1
|
Cheng L, Fan C, Deng W. The application of deep eutectic solvent-based magnetic nanofluid in analytical sample preparation. Talanta 2025; 282:126976. [PMID: 39366242 DOI: 10.1016/j.talanta.2024.126976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
The pursuit of green analytical chemistry has led to the exploration of deep eutectic solvents (DESs) as green solvents in sample preparation processes. DESs, formed by hydrogen bond donor and acceptor components, exhibit unique properties such as low toxicity, biodegradability, and designable structures that make them ideal for extraction technologies. However, no comprehensive assessment of the utilization of DES-based magnetic nanofluid for analytical sample pretreatment has been performed. This review summarized the preparation methods of DES-based magnetic nanofluids and their application in various microextraction technologies, including vortex-assisted, ultrasonic-assisted, dispersive, and microfluidic device-based approaches, highlighting their role in enhancing the efficiency and sustainability of analytical methods. The paper underscored the importance of the stability of magnetic nanofluids in sample pretreatment and the advantages of using DESs, such as reduced organic solvent usage and compatibility with green chemistry principles. Key findings from recent research on the application of DES-based magnetic nanofluids in microextraction were presented, demonstrating their high extraction recoveries, low detection limits, and applicability to a wide range of analytes and matrices. The outlook suggests potential directions for future research, including the refinement of DES-based magnetic nanofluids for improved performance in analytical sample preparation. This review provides a valuable reference for researchers and practitioners in the field of analytical chemistry, showcasing the potential of DES-based magnetic nanofluids as a sustainable and efficient tool for sample preparation and microextraction.
Collapse
Affiliation(s)
- Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Wanlin Deng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Wang Y, Shen L, Yan Y, Gong B, Chen K, Zhu G, Li Z. Ultrasound assisted upper critical solution temperature type switchable deep eutectic solvent based liquid-liquid microextraction for the determination of triazole in water. Anal Chim Acta 2024; 1328:343172. [PMID: 39266195 DOI: 10.1016/j.aca.2024.343172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The use of pesticides to protect crops has long been an important measure to provide healthy and safe agricultural products, but excess pesticides flow into fields and rivers, causing environmental pollution. Earlier methods utilizing organic solvent liquid-liquid microextraction for pesticide residue detection were not environmentally friendly. Therefore, it is significant to find a greener and more convenient detection method to determine pesticide residues. RESULTS A new method was established to detect three triazole fungicides (TFs), including myclobutanil, epoxiconazole and tebuconazole, in environmental water samples. And the determination was conducted using a high-performance liquid chromatography with the ultraviolet detector (HPLC-UV). The switchable deep eutectic solvent (SDES) can be reversibly switched between hydrophilic and hydrophobic states through temperature modulation. Additionally, the method exhibited excellent linearity for all target analytes within the concentration range of 10-2000 μg L-1, with satisfactory R2 values (≥0.9975). The limits of detection (LODs) ranged from 2.3 to 2.6 μg L-1, and the limits of quantification (LOQs) ranged from 7.8 to 8.7 μg L-1. The accuracy of the method was assessed through intra-day and inter-day precision tests, yielding relative standard deviations (RSDs) in the ranges of 2.8%-6.7% and 2.2%-7.5%, respectively. Density functional theory (DFT) results indicated that hydrogen bonding is a significant factor affecting the binding of DES with triazoles. Three different green assessment tools were used to prove that the SDES-HLLME method had good greenness and broad applicability. SIGNIFICANCE This is a homogeneous liquid-liquid microextraction (HLLME) method based on the upper critical solution temperature (UCST) type switchable deep eutectic solvent program, which can complete the extraction within a few minutes without dispersant. In terms of pesticide detection, the analytical method is simple and more conducive to environmental protection.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lingqi Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuan Yan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bincheng Gong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kexian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guohua Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
