Jun Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China
| | - Shao-Qing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
24
|
Zhao Y, Wang M, Sun L, Jiang X, Zhao M, Zhao C. Rapid characterization of the chemical constituents of Sanhua decoction by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. RSC Adv 2020; 10:26109-26119. [PMID: 35519733 PMCID: PMC9055441 DOI: 10.1039/d0ra02264k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/23/2020] [Indexed: 12/03/2022] Open
Abstract
Sanhua decoction, a famous Chinese herbal formula has been widely used for the treatment of stroke. In our study, a rapid, swift and straightforward analytical method with the help of UHPLC-FT-ICR-MS/MS was successfully developed for the first time to separate and identify the chemical constituents of Sanhua decoction. Chromatography was performed on a Universal XB C18 column (150 mm × 2.1 mm, 1.8 μm) using a mobile phase containing 0.1% formic acid–water (A) and acetonitrile (B). A total of 137 compounds in Sanhua decoction were identified or tentatively characterized. The findings revealed the fact that Sanhua decoction mainly contains flavonoids (in Aurantii fructus immaturus and Rheum palmatum L.), anthraquinones (in Rheum palmatum L.), coumarins (in Notopterygii Rhizoma Et Radix), phenylpropanoid glycosides, alkaloids and lignans (in Magnoliae Officmalis Cortex), which made up the key ingredients existing in Sanhua decoction. This study is hoped to be meaningful for the characterization of components in other traditional Chinese medicines, and lay the foundation for research on the pharmacology of Sanhua decoction. Sanhua decoction, a famous Chinese herbal formula has been widely used for the treatment of stroke.![]()
Collapse
Affiliation(s)
- Yanhui Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Miao Wang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Lin Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xue Jiang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Min Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Chunjie Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
25
|
Sun L, Zhao M, Zhao Y, Jiang X, Wang M, Zhang Y, Zhao C. Rapid characterization of chemical constituents of Shaoyao Gancao decoction using UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. RSC Adv 2020; 10:29528-29535. [PMID: 35521121 PMCID: PMC9055985 DOI: 10.1039/d0ra04701e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/25/2020] [Indexed: 11/21/2022] Open
Abstract
Shaoyao Gancao decoction (SGD), a well-known Chinese herbal formula, has been used to treat liver injury for a long time. In this study, chemical profiles of SGD were identified using ultra high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS/MS). Liquid chromatography was performed on a C18 column (150 mm × 2.1 mm, 1.8 μm); the mobile phase comprised 0.1% formic acid (A) and acetonitrile (B). We then characterized 73 chemical compounds; the primary constituents in SGD included phenols and monoterpenes (in Paeoniae Radix Alba), triterpene saponins, and flavonoids (in Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle). Thus, this study provides a basis for further study on SGD and is expected to be useful for rapidly characterizing constituents in other traditional Chinese herbal formulations. Flowchart of rapid characterization of the chemical constituents of Shaoyao Gancao decoction by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry.![]()
Collapse
Affiliation(s)
- Lin Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Min Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yanhui Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xue Jiang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Miao Wang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yixin Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Chunjie Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
26
|
Yan Q, Mao H, Guan J. Metabolomics analysis reveals the mechanisms of the effect of Sijunzi decoction on spleen deficiency syndrome in a rat model. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Cui Y, Yang H, Jing J, Liu T, Wang R, Di F, Han F, Zhao Y, Yu Z. Rapid characterization of chemical constituents of Gansuibanxia decoction by UHPLC-FT-ICR-MS analysis. J Pharm Biomed Anal 2019; 179:113029. [PMID: 31835125 DOI: 10.1016/j.jpba.2019.113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Gansuibanxia decoction (GSBXD) is one of the most famous traditional Chinese medicine (TCM). It is a herbal formula used for treating hydrops, such as cancerous ascites, pleural effusion, pericardial effusion, etc. However, the chemical constituents of GSBXD were still unclear. In this study, an UHPLC-FT-ICR-MS method was established and applied to the separation and characterization of the chemical constituents of GSBXD. A total of 62 components were chemically defined or tentatively identified, including diterpenoids, triterpenoids, flavonoids, monoterpene glycosides and alkaloids. The results is meaningful for a better understanding of the material basis of GSBXD and can be the basis for its further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Yue Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Huanhuan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jixue Jing
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ting Liu
- School of Pharmacy, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang 110034, China
| | - Roujia Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fuyu Di
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|