3
|
da Silva HT, Magalhães TS, Pires SA, Santos APR, Rodrigues JL, Faria MCDS. Artisanal Gem Mining in Brazil: Evaluation of Oxidative Stress and Genotoxicity Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:871. [PMID: 39063448 PMCID: PMC11277206 DOI: 10.3390/ijerph21070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This study was carried out in the district of Taquaral de Minas, in the municipality of Itinga, located in Jequitinhonha Valley, state of Minas Gerais, which is considered one of the largest yolk-producing regions in Brazil. Miners in gem extraction areas are prone to severe oxidative damage due to their increased exposure to toxic metals, as well as chemical, physical, and biological agents, resulting in diseases such as silicosis. Thus, this work aimed to evaluate occupational exposure in prospectors through biomonitoring techniques using a variety of biomarkers for oxidative stress, genotoxicity, and mutagenicity. Twenty-two miners and seventeen workers who were not occupationally exposed were recruited, totaling thirty-nine participants. The study was approved by the Research Ethics Committee of the Federal University of the Jequitinhonha and Mucuri Valleys. In this study, the levels of total peroxides, catalase activity, and microelements in plasma were evaluated. Additionally, environmental analysis was carried out through the Ames and Allium cepa tests. The results of the lipoperoxidation assessment were significant, with increased frequencies in exposed individuals compared to controls (p < 0.05), as determined by the Mann-Whitney test. Micronutrients in the blood showed lower concentrations in the group exposed to Fe and Se than in individuals not exposed to these elements. The results of the Ames test and Allium cepa test were statistically significant compared to the controls (p < 0.05), as determined by the Mann-Whitney test for genotoxicity and cytotoxicity. Thus, the results of the present study indicate possible environmental contamination and a potential risk to the health of miners, which suggests that further studies are important in the region.
Collapse
Affiliation(s)
- Heberson Teixeira da Silva
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| | - Thainá Sprícido Magalhães
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| | - Sumaia Araújo Pires
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Ana Paula Rufino Santos
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| | - Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| |
Collapse
|
4
|
Guo Z, Zhou L, Chen X, Song Q. Carbon-coated copper nanocrystals with enhanced peroxidase-like activity for sensitive colorimetric determination of 2,4-dinitrophenylhydrazine. Mikrochim Acta 2023; 191:37. [PMID: 38110783 DOI: 10.1007/s00604-023-06127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
Carbon-coated copper nanocrystals (CuNCs) with peroxidase-like activity were hydrothermally prepared by using copper acetate, citric acid (CA) and histidine (His) as the precursors. Various shaped CuNCs, including urchin-like, slab-like and spherical appearance were facilely prepared by addition of different amount of NaNO2 in the precursor solutions. When 3,3',5,5'-tetramethylbenzidine (TMB) was used as the substrate, the CuNCs with urchin-like appearance have greatest peroxidase-like activity and their Michaelis-Menten constant (Km) and the maximum rate constant (νmax) are respectively 8.8 and 1.2 times higher than that obtained from horseradish peroxidase (HRP). The production of reactive oxygen species (ROS) was confirmed by radical quenching and electron spin resonance (ESR) tests. Subsequent studies have found that the CuNCs catalyzed color reaction of TMB can be selectively quenched by the environmental pollutant 2,4-dinitrophenylhydrazine (2,4-DNPH). Thus a new colorimetric method for the determination of 2,4-DNPH with a linear range of 0.60-20 µM was developed and a limit of detection (LOD) as low as 0.166 µM was achieved. The results obtained not only reveal the tunability of the peroxidase-like activity of Cu-based nanomaterials, but also provide a new method for the sensitive determination of environmental contaminate.
Collapse
Affiliation(s)
- Zhanghong Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lin Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuan Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Manousi N, Ntorkou M, Tzanavaras PD, Zacharis CK. A review of bioanalytical applications of microextraction techniques combined with derivatization. Bioanalysis 2023; 15:937-954. [PMID: 37638635 DOI: 10.4155/bio-2023-0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Microextraction techniques have attracted the attention of many researchers working in the field of bioanalysis due to their unique advantages, mainly in downsizing the scale of sample preparation steps. In parallel, analytical derivatization offers a powerful combination in terms of additional sensitivity, selectivity and compatibility with modern separation techniques. The aim of this review is to discuss the most recent advances in bioanalytical sample preparation based on the combination of microextraction and analytical derivatization. Both innovative fundamental reports and analyte-targeted applications are included and discussed. Dispersive liquid-liquid extraction and solid-phase microextraction are the most common techniques that typically combined with derivatization, while the development of novel and greener protocols is receiving substantial consideration in the field of analytical chemistry.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Marianna Ntorkou
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
6
|
Tsikas D. Mass Spectrometry-Based Evaluation of the Bland-Altman Approach: Review, Discussion, and Proposal. Molecules 2023; 28:4905. [PMID: 37446566 DOI: 10.3390/molecules28134905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Reliable quantification in biological systems of endogenous low- and high-molecular substances, drugs and their metabolites, is of particular importance in diagnosis and therapy, and in basic and clinical research. The analytical characteristics of analytical approaches have many differences, including in core features such as accuracy, precision, specificity, and limits of detection (LOD) and quantitation (LOQ). Several different mathematic approaches were developed and used for the comparison of two analytical methods applied to the same chemical compound in the same biological sample. Generally, comparisons of results obtained by two analytical methods yields different quantitative results. Yet, which mathematical approach gives the most reliable results? Which mathematical approach is best suited to demonstrate agreement between the methods, or the superiority of an analytical method A over analytical method B? The simplest and most frequently used method of comparison is the linear regression analysis of data observed by method A (y) and the data observed by method B (x): y = α + βx. In 1986, Bland and Altman indicated that linear regression analysis, notably the use of the correlation coefficient, is inappropriate for method-comparison. Instead, Bland and Altman have suggested an alternative approach, which is generally known as the Bland-Altman approach. Originally, this method of comparison was applied in medicine, for instance, to measure blood pressure by two devices. The Bland-Altman approach was rapidly adapted in analytical chemistry and in clinical chemistry. To date, the approach suggested by Bland-Altman approach is one of the most widely used mathematical approaches for method-comparison. With about 37,000 citations, the original paper published in the journal The Lancet in 1986 is among the most frequently cited scientific papers in this area to date. Nevertheless, the Bland-Altman approach has not been really set on a quantitative basis. No criteria have been proposed thus far, in which the Bland-Altman approach can form the basis on which analytical agreement or the better analytical method can be demonstrated. In this article, the Bland-Altman approach is re-valuated from a quantitative bioanalytical perspective, and an attempt is made to propose acceptance criteria. For this purpose, different analytical methods were compared with Gold Standard analytical methods based on mass spectrometry (MS) and tandem mass spectrometry (MS/MS), i.e., GC-MS, GC-MS/MS, LC-MS and LC-MS/MS. Other chromatographic and non-chromatographic methods were also considered. The results for several different endogenous substances, including nitrate, anandamide, homoarginine, creatinine and malondialdehyde in human plasma, serum and urine are discussed. In addition to the Bland-Altman approach, linear regression analysis and the Oldham-Eksborg method-comparison approaches were used and compared. Special emphasis was given to the relation of difference and mean in the Bland-Altman approach. Currently available guidelines for method validation were also considered. Acceptance criteria for method agreement were proposed, including the slope and correlation coefficient in linear regression, and the coefficient of variation for the percentage difference in the Bland-Altman and Oldham-Eksborg approaches.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
7
|
A magnetic solid-phase extraction sorbent based on ionic liquid-derived nitrogen and sulfur co-doped ordered mesoporous carbon for the analysis of triazine herbicides in fruit juices. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Custodio-Mendoza J, Caamaño-Fernandez C, Lage M, Almeida P, Lorenzo R, Carro A. GC–MS determination of malondialdehyde, acrolein, and 4-hydroxy-2-nonenal by ultrasound-assisted dispersive liquid-liquid microextraction in beverages. Food Chem 2022; 384:132530. [DOI: 10.1016/j.foodchem.2022.132530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022]
|
9
|
Montoro-Leal P, Zougagh M, Sánchez-Ruiz A, Ríos Á, Vereda Alonso E. Magnetic graphene molecularly imprinted polypyrrole polymer (MGO@MIPy) for electrochemical sensing of malondialdehyde in serum samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
|
11
|
An efficient chitosan-based naphthalimide-modified fluorescent sensor for rapid detection of 2,4-dinitrophenylhydrazine and its applications in environmental analysis. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Tudorachi NB, Totu EE, Fifere A, Ardeleanu V, Mocanu V, Mircea C, Isildak I, Smilkov K, Cărăuşu EM. The Implication of Reactive Oxygen Species and Antioxidants in Knee Osteoarthritis. Antioxidants (Basel) 2021; 10:985. [PMID: 34205576 PMCID: PMC8233827 DOI: 10.3390/antiox10060985] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Knee osteoarthritis (KOA) is a chronic multifactorial pathology and a current and essential challenge for public health, with a negative impact on the geriatric patient's quality of life. The pathophysiology is not fully known; therefore, no specific treatment has been found to date. The increase in the number of newly diagnosed cases of KOA is worrying, and it is essential to reduce the risk factors and detect those with a protective role in this context. The destructive effects of free radicals consist of the acceleration of chondrosenescence and apoptosis. Among other risk factors, the influence of redox imbalance on the homeostasis of the osteoarticular system is highlighted. The evolution of KOA can be correlated with oxidative stress markers or antioxidant status. These factors reveal the importance of maintaining a redox balance for the joints and the whole body's health, emphasizing the importance of an individualized therapeutic approach based on antioxidant effects. This paper aims to present an updated picture of the implications of reactive oxygen species (ROS) in KOA from pathophysiological and biochemical perspectives, focusing on antioxidant systems that could establish the premises for appropriate treatment to restore the redox balance and improve the condition of patients with KOA.
Collapse
Affiliation(s)
- Nicoleta Bianca Tudorachi
- Faculty of Medicine, “Ovidius” University of Constanța, Mamaia Boulevard 124, 900527 Constanța, Romania; (N.B.T.); (V.A.)
| | - Eugenia Eftimie Totu
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1–5 Polizu Street, 011061 Bucharest, Romania
| | - Adrian Fifere
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Valeriu Ardeleanu
- Faculty of Medicine, “Ovidius” University of Constanța, Mamaia Boulevard 124, 900527 Constanța, Romania; (N.B.T.); (V.A.)
| | - Veronica Mocanu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (V.M.); (C.M.)
| | - Cornelia Mircea
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (V.M.); (C.M.)
| | - Ibrahim Isildak
- Faculty of Chemistry-Metallurgy, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Katarina Smilkov
- Faculty of Medical Sciences, Division of Pharmacy, Department of Applied Pharmacy, Goce Delcev University, Krste Misirkov Street, No. 10-A, 2000 Stip, North Macedonia;
| | - Elena Mihaela Cărăuşu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, “Nicolae Leon” Building, 13 Grigore Ghica Street, 700259 Iasi, Romania;
| |
Collapse
|
13
|
Daryanavard SM, Zolfaghari H, Abdel-Rehim A, Abdel-Rehim M. Recent applications of microextraction sample preparation techniques in biological samples analysis. Biomed Chromatogr 2021; 35:e5105. [PMID: 33660303 DOI: 10.1002/bmc.5105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Analysis of biological samples is affected by interfering substances with chemical properties similar to those of the target analytes, such as drugs. Biological samples such as whole blood, plasma, serum, urine and saliva must be properly processed for separation, purification, enrichment and chemical modification to meet the requirements of the analytical instruments. This causes the sample preparation stage to be of undeniable importance in the analysis of such samples through methods such as microextraction techniques. The scope of this review will cover a comprehensive summary of available literature data on microextraction techniques playing a key role for analytical purposes, methods of their implementation in common biological samples, and finally, the most recent examples of application of microextraction techniques in preconcentration of analytes from urine, blood and saliva samples. The objectives and merits of each microextration technique are carefully described in detail with respect to the nature of the biological samples. This review presents the most recent and innovative work published on microextraction application in common biological samples, mostly focused on original studies reported from 2017 to date. The main sections of this review comprise an introduction to the microextraction techniques supported by recent application studies involving quantitative and qualitative results and summaries of the most significant, recently published applications of microextracion methods in biological samples. This article considers recent applications of several microextraction techniques in the field of sample preparation for biological samples including urine, blood and saliva, with consideration for extraction techniques, sample preparation and instrumental detection systems.
Collapse
Affiliation(s)
| | - Hesane Zolfaghari
- Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Mohamed Abdel-Rehim
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
14
|
Nazraz M, Yamini Y, Ramezani AM, Dinmohammadpour Z. Deep eutectic solvent dependent carbon dioxide switching as a homogeneous extracting solvent in liquid-liquid microextraction. J Chromatogr A 2020; 1636:461756. [PMID: 33333374 DOI: 10.1016/j.chroma.2020.461756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
A miscible-immiscible deep eutectic solvent (DES) containing monoethanolamine/4-methoxyphenol was used as an extraction solvent in a homogeneous liquid-liquid microextraction (HLLME). The method was used to preconcentrate chlorobenzenes in water samples followed by separating and analyzing them by gas chromatography-mass spectroscopy (GC-MS). A special feature of the new extraction method is that a green miscible solvent was used as an extractant in the HLLME method. The developed extraction technique provided enrichment factors in the range of 13.1-42.1 for extraction from only 1.0 mL of the aqueous sample solution. The effects of various experimental parameters were investigated and optimized. The optimal conditions were as follows: vortex time: 30.0 s, bubbling CO2 gas: 1.0 min, salt concentration: 5.0% w/v, rate and time of centrifuge: 4000.0 rpm and 3.0 min, respectively, and DES volume: 30.0 µL. The limit of detections and the limit of quantifications for the four targeted analytes varied from 0.01-0.15 and 0.025-0.5 µg L-1, respectively. The precision and long-term precision tests for the developed method were found to be less than 11.0%. Two real samples, including toilet air freshener and car perfume, were analyzed. The applied DES in the HLLME method provides a fast means of sample preparation for environmental aqueous sample solutions.
Collapse
Affiliation(s)
- Mahsa Nazraz
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.
| | - Amir M Ramezani
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | |
Collapse
|
15
|
Fashi A, Cheraghi M, Ebadipur H, Ebadipur H, Zamani A, Badiee H, Pedersen-Bjergaard S. Exploiting agarose gel modified with glucose-fructose syrup as a green sorbent in rotating-disk sorptive extraction technique for the determination of trace malondialdehyde in biological and food samples. Talanta 2020; 217:121001. [DOI: 10.1016/j.talanta.2020.121001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
|
16
|
|
17
|
Zhang J, Yang Z, Zhang S, Xie Z, Han S, Wang L, Zhang B, Sun S. Investigation of endogenous malondialdehyde through fluorescent probe MDA-6 during oxidative stress. Anal Chim Acta 2020; 1116:9-15. [DOI: 10.1016/j.aca.2020.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
|
18
|
Fashi A, Cheraghi M, Badiee H, Zamani A. An analytical strategy based on the combination of ultrasound assisted flat membrane liquid phase microextraction and a smartphone reader for trace determination of malondialdehyde. Talanta 2020; 209:120618. [DOI: 10.1016/j.talanta.2019.120618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
|
19
|
Zhou X, Zhang Z, Liu X, Wu D, Ding Y, Li G, Wu Y. Typical reactive carbonyl compounds in food products: Formation, influence on food quality, and detection methods. Compr Rev Food Sci Food Saf 2020; 19:503-529. [DOI: 10.1111/1541-4337.12535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Xuxia Zhou
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Zhiwen Zhang
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Xiaoying Liu
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Di Wu
- Yangtze Delta Region Institute of Tsinghua University Zhejiang China
| | - Yuting Ding
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Guoliang Li
- School of Food and Biological EngineeringShaanxi University of Science and Technology Xian China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical ScienceChina National Center for Food Safety Risk Assessment Beijing China
| |
Collapse
|
20
|
Li G, Row KH. Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115651] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Estévez M, Padilla P, Carvalho L, Martín L, Carrapiso A, Delgado J. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biol 2019; 26:101277. [PMID: 31352127 PMCID: PMC6669345 DOI: 10.1016/j.redox.2019.101277] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022] Open
Abstract
Carbonylation is one of the most remarkable expressions of the oxidative damage to proteins and the DNPH method the most common procedure to assess protein oxidation in biological samples. The present study was elicited by two hypotheses: i) is malondialdehyde, as a reactive dicarbonyl, able to induce the formation of allysine through a Maillard-type reaction? and ii) to which extent does the attachment of MDA to proteins interfere in the assessment of protein carbonyls using the DNPH method? Human serum albumin (HSA), human hemoglobin (HEM) and β-lactoglobulin (LAC) (5 mg/mL) were incubated with MDA (0.25 mM) for 24 h at 37 °C (HSA and HEM) or 80 °C (LAC). Results showed that MDA was unable to induce oxidative deamination of lysine residues and instead, formed stable and fluorescent adducts with proteins. Such adducts were tagged by the DNPH method, accounting for most of the protein hydrazones quantified. This interfering effect was observed in a wide range of MDA concentrations (0.05-1 mM). Being aware of its limitations, protein scientists should accurately interpret results from the DNPH method, and apply, when required, other methodologies such as chromatographic methods to detect specific primary oxidation products such as allysine.
Collapse
Affiliation(s)
- Mario Estévez
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain.
| | - Patricia Padilla
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain
| | - Leila Carvalho
- Post-Graduate Program in Food Science and Technology, Federal University of Paraiba, João Pessoa, Brazil
| | - Lourdes Martín
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007, Badajoz, Spain
| | - Ana Carrapiso
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007, Badajoz, Spain
| | - Josué Delgado
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain; Heart Clinical Unit, Virgen de la Victoria University Clinic Hospital. Institute of Biomedical Research in Malaga. IBIMA. CIBERCV. University of Málaga, Málaga, Spain
| |
Collapse
|
22
|
Hu S, Chen X, Wang RQ, Yang L, Bai XH. Natural product applications of liquid-phase microextraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Wang Q, Wang X, Wu Y. Highly Sensitive and Selective Fluorescence Probe for 2,4‐Dinitrophenylhydrazine Detection in Wastewater Using Water‐Soluble CdTe QDs. Photochem Photobiol 2019; 95:895-900. [DOI: 10.1111/php.13084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Qiuyue Wang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry Hubei Key Laboratory of Pollutant Analysis & Reuse Technology Institute for Advanced Materials College of Chemistry and Chemical Engineering Hubei Normal University Huangshi China
| | - Xuehan Wang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry Hubei Key Laboratory of Pollutant Analysis & Reuse Technology Institute for Advanced Materials College of Chemistry and Chemical Engineering Hubei Normal University Huangshi China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry Hubei Key Laboratory of Pollutant Analysis & Reuse Technology Institute for Advanced Materials College of Chemistry and Chemical Engineering Hubei Normal University Huangshi China
| |
Collapse
|
24
|
Ahmadi R, Kazemi G, Ramezani AM, Safavi A. Shaker-assisted liquid-liquid microextraction of methylene blue using deep eutectic solvent followed by back-extraction and spectrophotometric determination. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
26
|
Safavi A, Ahmadi R, Ramezani AM. Vortex-assisted liquid-liquid microextraction based on hydrophobic deep eutectic solvent for determination of malondialdehyde and formaldehyde by HPLC-UV approach. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Seidi S, Rezazadeh M, Yamini Y. Pharmaceutical applications of liquid-phase microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Tsikas D. Bioanalytical method validation of endogenous substances according to guidelines by the FDA and other organizations: Basic need to specify concentration ranges. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:80-81. [DOI: 10.1016/j.jchromb.2018.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 02/03/2023]
|